summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp2184
1 files changed, 2184 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..b1e202a
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,2184 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "liveintervals"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "VirtRegMap.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ProcessImplicitDefs.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <limits>
+#include <cmath>
+using namespace llvm;
+
+// Hidden options for help debugging.
+static cl::opt<bool> DisableReMat("disable-rematerialization",
+ cl::init(false), cl::Hidden);
+
+STATISTIC(numIntervals , "Number of original intervals");
+STATISTIC(numFolds , "Number of loads/stores folded into instructions");
+STATISTIC(numSplits , "Number of intervals split");
+
+char LiveIntervals::ID = 0;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(PHIElimination)
+INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
+INITIALIZE_PASS_DEPENDENCY(ProcessImplicitDefs)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<LiveVariables>();
+ AU.addPreserved<LiveVariables>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+
+ if (!StrongPHIElim) {
+ AU.addPreservedID(PHIEliminationID);
+ AU.addRequiredID(PHIEliminationID);
+ }
+
+ AU.addRequiredID(TwoAddressInstructionPassID);
+ AU.addPreserved<ProcessImplicitDefs>();
+ AU.addRequired<ProcessImplicitDefs>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequiredTransitive<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
+ E = r2iMap_.end(); I != E; ++I)
+ delete I->second;
+
+ r2iMap_.clear();
+
+ // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+ VNInfoAllocator.Reset();
+ while (!CloneMIs.empty()) {
+ MachineInstr *MI = CloneMIs.back();
+ CloneMIs.pop_back();
+ mf_->DeleteMachineInstr(MI);
+ }
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &mf_->getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ aa_ = &getAnalysis<AliasAnalysis>();
+ lv_ = &getAnalysis<LiveVariables>();
+ indexes_ = &getAnalysis<SlotIndexes>();
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+
+ computeIntervals();
+
+ numIntervals += getNumIntervals();
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ I->second->print(OS, tri_);
+ OS << "\n";
+ }
+
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+ mf_->print(OS, indexes_);
+}
+
+void LiveIntervals::dumpInstrs() const {
+ printInstrs(dbgs());
+}
+
+bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
+ VirtRegMap &vrm, unsigned reg) {
+ // We don't handle fancy stuff crossing basic block boundaries
+ if (li.ranges.size() != 1)
+ return true;
+ const LiveRange &range = li.ranges.front();
+ SlotIndex idx = range.start.getBaseIndex();
+ SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();
+
+ // Skip deleted instructions
+ MachineInstr *firstMI = getInstructionFromIndex(idx);
+ while (!firstMI && idx != end) {
+ idx = idx.getNextIndex();
+ firstMI = getInstructionFromIndex(idx);
+ }
+ if (!firstMI)
+ return false;
+
+ // Find last instruction in range
+ SlotIndex lastIdx = end.getPrevIndex();
+ MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
+ while (!lastMI && lastIdx != idx) {
+ lastIdx = lastIdx.getPrevIndex();
+ lastMI = getInstructionFromIndex(lastIdx);
+ }
+ if (!lastMI)
+ return false;
+
+ // Range cannot cross basic block boundaries or terminators
+ MachineBasicBlock *MBB = firstMI->getParent();
+ if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
+ return true;
+
+ MachineBasicBlock::const_iterator E = lastMI;
+ ++E;
+ for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
+ const MachineInstr &MI = *I;
+
+ // Allow copies to and from li.reg
+ if (MI.isCopy())
+ if (MI.getOperand(0).getReg() == li.reg ||
+ MI.getOperand(1).getReg() == li.reg)
+ continue;
+
+ // Check for operands using reg
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand& mop = MI.getOperand(i);
+ if (!mop.isReg())
+ continue;
+ unsigned PhysReg = mop.getReg();
+ if (PhysReg == 0 || PhysReg == li.reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
+ if (!vrm.hasPhys(PhysReg))
+ continue;
+ PhysReg = vrm.getPhys(PhysReg);
+ }
+ if (PhysReg && tri_->regsOverlap(PhysReg, reg))
+ return true;
+ }
+ }
+
+ // No conflicts found.
+ return false;
+}
+
+bool LiveIntervals::conflictsWithAliasRef(LiveInterval &li, unsigned Reg,
+ SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ for (SlotIndex index = I->start.getBaseIndex(),
+ end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
+ index != end;
+ index = index.getNextIndex()) {
+ MachineInstr *MI = getInstructionFromIndex(index);
+ if (!MI)
+ continue; // skip deleted instructions
+
+ if (JoinedCopies.count(MI))
+ continue;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand& MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned PhysReg = MO.getReg();
+ if (PhysReg == 0 || PhysReg == Reg ||
+ TargetRegisterInfo::isVirtualRegister(PhysReg))
+ continue;
+ if (tri_->regsOverlap(Reg, PhysReg))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static
+bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
+ unsigned Reg = MI.getOperand(MOIdx).getReg();
+ for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == Reg && MO.isDef()) {
+ assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
+ MI.getOperand(MOIdx).getSubReg() &&
+ (MO.getSubReg() || MO.isImplicit()));
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isPartialRedef - Return true if the specified def at the specific index is
+/// partially re-defining the specified live interval. A common case of this is
+/// a definition of the sub-register.
+bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
+ LiveInterval &interval) {
+ if (!MO.getSubReg() || MO.isEarlyClobber())
+ return false;
+
+ SlotIndex RedefIndex = MIIdx.getDefIndex();
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getUseIndex());
+ MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
+ if (DefMI != 0) {
+ return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
+ }
+ return false;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+ MachineBasicBlock::iterator mi,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx,
+ LiveInterval &interval) {
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
+
+ // Virtual registers may be defined multiple times (due to phi
+ // elimination and 2-addr elimination). Much of what we do only has to be
+ // done once for the vreg. We use an empty interval to detect the first
+ // time we see a vreg.
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+ if (interval.empty()) {
+ // Get the Idx of the defining instructions.
+ SlotIndex defIndex = MIIdx.getDefIndex();
+ // Earlyclobbers move back one, so that they overlap the live range
+ // of inputs.
+ if (MO.isEarlyClobber())
+ defIndex = MIIdx.getUseIndex();
+
+ // Make sure the first definition is not a partial redefinition. Add an
+ // <imp-def> of the full register.
+ // FIXME: LiveIntervals shouldn't modify the code like this. Whoever
+ // created the machine instruction should annotate it with <undef> flags
+ // as needed. Then we can simply assert here. The REG_SEQUENCE lowering
+ // is the main suspect.
+ if (MO.getSubReg()) {
+ mi->addRegisterDefined(interval.reg);
+ // Mark all defs of interval.reg on this instruction as reading <undef>.
+ for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO2 = mi->getOperand(i);
+ if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg())
+ MO2.setIsUndef();
+ }
+ }
+
+ MachineInstr *CopyMI = NULL;
+ if (mi->isCopyLike()) {
+ CopyMI = mi;
+ }
+
+ VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
+ assert(ValNo->id == 0 && "First value in interval is not 0?");
+
+ // Loop over all of the blocks that the vreg is defined in. There are
+ // two cases we have to handle here. The most common case is a vreg
+ // whose lifetime is contained within a basic block. In this case there
+ // will be a single kill, in MBB, which comes after the definition.
+ if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+ // FIXME: what about dead vars?
+ SlotIndex killIdx;
+ if (vi.Kills[0] != mi)
+ killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
+ else
+ killIdx = defIndex.getStoreIndex();
+
+ // If the kill happens after the definition, we have an intra-block
+ // live range.
+ if (killIdx > defIndex) {
+ assert(vi.AliveBlocks.empty() &&
+ "Shouldn't be alive across any blocks!");
+ LiveRange LR(defIndex, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << "\n");
+ return;
+ }
+ }
+
+ // The other case we handle is when a virtual register lives to the end
+ // of the defining block, potentially live across some blocks, then is
+ // live into some number of blocks, but gets killed. Start by adding a
+ // range that goes from this definition to the end of the defining block.
+ LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
+ DEBUG(dbgs() << " +" << NewLR);
+ interval.addRange(NewLR);
+
+ bool PHIJoin = lv_->isPHIJoin(interval.reg);
+
+ if (PHIJoin) {
+ // A phi join register is killed at the end of the MBB and revived as a new
+ // valno in the killing blocks.
+ assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
+ DEBUG(dbgs() << " phi-join");
+ ValNo->setHasPHIKill(true);
+ } else {
+ // Iterate over all of the blocks that the variable is completely
+ // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+ // live interval.
+ for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
+ E = vi.AliveBlocks.end(); I != E; ++I) {
+ MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
+ LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+ }
+
+ // Finally, this virtual register is live from the start of any killing
+ // block to the 'use' slot of the killing instruction.
+ for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+ MachineInstr *Kill = vi.Kills[i];
+ SlotIndex Start = getMBBStartIdx(Kill->getParent());
+ SlotIndex killIdx = getInstructionIndex(Kill).getDefIndex();
+
+ // Create interval with one of a NEW value number. Note that this value
+ // number isn't actually defined by an instruction, weird huh? :)
+ if (PHIJoin) {
+ assert(getInstructionFromIndex(Start) == 0 &&
+ "PHI def index points at actual instruction.");
+ ValNo = interval.getNextValue(Start, 0, VNInfoAllocator);
+ ValNo->setIsPHIDef(true);
+ }
+ LiveRange LR(Start, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+
+ } else {
+ if (MultipleDefsBySameMI(*mi, MOIdx))
+ // Multiple defs of the same virtual register by the same instruction.
+ // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
+ // This is likely due to elimination of REG_SEQUENCE instructions. Return
+ // here since there is nothing to do.
+ return;
+
+ // If this is the second time we see a virtual register definition, it
+ // must be due to phi elimination or two addr elimination. If this is
+ // the result of two address elimination, then the vreg is one of the
+ // def-and-use register operand.
+
+ // It may also be partial redef like this:
+ // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
+ // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
+ bool PartReDef = isPartialRedef(MIIdx, MO, interval);
+ if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
+ // If this is a two-address definition, then we have already processed
+ // the live range. The only problem is that we didn't realize there
+ // are actually two values in the live interval. Because of this we
+ // need to take the LiveRegion that defines this register and split it
+ // into two values.
+ SlotIndex RedefIndex = MIIdx.getDefIndex();
+ if (MO.isEarlyClobber())
+ RedefIndex = MIIdx.getUseIndex();
+
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getUseIndex());
+ VNInfo *OldValNo = OldLR->valno;
+ SlotIndex DefIndex = OldValNo->def.getDefIndex();
+
+ // Delete the previous value, which should be short and continuous,
+ // because the 2-addr copy must be in the same MBB as the redef.
+ interval.removeRange(DefIndex, RedefIndex);
+
+ // The new value number (#1) is defined by the instruction we claimed
+ // defined value #0.
+ VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
+
+ // Value#0 is now defined by the 2-addr instruction.
+ OldValNo->def = RedefIndex;
+ OldValNo->setCopy(0);
+
+ // A re-def may be a copy. e.g. %reg1030:6<def> = VMOVD %reg1026, ...
+ if (PartReDef && mi->isCopyLike())
+ OldValNo->setCopy(&*mi);
+
+ // Add the new live interval which replaces the range for the input copy.
+ LiveRange LR(DefIndex, RedefIndex, ValNo);
+ DEBUG(dbgs() << " replace range with " << LR);
+ interval.addRange(LR);
+
+ // If this redefinition is dead, we need to add a dummy unit live
+ // range covering the def slot.
+ if (MO.isDead())
+ interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
+ OldValNo));
+
+ DEBUG({
+ dbgs() << " RESULT: ";
+ interval.print(dbgs(), tri_);
+ });
+ } else if (lv_->isPHIJoin(interval.reg)) {
+ // In the case of PHI elimination, each variable definition is only
+ // live until the end of the block. We've already taken care of the
+ // rest of the live range.
+
+ SlotIndex defIndex = MIIdx.getDefIndex();
+ if (MO.isEarlyClobber())
+ defIndex = MIIdx.getUseIndex();
+
+ VNInfo *ValNo;
+ MachineInstr *CopyMI = NULL;
+ if (mi->isCopyLike())
+ CopyMI = mi;
+ ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
+
+ SlotIndex killIndex = getMBBEndIdx(mbb);
+ LiveRange LR(defIndex, killIndex, ValNo);
+ interval.addRange(LR);
+ ValNo->setHasPHIKill(true);
+ DEBUG(dbgs() << " phi-join +" << LR);
+ } else {
+ llvm_unreachable("Multiply defined register");
+ }
+ }
+
+ DEBUG(dbgs() << '\n');
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator mi,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ LiveInterval &interval,
+ MachineInstr *CopyMI) {
+ // A physical register cannot be live across basic block, so its
+ // lifetime must end somewhere in its defining basic block.
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
+
+ SlotIndex baseIndex = MIIdx;
+ SlotIndex start = baseIndex.getDefIndex();
+ // Earlyclobbers move back one.
+ if (MO.isEarlyClobber())
+ start = MIIdx.getUseIndex();
+ SlotIndex end = start;
+
+ // If it is not used after definition, it is considered dead at
+ // the instruction defining it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ // For earlyclobbers, the defSlot was pushed back one; the extra
+ // advance below compensates.
+ if (MO.isDead()) {
+ DEBUG(dbgs() << " dead");
+ end = start.getStoreIndex();
+ goto exit;
+ }
+
+ // If it is not dead on definition, it must be killed by a
+ // subsequent instruction. Hence its interval is:
+ // [defSlot(def), useSlot(kill)+1)
+ baseIndex = baseIndex.getNextIndex();
+ while (++mi != MBB->end()) {
+
+ if (mi->isDebugValue())
+ continue;
+ if (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DEBUG(dbgs() << " killed");
+ end = baseIndex.getDefIndex();
+ goto exit;
+ } else {
+ int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
+ if (DefIdx != -1) {
+ if (mi->isRegTiedToUseOperand(DefIdx)) {
+ // Two-address instruction.
+ end = baseIndex.getDefIndex();
+ } else {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that
+ // defines it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DEBUG(dbgs() << " dead");
+ end = start.getStoreIndex();
+ }
+ goto exit;
+ }
+ }
+
+ baseIndex = baseIndex.getNextIndex();
+ }
+
+ // The only case we should have a dead physreg here without a killing or
+ // instruction where we know it's dead is if it is live-in to the function
+ // and never used. Another possible case is the implicit use of the
+ // physical register has been deleted by two-address pass.
+ end = start.getStoreIndex();
+
+exit:
+ assert(start < end && "did not find end of interval?");
+
+ // Already exists? Extend old live interval.
+ VNInfo *ValNo = interval.getVNInfoAt(start);
+ bool Extend = ValNo != 0;
+ if (!Extend)
+ ValNo = interval.getNextValue(start, CopyMI, VNInfoAllocator);
+ if (Extend && MO.isEarlyClobber())
+ ValNo->setHasRedefByEC(true);
+ LiveRange LR(start, end, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MI,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx) {
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
+ getOrCreateInterval(MO.getReg()));
+ else {
+ MachineInstr *CopyMI = NULL;
+ if (MI->isCopyLike())
+ CopyMI = MI;
+ handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+ getOrCreateInterval(MO.getReg()), CopyMI);
+ }
+}
+
+void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
+ SlotIndex MIIdx,
+ LiveInterval &interval, bool isAlias) {
+ DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
+
+ // Look for kills, if it reaches a def before it's killed, then it shouldn't
+ // be considered a livein.
