summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp1544
1 files changed, 1544 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..3ade660
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,1544 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <limits>
+#include <cmath>
+using namespace llvm;
+
+// Hidden options for help debugging.
+static cl::opt<bool> DisableReMat("disable-rematerialization",
+ cl::init(false), cl::Hidden);
+
+STATISTIC(numIntervals , "Number of original intervals");
+
+char LiveIntervals::ID = 0;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<LiveVariables>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequiredTransitive<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
+ E = r2iMap_.end(); I != E; ++I)
+ delete I->second;
+
+ r2iMap_.clear();
+ RegMaskSlots.clear();
+ RegMaskBits.clear();
+ RegMaskBlocks.clear();
+
+ // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+ VNInfoAllocator.Reset();
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &mf_->getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ aa_ = &getAnalysis<AliasAnalysis>();
+ lv_ = &getAnalysis<LiveVariables>();
+ indexes_ = &getAnalysis<SlotIndexes>();
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+ reservedRegs_ = tri_->getReservedRegs(fn);
+
+ computeIntervals();
+
+ numIntervals += getNumIntervals();
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
+
+ // Dump the physregs.
+ for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
+ if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
+ LI->print(OS, tri_);
+ OS << '\n';
+ }
+
+ // Dump the virtregs.
+ for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
+ if (const LiveInterval *LI =
+ r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
+ LI->print(OS, tri_);
+ OS << '\n';
+ }
+
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+ mf_->print(OS, indexes_);
+}
+
+void LiveIntervals::dumpInstrs() const {
+ printInstrs(dbgs());
+}
+
+static
+bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
+ unsigned Reg = MI.getOperand(MOIdx).getReg();
+ for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == Reg && MO.isDef()) {
+ assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
+ MI.getOperand(MOIdx).getSubReg() &&
+ (MO.getSubReg() || MO.isImplicit()));
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isPartialRedef - Return true if the specified def at the specific index is
+/// partially re-defining the specified live interval. A common case of this is
+/// a definition of the sub-register.
+bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
+ LiveInterval &interval) {
+ if (!MO.getSubReg() || MO.isEarlyClobber())
+ return false;
+
+ SlotIndex RedefIndex = MIIdx.getRegSlot();
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
+ MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
+ if (DefMI != 0) {
+ return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
+ }
+ return false;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+ MachineBasicBlock::iterator mi,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx,
+ LiveInterval &interval) {
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
+
+ // Virtual registers may be defined multiple times (due to phi
+ // elimination and 2-addr elimination). Much of what we do only has to be
+ // done once for the vreg. We use an empty interval to detect the first
+ // time we see a vreg.
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+ if (interval.empty()) {
+ // Get the Idx of the defining instructions.
+ SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
+
+ // Make sure the first definition is not a partial redefinition.
+ assert(!MO.readsReg() && "First def cannot also read virtual register "
+ "missing <undef> flag?");
+
+ VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
+ assert(ValNo->id == 0 && "First value in interval is not 0?");
+
+ // Loop over all of the blocks that the vreg is defined in. There are
+ // two cases we have to handle here. The most common case is a vreg
+ // whose lifetime is contained within a basic block. In this case there
+ // will be a single kill, in MBB, which comes after the definition.
+ if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+ // FIXME: what about dead vars?
+ SlotIndex killIdx;
+ if (vi.Kills[0] != mi)
+ killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
+ else
+ killIdx = defIndex.getDeadSlot();
+
+ // If the kill happens after the definition, we have an intra-block
+ // live range.
+ if (killIdx > defIndex) {
+ assert(vi.AliveBlocks.empty() &&
+ "Shouldn't be alive across any blocks!");
+ LiveRange LR(defIndex, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << "\n");
+ return;
+ }
+ }
+
+ // The other case we handle is when a virtual register lives to the end
+ // of the defining block, potentially live across some blocks, then is
+ // live into some number of blocks, but gets killed. Start by adding a
+ // range that goes from this definition to the end of the defining block.
+ LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
+ DEBUG(dbgs() << " +" << NewLR);
+ interval.addRange(NewLR);
+
+ bool PHIJoin = lv_->isPHIJoin(interval.reg);
+
+ if (PHIJoin) {
+ // A phi join register is killed at the end of the MBB and revived as a new
+ // valno in the killing blocks.
+ assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
+ DEBUG(dbgs() << " phi-join");
+ ValNo->setHasPHIKill(true);
+ } else {
+ // Iterate over all of the blocks that the variable is completely
+ // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+ // live interval.
+ for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
+ E = vi.AliveBlocks.end(); I != E; ++I) {
+ MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
+ LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+ }
+
+ // Finally, this virtual register is live from the start of any killing
+ // block to the 'use' slot of the killing instruction.
+ for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+ MachineInstr *Kill = vi.Kills[i];
+ SlotIndex Start = getMBBStartIdx(Kill->getParent());
+ SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
+
+ // Create interval with one of a NEW value number. Note that this value
+ // number isn't actually defined by an instruction, weird huh? :)
+ if (PHIJoin) {
+ assert(getInstructionFromIndex(Start) == 0 &&
+ "PHI def index points at actual instruction.");
+ ValNo = interval.getNextValue(Start, VNInfoAllocator);
+ ValNo->setIsPHIDef(true);
+ }
+ LiveRange LR(Start, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+
+ } else {
+ if (MultipleDefsBySameMI(*mi, MOIdx))
+ // Multiple defs of the same virtual register by the same instruction.
+ // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
+ // This is likely due to elimination of REG_SEQUENCE instructions. Return
+ // here since there is nothing to do.
+ return;
+
+ // If this is the second time we see a virtual register definition, it
+ // must be due to phi elimination or two addr elimination. If this is
+ // the result of two address elimination, then the vreg is one of the
+ // def-and-use register operand.
+
+ // It may also be partial redef like this:
+ // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
+ // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
+ bool PartReDef = isPartialRedef(MIIdx, MO, interval);
+ if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
+ // If this is a two-address definition, then we have already processed
+ // the live range. The only problem is that we didn't realize there
+ // are actually two values in the live interval. Because of this we
+ // need to take the LiveRegion that defines this register and split it
+ // into two values.
+ SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
+
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
+ VNInfo *OldValNo = OldLR->valno;
+ SlotIndex DefIndex = OldValNo->def.getRegSlot();
+
+ // Delete the previous value, which should be short and continuous,
+ // because the 2-addr copy must be in the same MBB as the redef.
+ interval.removeRange(DefIndex, RedefIndex);
+
+ // The new value number (#1) is defined by the instruction we claimed
+ // defined value #0.
+ VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
+
+ // Value#0 is now defined by the 2-addr instruction.
+ OldValNo->def = RedefIndex;
+
+ // Add the new live interval which replaces the range for the input copy.
+ LiveRange LR(DefIndex, RedefIndex, ValNo);
+ DEBUG(dbgs() << " replace range with " << LR);
+ interval.addRange(LR);
+
+ // If this redefinition is dead, we need to add a dummy unit live
+ // range covering the def slot.
+ if (MO.isDead())
+ interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
+ OldValNo));
+
+ DEBUG({
+ dbgs() << " RESULT: ";
+ interval.print(dbgs(), tri_);
+ });
+ } else if (lv_->isPHIJoin(interval.reg)) {
+ // In the case of PHI elimination, each variable definition is only
+ // live until the end of the block. We've already taken care of the
+ // rest of the live range.
+
+ SlotIndex defIndex = MIIdx.getRegSlot();
+ if (MO.isEarlyClobber())
+ defIndex = MIIdx.getRegSlot(true);
+
+ VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
+
+ SlotIndex killIndex = getMBBEndIdx(mbb);
+ LiveRange LR(defIndex, killIndex, ValNo);
+ interval.addRange(LR);
+ ValNo->setHasPHIKill(true);
+ DEBUG(dbgs() << " phi-join +" << LR);
+ } else {
+ llvm_unreachable("Multiply defined register");
+ }
+ }
+
+ DEBUG(dbgs() << '\n');
+}
+
+static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
+ for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end();
+ SI != SE; ++SI) {
+ const MachineBasicBlock* succ = *SI;
+ if (succ->isLiveIn(Reg))
+ return true;
+ }
+ return false;
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator mi,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ LiveInterval &interval) {
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
+
+ SlotIndex baseIndex = MIIdx;
+ SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
+ SlotIndex end = start;
+
+ // If it is not used after definition, it is considered dead at
+ // the instruction defining it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ // For earlyclobbers, the defSlot was pushed back one; the extra
+ // advance below compensates.
+ if (MO.isDead()) {
+ DEBUG(dbgs() << " dead");
+ end = start.getDeadSlot();
+ goto exit;
+ }
+
+ // If it is not dead on definition, it must be killed by a
+ // subsequent instruction. Hence its interval is:
+ // [defSlot(def), useSlot(kill)+1)
+ baseIndex = baseIndex.getNextIndex();
+ while (++mi != MBB->end()) {
+
+ if (mi->isDebugValue())
+ continue;
+ if (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DEBUG(dbgs() << " killed");
+ end = baseIndex.getRegSlot();
+ goto exit;
+ } else {
+ int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
+ if (DefIdx != -1) {
+ if (mi->isRegTiedToUseOperand(DefIdx)) {
+ // Two-address instruction.
+ end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
+ } else {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that
+ // defines it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DEBUG(dbgs() << " dead");
+ end = start.getDeadSlot();
+ }
+ goto exit;
+ }
+ }
+
+ baseIndex = baseIndex.getNextIndex();
+ }
+
+ // If we get here the register *should* be live out.
+ assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
+
+ // FIXME: We need saner rules for reserved regs.
+ if (isReserved(interval.reg)) {
+ end = start.getDeadSlot();
+ } else {
+ // Unreserved, unallocable registers like EFLAGS can be live across basic
+ // block boundaries.
+ assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
+ "Unreserved reg not live-out?");
+ end = getMBBEndIdx(MBB);
+ }
+exit:
+ assert(start < end && "did not find end of interval?");
+
+ // Already exists? Extend old live interval.
+ VNInfo *ValNo = interval.getVNInfoAt(start);
+ bool Extend = ValNo != 0;
+ if (!Extend)
+ ValNo = interval.getNextValue(start, VNInfoAllocator);
+ LiveRange LR(start, end, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MI,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx) {
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
+ getOrCreateInterval(MO.getReg()));
+ else
+ handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+ getOrCreateInterval(MO.getReg()));
+}
+
+void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
+ SlotIndex MIIdx,
+ LiveInterval &interval) {
+ assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
+ "Only physical registers can be live in.");
+ assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
+ MBB->isLandingPad()) &&
+ "Allocatable live-ins only valid for entry blocks and landing pads.");
+
+ DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
+
+ // Look for kills, if it reaches a def before it's killed, then it shouldn't
+ // be considered a livein.
+ MachineBasicBlock::iterator mi = MBB->begin();
+ MachineBasicBlock::iterator E = MBB->end();
+ // Skip over DBG_VALUE at the start of the MBB.
+ if (mi != E && mi->isDebugValue()) {
+ while (++mi != E && mi->isDebugValue())
+ ;
+ if (mi == E)
+ // MBB is empty except for DBG_VALUE's.
+ return;
+ }
+
+ SlotIndex baseIndex = MIIdx;
+ SlotIndex start = baseIndex;
+ if (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+ SlotIndex end = baseIndex;
+ bool SeenDefUse = false;
+
+ while (mi != E) {
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DEBUG(dbgs() << " killed");
+ end = baseIndex.getRegSlot();
+ SeenDefUse = true;
+ break;
+ } else if (mi->modifiesRegister(interval.reg, tri_)) {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that defines
+ // it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DEBUG(dbgs() << " dead");
+ end = start.getDeadSlot();
+ SeenDefUse = true;
+ break;
+ }
+
+ while (++mi != E && mi->isDebugValue())
+ // Skip over DBG_VALUE.