+ MachineBasicBlock::iterator mi = MBB->begin();
+ MachineBasicBlock::iterator E = MBB->end();
+ // Skip over DBG_VALUE at the start of the MBB.
+ if (mi != E && mi->isDebugValue()) {
+ while (++mi != E && mi->isDebugValue())
+ ;
+ if (mi == E)
+ // MBB is empty except for DBG_VALUE's.
+ return;
+ }
+
+ SlotIndex baseIndex = MIIdx;
+ SlotIndex start = baseIndex;
+ if (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+ SlotIndex end = baseIndex;
+ bool SeenDefUse = false;
+
+ while (mi != E) {
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DEBUG(dbgs() << " killed");
+ end = baseIndex.getDefIndex();
+ SeenDefUse = true;
+ break;
+ } else if (mi->definesRegister(interval.reg, tri_)) {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that defines
+ // it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DEBUG(dbgs() << " dead");
+ end = start.getStoreIndex();
+ SeenDefUse = true;
+ break;
+ }
+
+ while (++mi != E && mi->isDebugValue())
+ // Skip over DBG_VALUE.
+ ;
+ if (mi != E)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+ }
+
+ // Live-in register might not be used at all.
+ if (!SeenDefUse) {
+ if (isAlias) {
+ DEBUG(dbgs() << " dead");
+ end = MIIdx.getStoreIndex();
+ } else {
+ DEBUG(dbgs() << " live through");
+ end = getMBBEndIdx(MBB);
+ }
+ }
+
+ SlotIndex defIdx = getMBBStartIdx(MBB);
+ assert(getInstructionFromIndex(defIdx) == 0 &&
+ "PHI def index points at actual instruction.");
+ VNInfo *vni =
+ interval.getNextValue(defIdx, 0, VNInfoAllocator);
+ vni->setIsPHIDef(true);
+ LiveRange LR(start, end, vni);
+
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() {
+ DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ SmallVector<unsigned, 8> UndefUses;
+ for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ if (MBB->empty())
+ continue;
+
+ // Track the index of the current machine instr.
+ SlotIndex MIIndex = getMBBStartIdx(MBB);
+ DEBUG(dbgs() << "BB#" << MBB->getNumber()
+ << ":\t\t# derived from " << MBB->getName() << "\n");
+
+ // Create intervals for live-ins to this BB first.
+ for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
+ LE = MBB->livein_end(); LI != LE; ++LI) {
+ handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
+ // Multiple live-ins can alias the same register.
+ for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
+ if (!hasInterval(*AS))
+ handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
+ true);
+ }
+
+ // Skip over empty initial indices.
+ if (getInstructionFromIndex(MIIndex) == 0)
+ MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+
+ for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+ MI != miEnd; ++MI) {
+ DEBUG(dbgs() << MIIndex << "\t" << *MI);
+ if (MI->isDebugValue())
+ continue;
+
+ // Handle defs.
+ for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+
+ // handle register defs - build intervals
+ if (MO.isDef())
+ handleRegisterDef(MBB, MI, MIIndex, MO, i);
+ else if (MO.isUndef())
+ UndefUses.push_back(MO.getReg());
+ }
+
+ // Move to the next instr slot.
+ MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+ }
+ }
+
+ // Create empty intervals for registers defined by implicit_def's (except
+ // for those implicit_def that define values which are liveout of their
+ // blocks.
+ for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
+ unsigned UndefReg = UndefUses[i];
+ (void)getOrCreateInterval(UndefReg);
+ }
+}
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+/// dupInterval - Duplicate a live interval. The caller is responsible for
+/// managing the allocated memory.
+LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
+ LiveInterval *NewLI = createInterval(li->reg);
+ NewLI->Copy(*li, mri_, getVNInfoAllocator());
+ return NewLI;
+}
+
+/// shrinkToUses - After removing some uses of a register, shrink its live
+/// range to just the remaining uses. This method does not compute reaching
+/// defs for new uses, and it doesn't remove dead defs.
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ DEBUG(dbgs() << "Shrink: " << *li << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+ && "Can't only shrink physical registers");
+ // Find all the values used, including PHI kills.
+ SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
+
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
+ // Visit all instructions reading li->reg.
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
+ continue;
+ SlotIndex Idx = getInstructionIndex(UseMI).getUseIndex();
+ VNInfo *VNI = li->getVNInfoAt(Idx);
+ if (!VNI) {
+ // This shouldn't happen: readsVirtualRegister returns true, but there is
+ // no live value. It is likely caused by a target getting <undef> flags
+ // wrong.
+ DEBUG(dbgs() << Idx << '\t' << *UseMI
+ << "Warning: Instr claims to read non-existent value in "
+ << *li << '\n');
+ continue;
+ }
+ if (VNI->def == Idx) {
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ Idx = Idx.getPrevSlot();
+ VNI = li->getVNInfoAt(Idx);
+ assert(VNI && "Early-clobber tied value not available");
+ }
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live interval with only minimal live segments per def.
+ LiveInterval NewLI(li->reg, 0);
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ NewLI.addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), VNI));
+
+ // A use tied to an early-clobber def ends at the load slot and isn't caught
+ // above. Catch it here instead. This probably only ever happens for inline
+ // assembly.
+ if (VNI->def.isUse())
+ if (VNInfo *UVNI = li->getVNInfoAt(VNI->def.getLoadIndex()))
+ WorkList.push_back(std::make_pair(VNI->def.getLoadIndex(), UVNI));
+ }
+
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = getMBBFromIndex(Idx);
+ SlotIndex BlockStart = getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx.getNextSlot())) {
+ (void)ExtVNI;
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = li->getVNInfoAt(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ NewLI.addRange(LiveRange(BlockStart, Idx.getNextSlot(), VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
+ assert(li->getVNInfoAt(Stop) == VNI && "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+
+ // Handle dead values.
+ bool CanSeparate = false;
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
+ assert(LII != NewLI.end() && "Missing live range for PHI");
+ if (LII->end != VNI->def.getNextSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->setIsUnused(true);
+ NewLI.removeRange(*LII);
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ CanSeparate = true;
+ } else {
+ // This is a dead def. Make sure the instruction knows.
+ MachineInstr *MI = getInstructionFromIndex(VNI->def);
+ assert(MI && "No instruction defining live value");
+ MI->addRegisterDead(li->reg, tri_);
+ if (dead && MI->allDefsAreDead()) {
+ DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
+ dead->push_back(MI);
+ }
+ }
+ }
+
+ // Move the trimmed ranges back.
+ li->ranges.swap(NewLI.ranges);
+ DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+ return CanSeparate;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+MachineBasicBlock::iterator
+LiveIntervals::getLastSplitPoint(const LiveInterval &li,
+ MachineBasicBlock *mbb) const {
+ const MachineBasicBlock *lpad = mbb->getLandingPadSuccessor();
+
+ // If li is not live into a landing pad, we can insert spill code before the
+ // first terminator.
+ if (!lpad || !isLiveInToMBB(li, lpad))
+ return mbb->getFirstTerminator();
+
+ // When there is a landing pad, spill code must go before the call instruction
+ // that can throw.
+ MachineBasicBlock::iterator I = mbb->end(), B = mbb->begin();
+ while (I != B) {
+ --I;
+ if (I->getDesc().isCall())
+ return I;
+ }
+ // The block contains no calls that can throw, so use the first terminator.
+ return mbb->getFirstTerminator();
+}
+
+void LiveIntervals::addKillFlags() {
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ unsigned Reg = I->first;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+ if (mri_->reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval *LI = I->second;
+
+ // Every instruction that kills Reg corresponds to a live range end point.
+ for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
+ ++RI) {
+ // A LOAD index indicates an MBB edge.