+ ;
+ if (mi != E)
+ baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+ }
+
+ // Live-in register might not be used at all.
+ if (!SeenDefUse) {
+ if (isAllocatable(interval.reg) ||
+ !isRegLiveIntoSuccessor(MBB, interval.reg)) {
+ // Allocatable registers are never live through.
+ // Non-allocatable registers that aren't live into any successors also
+ // aren't live through.
+ DEBUG(dbgs() << " dead");
+ return;
+ } else {
+ // If we get here the register is non-allocatable and live into some
+ // successor. We'll conservatively assume it's live-through.
+ DEBUG(dbgs() << " live through");
+ end = getMBBEndIdx(MBB);
+ }
+ }
+
+ SlotIndex defIdx = getMBBStartIdx(MBB);
+ assert(getInstructionFromIndex(defIdx) == 0 &&
+ "PHI def index points at actual instruction.");
+ VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
+ vni->setIsPHIDef(true);
+ LiveRange LR(start, end, vni);
+
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() {
+ DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ RegMaskBlocks.resize(mf_->getNumBlockIDs());
+
+ SmallVector<unsigned, 8> UndefUses;
+ for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
+
+ if (MBB->empty())
+ continue;
+
+ // Track the index of the current machine instr.
+ SlotIndex MIIndex = getMBBStartIdx(MBB);
+ DEBUG(dbgs() << "BB#" << MBB->getNumber()
+ << ":\t\t# derived from " << MBB->getName() << "\n");
+
+ // Create intervals for live-ins to this BB first.
+ for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
+ LE = MBB->livein_end(); LI != LE; ++LI) {
+ handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
+ }
+
+ // Skip over empty initial indices.
+ if (getInstructionFromIndex(MIIndex) == 0)
+ MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+
+ for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+ MI != miEnd; ++MI) {
+ DEBUG(dbgs() << MIIndex << "\t" << *MI);
+ if (MI->isDebugValue())
+ continue;
+ assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
+ "Lost SlotIndex synchronization");
+
+ // Handle defs.
+ for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+ MachineOperand &MO = MI->getOperand(i);
+
+ // Collect register masks.
+ if (MO.isRegMask()) {
+ RegMaskSlots.push_back(MIIndex.getRegSlot());
+ RegMaskBits.push_back(MO.getRegMask());
+ continue;
+ }
+
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+
+ // handle register defs - build intervals
+ if (MO.isDef())
+ handleRegisterDef(MBB, MI, MIIndex, MO, i);
+ else if (MO.isUndef())
+ UndefUses.push_back(MO.getReg());
+ }
+
+ // Move to the next instr slot.
+ MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+ }
+
+ // Compute the number of register mask instructions in this block.
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
+ RMB.second = RegMaskSlots.size() - RMB.first;;
+ }
+
+ // Create empty intervals for registers defined by implicit_def's (except
+ // for those implicit_def that define values which are liveout of their
+ // blocks.
+ for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
+ unsigned UndefReg = UndefUses[i];
+ (void)getOrCreateInterval(UndefReg);
+ }
+}
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+/// dupInterval - Duplicate a live interval. The caller is responsible for
+/// managing the allocated memory.
+LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
+ LiveInterval *NewLI = createInterval(li->reg);
+ NewLI->Copy(*li, mri_, getVNInfoAllocator());
+ return NewLI;
+}
+
+/// shrinkToUses - After removing some uses of a register, shrink its live
+/// range to just the remaining uses. This method does not compute reaching
+/// defs for new uses, and it doesn't remove dead defs.
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ DEBUG(dbgs() << "Shrink: " << *li << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+ && "Can only shrink virtual registers");
+ // Find all the values used, including PHI kills.
+ SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
+
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
+ // Visit all instructions reading li->reg.
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
+ continue;
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ // Note: This intentionally picks up the wrong VNI in case of an EC redef.