+ if (RI->end.isLoad())
+ continue;
+ MachineInstr *MI = getInstructionFromIndex(RI->end);
+ if (!MI)
+ continue;
+ MI->addRegisterKilled(Reg, NULL);
+ }
+ }
+}
+
+/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
+/// allow one) virtual register operand, then its uses are implicitly using
+/// the register. Returns the virtual register.
+unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
+ MachineInstr *MI) const {
+ unsigned RegOp = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == li.reg)
+ continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ !allocatableRegs_[Reg])
+ continue;
+ // FIXME: For now, only remat MI with at most one register operand.
+ assert(!RegOp &&
+ "Can't rematerialize instruction with multiple register operand!");
+ RegOp = MO.getReg();
+#ifndef NDEBUG
+ break;
+#endif
+ }
+ return RegOp;
+}
+
+/// isValNoAvailableAt - Return true if the val# of the specified interval
+/// which reaches the given instruction also reaches the specified use index.
+bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
+ SlotIndex UseIdx) const {
+ VNInfo *UValNo = li.getVNInfoAt(UseIdx);
+ return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool
+LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const VNInfo *ValNo, MachineInstr *MI,
+ const SmallVectorImpl<LiveInterval*> *SpillIs,
+ bool &isLoad) {
+ if (DisableReMat)
+ return false;
+
+ if (!tii_->isTriviallyReMaterializable(MI, aa_))
+ return false;
+
+ // Target-specific code can mark an instruction as being rematerializable
+ // if it has one virtual reg use, though it had better be something like
+ // a PIC base register which is likely to be live everywhere.
+ unsigned ImpUse = getReMatImplicitUse(li, MI);
+ if (ImpUse) {
+ const LiveInterval &ImpLi = getInterval(ImpUse);
+ for (MachineRegisterInfo::use_nodbg_iterator
+ ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
+ ri != re; ++ri) {
+ MachineInstr *UseMI = &*ri;
+ SlotIndex UseIdx = getInstructionIndex(UseMI);
+ if (li.getVNInfoAt(UseIdx) != ValNo)
+ continue;
+ if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
+ return false;
+ }
+
+ // If a register operand of the re-materialized instruction is going to
+ // be spilled next, then it's not legal to re-materialize this instruction.
+ if (SpillIs)
+ for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
+ if (ImpUse == (*SpillIs)[i]->reg)
+ return false;
+ }
+ return true;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const VNInfo *ValNo, MachineInstr *MI) {
+ bool Dummy2;
+ return isReMaterializable(li, ValNo, MI, 0, Dummy2);
+}
+
+/// isReMaterializable - Returns true if every definition of MI of every
+/// val# of the specified interval is re-materializable.
+bool
+LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const SmallVectorImpl<LiveInterval*> *SpillIs,
+ bool &isLoad) {
+ isLoad = false;
+ for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+ i != e; ++i) {
+ const VNInfo *VNI = *i;
+ if (VNI->isUnused())
+ continue; // Dead val#.
+ // Is the def for the val# rematerializable?
+ MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
+ if (!ReMatDefMI)
+ return false;
+ bool DefIsLoad = false;
+ if (!ReMatDefMI ||
+ !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
+ return false;
+ isLoad |= DefIsLoad;
+ }
+ return true;
+}
+
+/// FilterFoldedOps - Filter out two-address use operands. Return
+/// true if it finds any issue with the operands that ought to prevent
+/// folding.
+static bool FilterFoldedOps(MachineInstr *MI,
+ SmallVector<unsigned, 2> &Ops,
+ unsigned &MRInfo,
+ SmallVector<unsigned, 2> &FoldOps) {
+ MRInfo = 0;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ unsigned OpIdx = Ops[i];
+ MachineOperand &MO = MI->getOperand(OpIdx);
+ // FIXME: fold subreg use.
+ if (MO.getSubReg())
+ return true;
+ if (MO.isDef())
+ MRInfo |= (unsigned)VirtRegMap::isMod;
+ else {
+ // Filter out two-address use operand(s).
+ if (MI->isRegTiedToDefOperand(OpIdx)) {
+ MRInfo = VirtRegMap::isModRef;
+ continue;
+ }
+ MRInfo |= (unsigned)VirtRegMap::isRef;
+ }
+ FoldOps.push_back(OpIdx);
+ }
+ return false;
+}
+
+
+/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
+/// slot / to reg or any rematerialized load into ith operand of specified
+/// MI. If it is successul, MI is updated with the newly created MI and
+/// returns true.
+bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
+ VirtRegMap &vrm, MachineInstr *DefMI,
+ SlotIndex InstrIdx,
+ SmallVector<unsigned, 2> &Ops,
+ bool isSS, int Slot, unsigned Reg) {
+ // If it is an implicit def instruction, just delete it.
+ if (MI->isImplicitDef()) {
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ ++numFolds;
+ return true;
+ }
+
+ // Filter the list of operand indexes that are to be folded. Abort if
+ // any operand will prevent folding.
+ unsigned MRInfo = 0;
+ SmallVector<unsigned, 2> FoldOps;
+ if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+ return false;
+
+ // The only time it's safe to fold into a two address instruction is when
+ // it's folding reload and spill from / into a spill stack slot.
+ if (DefMI && (MRInfo & VirtRegMap::isMod))
+ return false;
+
+ MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(MI, FoldOps, Slot)
+ : tii_->foldMemoryOperand(MI, FoldOps, DefMI);
+ if (fmi) {
+ // Remember this instruction uses the spill slot.
+ if (isSS) vrm.addSpillSlotUse(Slot, fmi);
+
+ // Attempt to fold the memory reference into the instruction. If
+ // we can do this, we don't need to insert spill code.
+ if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
+ vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
+ vrm.transferSpillPts(MI, fmi);
+ vrm.transferRestorePts(MI, fmi);
+ vrm.transferEmergencySpills(MI, fmi);
+ ReplaceMachineInstrInMaps(MI, fmi);
+ MI->eraseFromParent();
+ MI = fmi;
+ ++numFolds;
+ return true;
+ }
+ return false;
+}
+
+/// canFoldMemoryOperand - Returns true if the specified load / store
+/// folding is possible.
+bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
+ SmallVector<unsigned, 2> &Ops,
+ bool ReMat) const {
+ // Filter the list of operand indexes that are to be folded. Abort if
+ // any operand will prevent folding.
+ unsigned MRInfo = 0;
+ SmallVector<unsigned, 2> FoldOps;
+ if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+ return false;
+
+ // It's only legal to remat for a use, not a def.
+ if (ReMat && (MRInfo & VirtRegMap::isMod))
+ return false;
+
+ return tii_->canFoldMemoryOperand(MI, FoldOps);
+}
+
+bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
+ LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
+
+ MachineBasicBlock *mbb = indexes_->getMBBCoveringRange(itr->start, itr->end);
+
+ if (mbb == 0)
+ return false;
+
+ for (++itr; itr != li.ranges.end(); ++itr) {
+ MachineBasicBlock *mbb2 =
+ indexes_->getMBBCoveringRange(itr->start, itr->end);
+
+ if (mbb2 != mbb)
+ return false;
+ }
+
+ return true;
+}
+
+/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
+/// interval on to-be re-materialized operands of MI) with new register.
+void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
+ MachineInstr *MI, unsigned NewVReg,
+ VirtRegMap &vrm) {
+ // There is an implicit use. That means one of the other operand is
+ // being remat'ed and the remat'ed instruction has li.reg as an
+ // use operand. Make sure we rewrite that as well.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (!vrm.isReMaterialized(Reg))
+ continue;
+ MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
+ MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
+ if (UseMO)
+ UseMO->setReg(NewVReg);
+ }
+}
+
+/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
+/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
+bool LiveIntervals::
+rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
+ bool TrySplit, SlotIndex index, SlotIndex end,
+ MachineInstr *MI,
+ MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+ unsigned Slot, int LdSlot,
+ bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+ VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ SmallVector<int, 4> &ReMatIds,
+ const MachineLoopInfo *loopInfo,
+ unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
+ DenseMap<unsigned,unsigned> &MBBVRegsMap,
+ std::vector<LiveInterval*> &NewLIs) {
+ bool CanFold = false;
+ RestartInstruction:
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+ MachineOperand& mop = MI->getOperand(i);
+ if (!mop.isReg())
+ continue;
+ unsigned Reg = mop.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (Reg != li.reg)
+ continue;
+
+ bool TryFold = !DefIsReMat;
+ bool FoldSS = true; // Default behavior unless it's a remat.