+ // See below.
+ VNInfo *VNI = li->getVNInfoBefore(Idx);
+ if (!VNI) {
+ // This shouldn't happen: readsVirtualRegister returns true, but there is
+ // no live value. It is likely caused by a target getting <undef> flags
+ // wrong.
+ DEBUG(dbgs() << Idx << '\t' << *UseMI
+ << "Warning: Instr claims to read non-existent value in "
+ << *li << '\n');
+ continue;
+ }
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early. The getVNInfoBefore call above would have
+ // picked up the value defined by UseMI. Adjust the kill slot and value.
+ if (SlotIndex::isSameInstr(VNI->def, Idx)) {
+ Idx = VNI->def;
+ VNI = li->getVNInfoBefore(Idx);
+ assert(VNI && "Early-clobber tied value not available");
+ }
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live interval with only minimal live segments per def.
+ LiveInterval NewLI(li->reg, 0);
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
+ }
+
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
+ SlotIndex BlockStart = getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
+ (void)ExtVNI;
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI);
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI);
+ assert(li->getVNInfoBefore(Stop) == VNI &&
+ "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+
+ // Handle dead values.
+ bool CanSeparate = false;
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
+ assert(LII != NewLI.end() && "Missing live range for PHI");
+ if (LII->end != VNI->def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->setIsUnused(true);
+ NewLI.removeRange(*LII);
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ CanSeparate = true;
+ } else {
+ // This is a dead def. Make sure the instruction knows.
+ MachineInstr *MI = getInstructionFromIndex(VNI->def);
+ assert(MI && "No instruction defining live value");
+ MI->addRegisterDead(li->reg, tri_);
+ if (dead && MI->allDefsAreDead()) {
+ DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
+ dead->push_back(MI);
+ }
+ }
+ }
+
+ // Move the trimmed ranges back.
+ li->ranges.swap(NewLI.ranges);
+ DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+ return CanSeparate;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+void LiveIntervals::addKillFlags() {
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ unsigned Reg = I->first;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+ if (mri_->reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval *LI = I->second;
+
+ // Every instruction that kills Reg corresponds to a live range end point.
+ for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
+ ++RI) {
+ // A block index indicates an MBB edge.
+ if (RI->end.isBlock())
+ continue;
+ MachineInstr *MI = getInstructionFromIndex(RI->end);
+ if (!MI)
+ continue;
+ MI->addRegisterKilled(Reg, NULL);
+ }
+ }
+}
+
+/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
+/// allow one) virtual register operand, then its uses are implicitly using
+/// the register. Returns the virtual register.
+unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
+ MachineInstr *MI) const {
+ unsigned RegOp = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == li.reg)
+ continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
+ continue;
+ RegOp = MO.getReg();
+ break; // Found vreg operand - leave the loop.
+ }
+ return RegOp;
+}
+
+/// isValNoAvailableAt - Return true if the val# of the specified interval
+/// which reaches the given instruction also reaches the specified use index.
+bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
+ SlotIndex UseIdx) const {
+ VNInfo *UValNo = li.getVNInfoAt(UseIdx);
+ return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool
+LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const VNInfo *ValNo, MachineInstr *MI,
+ const SmallVectorImpl<LiveInterval*> *SpillIs,
+ bool &isLoad) {
+ if (DisableReMat)
+ return false;
+
+ if (!tii_->isTriviallyReMaterializable(MI, aa_))
+ return false;
+
+ // Target-specific code can mark an instruction as being rematerializable
+ // if it has one virtual reg use, though it had better be something like
+ // a PIC base register which is likely to be live everywhere.
+ unsigned ImpUse = getReMatImplicitUse(li, MI);
+ if (ImpUse) {
+ const LiveInterval &ImpLi = getInterval(ImpUse);
+ for (MachineRegisterInfo::use_nodbg_iterator
+ ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
+ ri != re; ++ri) {
+ MachineInstr *UseMI = &*ri;
+ SlotIndex UseIdx = getInstructionIndex(UseMI);
+ if (li.getVNInfoAt(UseIdx) != ValNo)
+ continue;
+ if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
+ return false;
+ }
+
+ // If a register operand of the re-materialized instruction is going to
+ // be spilled next, then it's not legal to re-materialize this instruction.
+ if (SpillIs)
+ for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
+ if (ImpUse == (*SpillIs)[i]->reg)
+ return false;
+ }
+ return true;
+}
+
+/// isReMaterializable - Returns true if every definition of MI of every
+/// val# of the specified interval is re-materializable.
+bool
+LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const SmallVectorImpl<LiveInterval*> *SpillIs,
+ bool &isLoad) {
+ isLoad = false;
+ for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+ i != e; ++i) {
+ const VNInfo *VNI = *i;
+ if (VNI->isUnused())
+ continue; // Dead val#.
+ // Is the def for the val# rematerializable?
+ MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
+ if (!ReMatDefMI)
+ return false;
+ bool DefIsLoad = false;
+ if (!ReMatDefMI ||
+ !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
+ return false;
+ isLoad |= DefIsLoad;
+ }
+ return true;
+}
+
+MachineBasicBlock*
+LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
+ // A local live range must be fully contained inside the block, meaning it is
+ // defined and killed at instructions, not at block boundaries. It is not
+ // live in or or out of any block.
+ //
+ // It is technically possible to have a PHI-defined live range identical to a
+ // single block, but we are going to return false in that case.
+
+ SlotIndex Start = LI.beginIndex();
+ if (Start.isBlock())
+ return NULL;
+
+ SlotIndex Stop = LI.endIndex();
+ if (Stop.isBlock())
+ return NULL;
+
+ // getMBBFromIndex doesn't need to search the MBB table when both indexes
+ // belong to proper instructions.
+ MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
+ MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
+ return MBB1 == MBB2 ? MBB1 : NULL;
+}
+
+float
+LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
+ // Limit the loop depth ridiculousness.
+ if (loopDepth > 200)
+ loopDepth = 200;
+
+ // The loop depth is used to roughly estimate the number of times the
+ // instruction is executed. Something like 10^d is simple, but will quickly
+ // overflow a float. This expression behaves like 10^d for small d, but is
+ // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
+ // headroom before overflow.
+ // By the way, powf() might be unavailable here. For consistency,
+ // We may take pow(double,double).
+ float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
+
+ return (isDef + isUse) * lc;
+}
+
+LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
+ MachineInstr* startInst) {
+ LiveInterval& Interval = getOrCreateInterval(reg);
+ VNInfo* VN = Interval.getNextValue(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getVNInfoAllocator());
+ VN->setHasPHIKill(true);
+ LiveRange LR(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getMBBEndIdx(startInst->getParent()), VN);
+ Interval.addRange(LR);
+
+ return LR;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Register mask functions
+//===----------------------------------------------------------------------===//
+
+bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
+ BitVector &UsableRegs) {
+ if (LI.empty())
+ return false;
+ LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
+
+ // Use a smaller arrays for local live ranges.
+ ArrayRef<SlotIndex> Slots;
+ ArrayRef<const uint32_t*> Bits;
+ if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
+ Slots = getRegMaskSlotsInBlock(MBB->getNumber());
+ Bits = getRegMaskBitsInBlock(MBB->getNumber());
+ } else {
+ Slots = getRegMaskSlots();
+ Bits = getRegMaskBits();
+ }
+
+ // We are going to enumerate all the register mask slots contained in LI.
+ // Start with a binary search of RegMaskSlots to find a starting point.
+ ArrayRef<SlotIndex>::iterator SlotI =
+ std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
+ ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
+
+ // No slots in range, LI begins after the last call.
+ if (SlotI == SlotE)
+ return false;
+
+ bool Found = false;
+ for (;;) {
+ assert(*SlotI >= LiveI->start);
+ // Loop over all slots overlapping this segment.
+ while (*SlotI < LiveI->end) {
+ // *SlotI overlaps LI. Collect mask bits.