+ int FoldSlot = Slot;
+ if (DefIsReMat) {
+ // If this is the rematerializable definition MI itself and
+ // all of its uses are rematerialized, simply delete it.
+ if (MI == ReMatOrigDefMI && CanDelete) {
+ DEBUG(dbgs() << "\t\t\t\tErasing re-materializable def: "
+ << *MI << '\n');
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ break;
+ }
+
+ // If def for this use can't be rematerialized, then try folding.
+ // If def is rematerializable and it's a load, also try folding.
+ TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
+ if (isLoad) {
+ // Try fold loads (from stack slot, constant pool, etc.) into uses.
+ FoldSS = isLoadSS;
+ FoldSlot = LdSlot;
+ }
+ }
+
+ // Scan all of the operands of this instruction rewriting operands
+ // to use NewVReg instead of li.reg as appropriate. We do this for
+ // two reasons:
+ //
+ // 1. If the instr reads the same spilled vreg multiple times, we
+ // want to reuse the NewVReg.
+ // 2. If the instr is a two-addr instruction, we are required to
+ // keep the src/dst regs pinned.
+ //
+ // Keep track of whether we replace a use and/or def so that we can
+ // create the spill interval with the appropriate range.
+ SmallVector<unsigned, 2> Ops;
+ tie(HasUse, HasDef) = MI->readsWritesVirtualRegister(Reg, &Ops);
+
+ // Create a new virtual register for the spill interval.
+ // Create the new register now so we can map the fold instruction
+ // to the new register so when it is unfolded we get the correct
+ // answer.
+ bool CreatedNewVReg = false;
+ if (NewVReg == 0) {
+ NewVReg = mri_->createVirtualRegister(rc);
+ vrm.grow();
+ CreatedNewVReg = true;
+
+ // The new virtual register should get the same allocation hints as the
+ // old one.
+ std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(Reg);
+ if (Hint.first || Hint.second)
+ mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second);
+ }
+
+ if (!TryFold)
+ CanFold = false;
+ else {
+ // Do not fold load / store here if we are splitting. We'll find an
+ // optimal point to insert a load / store later.
+ if (!TrySplit) {
+ if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+ Ops, FoldSS, FoldSlot, NewVReg)) {
+ // Folding the load/store can completely change the instruction in
+ // unpredictable ways, rescan it from the beginning.
+
+ if (FoldSS) {
+ // We need to give the new vreg the same stack slot as the
+ // spilled interval.
+ vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
+ }
+
+ HasUse = false;
+ HasDef = false;
+ CanFold = false;
+ if (isNotInMIMap(MI))
+ break;
+ goto RestartInstruction;
+ }
+ } else {
+ // We'll try to fold it later if it's profitable.
+ CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
+ }
+ }
+
+ mop.setReg(NewVReg);
+ if (mop.isImplicit())
+ rewriteImplicitOps(li, MI, NewVReg, vrm);
+
+ // Reuse NewVReg for other reads.
+ bool HasEarlyClobber = false;
+ for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
+ MachineOperand &mopj = MI->getOperand(Ops[j]);
+ mopj.setReg(NewVReg);
+ if (mopj.isImplicit())
+ rewriteImplicitOps(li, MI, NewVReg, vrm);
+ if (mopj.isEarlyClobber())
+ HasEarlyClobber = true;
+ }
+
+ if (CreatedNewVReg) {
+ if (DefIsReMat) {
+ vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
+ if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
+ // Each valnum may have its own remat id.
+ ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
+ } else {
+ vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
+ }
+ if (!CanDelete || (HasUse && HasDef)) {
+ // If this is a two-addr instruction then its use operands are
+ // rematerializable but its def is not. It should be assigned a
+ // stack slot.
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+ } else {
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+ } else if (HasUse && HasDef &&
+ vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
+ // If this interval hasn't been assigned a stack slot (because earlier
+ // def is a deleted remat def), do it now.
+ assert(Slot != VirtRegMap::NO_STACK_SLOT);
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+
+ // Re-matting an instruction with virtual register use. Add the
+ // register as an implicit use on the use MI.
+ if (DefIsReMat && ImpUse)
+ MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+
+ // Create a new register interval for this spill / remat.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ if (CreatedNewVReg) {
+ NewLIs.push_back(&nI);
+ MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
+ if (TrySplit)
+ vrm.setIsSplitFromReg(NewVReg, li.reg);
+ }
+
+ if (HasUse) {
+ if (CreatedNewVReg) {
+ LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
+ nI.getNextValue(SlotIndex(), 0, VNInfoAllocator));
+ DEBUG(dbgs() << " +" << LR);
+ nI.addRange(LR);
+ } else {
+ // Extend the split live interval to this def / use.
+ SlotIndex End = index.getDefIndex();
+ LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
+ nI.getValNumInfo(nI.getNumValNums()-1));
+ DEBUG(dbgs() << " +" << LR);
+ nI.addRange(LR);
+ }
+ }
+ if (HasDef) {
+ // An early clobber starts at the use slot, except for an early clobber
+ // tied to a use operand (yes, that is a thing).
+ LiveRange LR(HasEarlyClobber && !HasUse ?
+ index.getUseIndex() : index.getDefIndex(),
+ index.getStoreIndex(),
+ nI.getNextValue(SlotIndex(), 0, VNInfoAllocator));
+ DEBUG(dbgs() << " +" << LR);
+ nI.addRange(LR);
+ }
+
+ DEBUG({
+ dbgs() << "\t\t\t\tAdded new interval: ";
+ nI.print(dbgs(), tri_);
+ dbgs() << '\n';
+ });
+ }
+ return CanFold;
+}
+bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
+ const VNInfo *VNI,
+ MachineBasicBlock *MBB,
+ SlotIndex Idx) const {
+ return li.killedInRange(Idx.getNextSlot(), getMBBEndIdx(MBB));
+}
+
+/// RewriteInfo - Keep track of machine instrs that will be rewritten
+/// during spilling.
+namespace {
+ struct RewriteInfo {
+ SlotIndex Index;
+ MachineInstr *MI;
+ RewriteInfo(SlotIndex i, MachineInstr *mi) : Index(i), MI(mi) {}
+ };
+
+ struct RewriteInfoCompare {
+ bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
+ return LHS.Index < RHS.Index;
+ }
+ };
+}
+
+void LiveIntervals::
+rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
+ LiveInterval::Ranges::const_iterator &I,
+ MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+ unsigned Slot, int LdSlot,
+ bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+ VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ SmallVector<int, 4> &ReMatIds,
+ const MachineLoopInfo *loopInfo,
+ BitVector &SpillMBBs,
+ DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
+ BitVector &RestoreMBBs,
+ DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
+ DenseMap<unsigned,unsigned> &MBBVRegsMap,
+ std::vector<LiveInterval*> &NewLIs) {
+ bool AllCanFold = true;
+ unsigned NewVReg = 0;
+ SlotIndex start = I->start.getBaseIndex();
+ SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
+
+ // First collect all the def / use in this live range that will be rewritten.
+ // Make sure they are sorted according to instruction index.