+ if (!Found) {
+ // This is the first overlap. Initialize UsableRegs to all ones.
+ UsableRegs.clear();
+ UsableRegs.resize(tri_->getNumRegs(), true);
+ Found = true;
+ }
+ // Remove usable registers clobbered by this mask.
+ UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
+ if (++SlotI == SlotE)
+ return Found;
+ }
+ // *SlotI is beyond the current LI segment.
+ LiveI = LI.advanceTo(LiveI, *SlotI);
+ if (LiveI == LiveE)
+ return Found;
+ // Advance SlotI until it overlaps.
+ while (*SlotI < LiveI->start)
+ if (++SlotI == SlotE)
+ return Found;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// IntervalUpdate class.
+//===----------------------------------------------------------------------===//
+
+// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
+class LiveIntervals::HMEditor {
+private:
+ LiveIntervals& LIS;
+ const MachineRegisterInfo& MRI;
+ const TargetRegisterInfo& TRI;
+ SlotIndex NewIdx;
+
+ typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
+ typedef DenseSet<IntRangePair> RangeSet;
+
+ struct RegRanges {
+ LiveRange* Use;
+ LiveRange* EC;
+ LiveRange* Dead;
+ LiveRange* Def;
+ RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
+ };
+ typedef DenseMap<unsigned, RegRanges> BundleRanges;
+
+public:
+ HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
+ const TargetRegisterInfo& TRI, SlotIndex NewIdx)
+ : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
+
+ // Update intervals for all operands of MI from OldIdx to NewIdx.
+ // This assumes that MI used to be at OldIdx, and now resides at
+ // NewIdx.
+ void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
+ assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
+
+ // Collect the operands.
+ RangeSet Entering, Internal, Exiting;
+ bool hasRegMaskOp = false;
+ collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
+
+ // To keep the LiveRanges valid within an interval, move the ranges closest
+ // to the destination first. This prevents ranges from overlapping, to that
+ // APIs like removeRange still work.
+ if (NewIdx < OldIdx) {
+ moveAllEnteringFrom(OldIdx, Entering);
+ moveAllInternalFrom(OldIdx, Internal);
+ moveAllExitingFrom(OldIdx, Exiting);
+ }
+ else {
+ moveAllExitingFrom(OldIdx, Exiting);
+ moveAllInternalFrom(OldIdx, Internal);
+ moveAllEnteringFrom(OldIdx, Entering);
+ }
+
+ if (hasRegMaskOp)
+ updateRegMaskSlots(OldIdx);
+
+#ifndef NDEBUG
+ LIValidator validator;
+ std::for_each(Entering.begin(), Entering.end(), validator);
+ std::for_each(Internal.begin(), Internal.end(), validator);
+ std::for_each(Exiting.begin(), Exiting.end(), validator);
+ assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
+#endif
+
+ }
+
+ // Update intervals for all operands of MI to refer to BundleStart's
+ // SlotIndex.
+ void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
+ if (MI == BundleStart)
+ return; // Bundling instr with itself - nothing to do.
+
+ SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
+ assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
+ "SlotIndex <-> Instruction mapping broken for MI");
+
+ // Collect all ranges already in the bundle.