+ std::vector<RewriteInfo> RewriteMIs;
+ for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+ re = mri_->reg_end(); ri != re; ) {
+ MachineInstr *MI = &*ri;
+ MachineOperand &O = ri.getOperand();
+ ++ri;
+ if (MI->isDebugValue()) {
+ // Modify DBG_VALUE now that the value is in a spill slot.
+ if (Slot != VirtRegMap::MAX_STACK_SLOT || isLoadSS) {
+ uint64_t Offset = MI->getOperand(1).getImm();
+ const MDNode *MDPtr = MI->getOperand(2).getMetadata();
+ DebugLoc DL = MI->getDebugLoc();
+ int FI = isLoadSS ? LdSlot : (int)Slot;
+ if (MachineInstr *NewDV = tii_->emitFrameIndexDebugValue(*mf_, FI,
+ Offset, MDPtr, DL)) {
+ DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
+ ReplaceMachineInstrInMaps(MI, NewDV);
+ MachineBasicBlock *MBB = MI->getParent();
+ MBB->insert(MBB->erase(MI), NewDV);
+ continue;
+ }
+ }
+
+ DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ continue;
+ }
+ assert(!(O.isImplicit() && O.isUse()) &&
+ "Spilling register that's used as implicit use?");
+ SlotIndex index = getInstructionIndex(MI);
+ if (index < start || index >= end)
+ continue;
+
+ if (O.isUndef())
+ // Must be defined by an implicit def. It should not be spilled. Note,
+ // this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ continue;
+ RewriteMIs.push_back(RewriteInfo(index, MI));
+ }
+ std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
+
+ unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
+ // Now rewrite the defs and uses.
+ for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
+ RewriteInfo &rwi = RewriteMIs[i];
+ ++i;
+ SlotIndex index = rwi.Index;
+ MachineInstr *MI = rwi.MI;
+ // If MI def and/or use the same register multiple times, then there
+ // are multiple entries.
+ while (i != e && RewriteMIs[i].MI == MI) {
+ assert(RewriteMIs[i].Index == index);
+ ++i;
+ }
+ MachineBasicBlock *MBB = MI->getParent();
+
+ if (ImpUse && MI != ReMatDefMI) {
+ // Re-matting an instruction with virtual register use. Prevent interval
+ // from being spilled.
+ getInterval(ImpUse).markNotSpillable();
+ }
+
+ unsigned MBBId = MBB->getNumber();
+ unsigned ThisVReg = 0;
+ if (TrySplit) {
+ DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
+ if (NVI != MBBVRegsMap.end()) {
+ ThisVReg = NVI->second;
+ // One common case:
+ // x = use
+ // ...
+ // ...
+ // def = ...
+ // = use
+ // It's better to start a new interval to avoid artificially
+ // extend the new interval.
+ if (MI->readsWritesVirtualRegister(li.reg) ==
+ std::make_pair(false,true)) {
+ MBBVRegsMap.erase(MBB->getNumber());
+ ThisVReg = 0;
+ }
+ }
+ }
+
+ bool IsNew = ThisVReg == 0;
+ if (IsNew) {
+ // This ends the previous live interval. If all of its def / use
+ // can be folded, give it a low spill weight.
+ if (NewVReg && TrySplit && AllCanFold) {
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ nI.weight /= 10.0F;
+ }
+ AllCanFold = true;
+ }
+ NewVReg = ThisVReg;
+
+ bool HasDef = false;
+ bool HasUse = false;
+ bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
+ index, end, MI, ReMatOrigDefMI, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
+ ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
+ if (!HasDef && !HasUse)
+ continue;
+
+ AllCanFold &= CanFold;
+
+ // Update weight of spill interval.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ if (!TrySplit) {
+ // The spill weight is now infinity as it cannot be spilled again.
+ nI.markNotSpillable();
+ continue;
+ }
+
+ // Keep track of the last def and first use in each MBB.
+ if (HasDef) {
+ if (MI != ReMatOrigDefMI || !CanDelete) {
+ bool HasKill = false;
+ if (!HasUse)
+ HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex());
+ else {
+ // If this is a two-address code, then this index starts a new VNInfo.
+ const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex());
+ if (VNI)
+ HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex());
+ }
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+ SpillIdxes.find(MBBId);
+ if (!HasKill) {
+ if (SII == SpillIdxes.end()) {
+ std::vector<SRInfo> S;
+ S.push_back(SRInfo(index, NewVReg, true));
+ SpillIdxes.insert(std::make_pair(MBBId, S));
+ } else if (SII->second.back().vreg != NewVReg) {
+ SII->second.push_back(SRInfo(index, NewVReg, true));
+ } else if (index > SII->second.back().index) {
+ // If there is an earlier def and this is a two-address
+ // instruction, then it's not possible to fold the store (which
+ // would also fold the load).
+ SRInfo &Info = SII->second.back();
+ Info.index = index;
+ Info.canFold = !HasUse;
+ }
+ SpillMBBs.set(MBBId);
+ } else if (SII != SpillIdxes.end() &&
+ SII->second.back().vreg == NewVReg &&
+ index > SII->second.back().index) {
+ // There is an earlier def that's not killed (must be two-address).
+ // The spill is no longer needed.
+ SII->second.pop_back();
+ if (SII->second.empty()) {
+ SpillIdxes.erase(MBBId);
+ SpillMBBs.reset(MBBId);
+ }
+ }
+ }
+ }
+
+ if (HasUse) {
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+ SpillIdxes.find(MBBId);
+ if (SII != SpillIdxes.end() &&
+ SII->second.back().vreg == NewVReg &&
+ index > SII->second.back().index)
+ // Use(s) following the last def, it's not safe to fold the spill.
+ SII->second.back().canFold = false;
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
+ RestoreIdxes.find(MBBId);
+ if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
+ // If we are splitting live intervals, only fold if it's the first
+ // use and there isn't another use later in the MBB.
+ RII->second.back().canFold = false;
+ else if (IsNew) {
+ // Only need a reload if there isn't an earlier def / use.
+ if (RII == RestoreIdxes.end()) {
+ std::vector<SRInfo> Infos;
+ Infos.push_back(SRInfo(index, NewVReg, true));
+ RestoreIdxes.insert(std::make_pair(MBBId, Infos));
+ } else {
+ RII->second.push_back(SRInfo(index, NewVReg, true));
+ }
+ RestoreMBBs.set(MBBId);
+ }
+ }
+
+ // Update spill weight.
+ unsigned loopDepth = loopInfo->getLoopDepth(MBB);
+ nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
+ }
+
+ if (NewVReg && TrySplit && AllCanFold) {
+ // If all of its def / use can be folded, give it a low spill weight.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ nI.weight /= 10.0F;
+ }
+}
+
+bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index,
+ unsigned vr, BitVector &RestoreMBBs,
+ DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+ if (!RestoreMBBs[Id])
+ return false;
+ std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+ if (Restores[i].index == index &&
+ Restores[i].vreg == vr &&
+ Restores[i].canFold)
+ return true;
+ return false;
+}
+
+void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index,
+ unsigned vr, BitVector &RestoreMBBs,
+ DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+ if (!RestoreMBBs[Id])
+ return;
+ std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+ if (Restores[i].index == index && Restores[i].vreg)
+ Restores[i].index = SlotIndex();
+}
+
+/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
+/// spilled and create empty intervals for their uses.
+void
+LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ std::vector<LiveInterval*> &NewLIs) {
+ for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+ re = mri_->reg_end(); ri != re; ) {
+ MachineOperand &O = ri.getOperand();
+ MachineInstr *MI = &*ri;
+ ++ri;
+ if (MI->isDebugValue()) {
+ // Remove debug info for now.
+ O.setReg(0U);
+ DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
+ continue;
+ }
+ if (O.isDef()) {
+ assert(MI->isImplicitDef() &&
+ "Register def was not rewritten?");
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ } else {
+ // This must be an use of an implicit_def so it's not part of the live
+ // interval. Create a new empty live interval for it.
+ // FIXME: Can we simply erase some of the instructions? e.g. Stores?
+ unsigned NewVReg = mri_->createVirtualRegister(rc);
+ vrm.grow();
+ vrm.setIsImplicitlyDefined(NewVReg);
+ NewLIs.push_back(&getOrCreateInterval(NewVReg));
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == li.reg) {
+ MO.setReg(NewVReg);
+ MO.setIsUndef();
+ }
+ }
+ }
+ }
+}
+
+float
+LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
+ // Limit the loop depth ridiculousness.
+ if (loopDepth > 200)
+ loopDepth = 200;
+
+ // The loop depth is used to roughly estimate the number of times the
+ // instruction is executed. Something like 10^d is simple, but will quickly
+ // overflow a float. This expression behaves like 10^d for small d, but is
+ // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
+ // headroom before overflow.
+ // By the way, powf() might be unavailable here. For consistency,
+ // We may take pow(double,double).
+ float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
+
+ return (isDef + isUse) * lc;
+}
+
+static void normalizeSpillWeights(std::vector<LiveInterval*> &NewLIs) {
+ for (unsigned i = 0, e = NewLIs.size(); i != e; ++i)
+ NewLIs[i]->weight =
+ normalizeSpillWeight(NewLIs[i]->weight, NewLIs[i]->getSize());
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpills(const LiveInterval &li,
+ const SmallVectorImpl<LiveInterval*> *SpillIs,
+ const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
+ assert(li.isSpillable() && "attempt to spill already spilled interval!");
+
+ DEBUG({
+ dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
+ li.print(dbgs(), tri_);
+ dbgs() << '\n';
+ });
+
+ // Each bit specify whether a spill is required in the MBB.
+ BitVector SpillMBBs(mf_->getNumBlockIDs());
+ DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
+ BitVector RestoreMBBs(mf_->getNumBlockIDs());
+ DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
+ DenseMap<unsigned,unsigned> MBBVRegsMap;
+ std::vector<LiveInterval*> NewLIs;
+ const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
+
+ unsigned NumValNums = li.getNumValNums();
+ SmallVector<MachineInstr*, 4> ReMatDefs;
+ ReMatDefs.resize(NumValNums, NULL);
+ SmallVector<MachineInstr*, 4> ReMatOrigDefs;
+ ReMatOrigDefs.resize(NumValNums, NULL);
+ SmallVector<int, 4> ReMatIds;
+ ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
+ BitVector ReMatDelete(NumValNums);
+ unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
+
+ // Spilling a split live interval. It cannot be split any further. Also,
+ // it's also guaranteed to be a single val# / range interval.
+ if (vrm.getPreSplitReg(li.reg)) {
+ vrm.setIsSplitFromReg(li.reg, 0);
+ // Unset the split kill marker on the last use.
+ SlotIndex KillIdx = vrm.getKillPoint(li.reg);
+ if (KillIdx != SlotIndex()) {
+ MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
+ assert(KillMI && "Last use disappeared?");
+ int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
+ assert(KillOp != -1 && "Last use disappeared?");
+ KillMI->getOperand(KillOp).setIsKill(false);
+ }
+ vrm.removeKillPoint(li.reg);
+ bool DefIsReMat = vrm.isReMaterialized(li.reg);
+ Slot = vrm.getStackSlot(li.reg);
+ assert(Slot != VirtRegMap::MAX_STACK_SLOT);
+ MachineInstr *ReMatDefMI = DefIsReMat ?
+ vrm.getReMaterializedMI(li.reg) : NULL;
+ int LdSlot = 0;
+ bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ bool isLoad = isLoadSS ||
+ (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
+ bool IsFirstRange = true;
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ // If this is a split live interval with multiple ranges, it means there
+ // are two-address instructions that re-defined the value. Only the
+ // first def can be rematerialized!
+ if (IsFirstRange) {
+ // Note ReMatOrigDefMI has already been deleted.
+ rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ false, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ } else {
+ rewriteInstructionsForSpills(li, false, I, NULL, 0,
+ Slot, 0, false, false, false,
+ false, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ }
+ IsFirstRange = false;
+ }
+
+ handleSpilledImpDefs(li, vrm, rc, NewLIs);
+ normalizeSpillWeights(NewLIs);
+ return NewLIs;
+ }
+
+ bool TrySplit = !intervalIsInOneMBB(li);
+ if (TrySplit)
+ ++numSplits;
+ bool NeedStackSlot = false;
+ for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+ i != e; ++i) {
+ const VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (VNI->isUnused())
+ continue; // Dead val#.
+ // Is the def for the val# rematerializable?
+ MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
+ bool dummy;
+ if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
+ // Remember how to remat the def of this val#.
+ ReMatOrigDefs[VN] = ReMatDefMI;
+ // Original def may be modified so we have to make a copy here.
+ MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
+ CloneMIs.push_back(Clone);
+ ReMatDefs[VN] = Clone;
+
+ bool CanDelete = true;
+ if (VNI->hasPHIKill()) {
+ // A kill is a phi node, not all of its uses can be rematerialized.
+ // It must not be deleted.
+ CanDelete = false;
+ // Need a stack slot if there is any live range where uses cannot be
+ // rematerialized.
+ NeedStackSlot = true;
+ }
+ if (CanDelete)
+ ReMatDelete.set(VN);
+ } else {
+ // Need a stack slot if there is any live range where uses cannot be
+ // rematerialized.
+ NeedStackSlot = true;
+ }
+ }
+
+ // One stack slot per live interval.
+ if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
+ if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
+ Slot = vrm.assignVirt2StackSlot(li.reg);
+
+ // This case only occurs when the prealloc splitter has already assigned
+ // a stack slot to this vreg.
+ else
+ Slot = vrm.getStackSlot(li.reg);
+ }
+
+ // Create new intervals and rewrite defs and uses.
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
+ MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
+ bool DefIsReMat = ReMatDefMI != NULL;
+ bool CanDelete = ReMatDelete[I->valno->id];
+ int LdSlot = 0;
+ bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ bool isLoad = isLoadSS ||
+ (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
+ rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ CanDelete, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ }
+
+ // Insert spills / restores if we are splitting.
+ if (!TrySplit) {
+ handleSpilledImpDefs(li, vrm, rc, NewLIs);
+ normalizeSpillWeights(NewLIs);
+ return NewLIs;
+ }
+
+ SmallPtrSet<LiveInterval*, 4> AddedKill;
+ SmallVector<unsigned, 2> Ops;
+ if (NeedStackSlot) {
+ int Id = SpillMBBs.find_first();
+ while (Id != -1) {
+ std::vector<SRInfo> &spills = SpillIdxes[Id];
+ for (unsigned i = 0, e = spills.size(); i != e; ++i) {
+ SlotIndex index = spills[i].index;
+ unsigned VReg = spills[i].vreg;
+ LiveInterval &nI = getOrCreateInterval(VReg);
+ bool isReMat = vrm.isReMaterialized(VReg);
+ MachineInstr *MI = getInstructionFromIndex(index);
+ bool CanFold = false;
+ bool FoundUse = false;
+ Ops.clear();
+ if (spills[i].canFold) {
+ CanFold = true;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != VReg)
+ continue;
+
+ Ops.push_back(j);
+ if (MO.isDef())
+ continue;
+ if (isReMat ||
+ (!FoundUse && !alsoFoldARestore(Id, index, VReg,
+ RestoreMBBs, RestoreIdxes))) {
+ // MI has two-address uses of the same register. If the use
+ // isn't the first and only use in the BB, then we can't fold
+ // it. FIXME: Move this to rewriteInstructionsForSpills.
+ CanFold = false;
+ break;
+ }
+ FoundUse = true;
+ }
+ }
+ // Fold the store into the def if possible.
+ bool Folded = false;
+ if (CanFold && !Ops.empty()) {
+ if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
+ Folded = true;
+ if (FoundUse) {
+ // Also folded uses, do not issue a load.
+ eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
+ nI.removeRange(index.getLoadIndex(), index.getDefIndex());
+ }
+ nI.removeRange(index.getDefIndex(), index.getStoreIndex());
+ }
+ }
+
+ // Otherwise tell the spiller to issue a spill.
+ if (!Folded) {
+ LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
+ bool isKill = LR->end == index.getStoreIndex();
+ if (!MI->registerDefIsDead(nI.reg))
+ // No need to spill a dead def.
+ vrm.addSpillPoint(VReg, isKill, MI);
+ if (isKill)
+ AddedKill.insert(&nI);
+ }
+ }
+ Id = SpillMBBs.find_next(Id);
+ }
+ }
+
+ int Id = RestoreMBBs.find_first();
+ while (Id != -1) {
+ std::vector<SRInfo> &restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = restores.size(); i != e; ++i) {
+ SlotIndex index = restores[i].index;
+ if (index == SlotIndex())
+ continue;
+ unsigned VReg = restores[i].vreg;
+ LiveInterval &nI = getOrCreateInterval(VReg);
+ bool isReMat = vrm.isReMaterialized(VReg);
+ MachineInstr *MI = getInstructionFromIndex(index);
+ bool CanFold = false;
+ Ops.clear();
+ if (restores[i].canFold) {
+ CanFold = true;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != VReg)
+ continue;
+
+ if (MO.isDef()) {
+ // If this restore were to be folded, it would have been folded
+ // already.
+ CanFold = false;
+ break;
+ }
+ Ops.push_back(j);
+ }
+ }
+
+ // Fold the load into the use if possible.
+ bool Folded = false;
+ if (CanFold && !Ops.empty()) {
+ if (!isReMat)
+ Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
+ else {
+ MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
+ int LdSlot = 0;
+ bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ // If the rematerializable def is a load, also try to fold it.
+ if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
+ Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+ Ops, isLoadSS, LdSlot, VReg);
+ if (!Folded) {
+ unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
+ if (ImpUse) {
+ // Re-matting an instruction with virtual register use. Add the
+ // register as an implicit use on the use MI and mark the register
+ // interval as unspillable.
+ LiveInterval &ImpLi = getInterval(ImpUse);
+ ImpLi.markNotSpillable();
+ MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+ }
+ }
+ }
+ }
+ // If folding is not possible / failed, then tell the spiller to issue a
+ // load / rematerialization for us.
+ if (Folded)
+ nI.removeRange(index.getLoadIndex(), index.getDefIndex());
+ else
+ vrm.addRestorePoint(VReg, MI);
+ }
+ Id = RestoreMBBs.find_next(Id);
+ }
+
+ // Finalize intervals: add kills, finalize spill weights, and filter out
+ // dead intervals.
+ std::vector<LiveInterval*> RetNewLIs;
+ for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
+ LiveInterval *LI = NewLIs[i];
+ if (!LI->empty()) {
+ if (!AddedKill.count(LI)) {
+ LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
+ SlotIndex LastUseIdx = LR->end.getBaseIndex();
+ MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
+ int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
+ assert(UseIdx != -1);
+ if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
+ LastUse->getOperand(UseIdx).setIsKill();
+ vrm.addKillPoint(LI->reg, LastUseIdx);
+ }
+ }
+ RetNewLIs.push_back(LI);
+ }
+ }
+
+ handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
+ normalizeSpillWeights(RetNewLIs);
+ return RetNewLIs;
+}
+
+/// hasAllocatableSuperReg - Return true if the specified physical register has
+/// any super register that's allocatable.
+bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
+ for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
+ if (allocatableRegs_[*AS] && hasInterval(*AS))
+ return true;
+ return false;
+}
+
+/// getRepresentativeReg - Find the largest super register of the specified
+/// physical register.
+unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
+ // Find the largest super-register that is allocatable.
+ unsigned BestReg = Reg;
+ for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
+ unsigned SuperReg = *AS;
+ if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
+ BestReg = SuperReg;
+ break;
+ }
+ }
+ return BestReg;
+}
+
+/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
+/// specified interval that conflicts with the specified physical register.
+unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
+ unsigned PhysReg) const {
+ unsigned NumConflicts = 0;
+ const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineOperand &O = I.getOperand();
+ MachineInstr *MI = O.getParent();
+ if (MI->isDebugValue())
+ continue;
+ SlotIndex Index = getInstructionIndex(MI);
+ if (pli.liveAt(Index))
+ ++NumConflicts;
+ }
+ return NumConflicts;
+}
+
+/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
+/// around all defs and uses of the specified interval. Return true if it
+/// was able to cut its interval.
+bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
+ unsigned PhysReg, VirtRegMap &vrm) {
+ unsigned SpillReg = getRepresentativeReg(PhysReg);
+
+ DEBUG(dbgs() << "spillPhysRegAroundRegDefsUses " << tri_->getName(PhysReg)
+ << " represented by " << tri_->getName(SpillReg) << '\n');
+
+ for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
+ // If there are registers which alias PhysReg, but which are not a
+ // sub-register of the chosen representative super register. Assert
+ // since we can't handle it yet.
+ assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
+ tri_->isSuperRegister(*AS, SpillReg));
+
+ bool Cut = false;
+ SmallVector<unsigned, 4> PRegs;
+ if (hasInterval(SpillReg))
+ PRegs.push_back(SpillReg);
+ for (const unsigned *SR = tri_->getSubRegisters(SpillReg); *SR; ++SR)
+ if (hasInterval(*SR))
+ PRegs.push_back(*SR);
+
+ DEBUG({
+ dbgs() << "Trying to spill:";
+ for (unsigned i = 0, e = PRegs.size(); i != e; ++i)
+ dbgs() << ' ' << tri_->getName(PRegs[i]);
+ dbgs() << '\n';
+ });
+
+ SmallPtrSet<MachineInstr*, 8> SeenMIs;
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineOperand &O = I.getOperand();
+ MachineInstr *MI = O.getParent();
+ if (MI->isDebugValue() || SeenMIs.count(MI))
+ continue;
+ SeenMIs.insert(MI);
+ SlotIndex Index = getInstructionIndex(MI);
+ bool LiveReg = false;
+ for (unsigned i = 0, e = PRegs.size(); i != e; ++i) {
+ unsigned PReg = PRegs[i];
+ LiveInterval &pli = getInterval(PReg);
+ if (!pli.liveAt(Index))
+ continue;
+ LiveReg = true;
+ SlotIndex StartIdx = Index.getLoadIndex();
+ SlotIndex EndIdx = Index.getNextIndex().getBaseIndex();
+ if (!pli.isInOneLiveRange(StartIdx, EndIdx)) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
+ if (MI->isInlineAsm()) {
+ Msg << "\nPlease check your inline asm statement for invalid "
+ << "constraints:\n";
+ MI->print(Msg, tm_);
+ }
+ report_fatal_error(Msg.str());
+ }
+ pli.removeRange(StartIdx, EndIdx);
+ LiveReg = true;
+ }
+ if (!LiveReg)
+ continue;
+ DEBUG(dbgs() << "Emergency spill around " << Index << '\t' << *MI);
+ vrm.addEmergencySpill(SpillReg, MI);
+ Cut = true;
+ }
+ return Cut;
+}
+
+LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
+ MachineInstr* startInst) {
+ LiveInterval& Interval = getOrCreateInterval(reg);
+ VNInfo* VN = Interval.getNextValue(
+ SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+ startInst, getVNInfoAllocator());
+ VN->setHasPHIKill(true);
+ LiveRange LR(
+ SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+ getMBBEndIdx(startInst->getParent()), VN);
+ Interval.addRange(LR);
+
+ return LR;
+}
+
OpenPOWER on IntegriCloud