+ MachineBasicBlock::instr_iterator BII(BundleStart);
+ RangeSet Entering, Internal, Exiting;
+ bool hasRegMaskOp = false;
+ collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
+ assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
+ for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
+ if (&*BII == MI)
+ continue;
+ collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
+ assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
+ }
+
+ BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
+
+ collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
+ assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
+
+ DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
+ DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
+ DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
+
+ moveAllEnteringFromInto(OldIdx, Entering, BR);
+ moveAllInternalFromInto(OldIdx, Internal, BR);
+ moveAllExitingFromInto(OldIdx, Exiting, BR);
+
+
+#ifndef NDEBUG
+ LIValidator validator;
+ std::for_each(Entering.begin(), Entering.end(), validator);
+ std::for_each(Internal.begin(), Internal.end(), validator);
+ std::for_each(Exiting.begin(), Exiting.end(), validator);
+ assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
+#endif
+ }
+
+private:
+
+#ifndef NDEBUG
+ class LIValidator {
+ private:
+ DenseSet<const LiveInterval*> Checked, Bogus;
+ public:
+ void operator()(const IntRangePair& P) {
+ const LiveInterval* LI = P.first;
+ if (Checked.count(LI))
+ return;
+ Checked.insert(LI);
+ if (LI->empty())
+ return;
+ SlotIndex LastEnd = LI->begin()->start;
+ for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
+ LRI != LRE; ++LRI) {
+ const LiveRange& LR = *LRI;
+ if (LastEnd > LR.start || LR.start >= LR.end)
+ Bogus.insert(LI);
+ LastEnd = LR.end;
+ }
+ }
+
+ bool rangesOk() const {
+ return Bogus.empty();
+ }
+ };
+#endif
+
+ // Collect IntRangePairs for all operands of MI that may need fixing.
+ // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
+ // maps).
+ void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
+ RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
+ hasRegMaskOp = false;
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ const MachineOperand& MO = *MOI;
+
+ if (MO.isRegMask()) {
+ hasRegMaskOp = true;
+ continue;
+ }
+
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+
+ unsigned Reg = MO.getReg();
+
+ // TODO: Currently we're skipping uses that are reserved or have no
+ // interval, but we're not updating their kills. This should be
+ // fixed.
+ if (!LIS.hasInterval(Reg) ||
+ (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
+ continue;
+
+ LiveInterval* LI = &LIS.getInterval(Reg);
+
+ if (MO.readsReg()) {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
+ if (LR != 0)
+ Entering.insert(std::make_pair(LI, LR));
+ }
+ if (MO.isDef()) {
+ if (MO.isEarlyClobber()) {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
+ assert(LR != 0 && "No EC range?");
+ if (LR->end > OldIdx.getDeadSlot())
+ Exiting.insert(std::make_pair(LI, LR));
+ else
+ Internal.insert(std::make_pair(LI, LR));
+ } else if (MO.isDead()) {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
+ assert(LR != 0 && "No dead-def range?");
+ Internal.insert(std::make_pair(LI, LR));
+ } else {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
+ assert(LR && LR->end > OldIdx.getDeadSlot() &&
+ "Non-dead-def should have live range exiting.");
+ Exiting.insert(std::make_pair(LI, LR));
+ }
+ }
+ }
+ }
+
+ // Collect IntRangePairs for all operands of MI that may need fixing.
+ void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
+ RangeSet& Exiting, SlotIndex MIStartIdx,
+ SlotIndex MIEndIdx) {
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ const MachineOperand& MO = *MOI;
+ assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+
+ unsigned Reg = MO.getReg();
+
+ // TODO: Currently we're skipping uses that are reserved or have no
+ // interval, but we're not updating their kills. This should be
+ // fixed.
+ if (!LIS.hasInterval(Reg) ||
+ (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
+ continue;
+
+ LiveInterval* LI = &LIS.getInterval(Reg);
+
+ if (MO.readsReg()) {
+ LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
+ if (LR != 0)
+ Entering.insert(std::make_pair(LI, LR));
+ }
+ if (MO.isDef()) {
+ assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
+ assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
+ LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
+ assert(LR != 0 && "Internal ranges not allowed in bundles.");
+ Exiting.insert(std::make_pair(LI, LR));
+ }
+ }
+ }
+
+ BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
+ BundleRanges BR;
+
+ for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
+ EI != EE; ++EI) {
+ LiveInterval* LI = EI->first;
+ LiveRange* LR = EI->second;
+ BR[LI->reg].Use = LR;
+ }
+
+ for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
+ II != IE; ++II) {
+ LiveInterval* LI = II->first;
+ LiveRange* LR = II->second;
+ if (LR->end.isDead()) {
+ BR[LI->reg].Dead = LR;
+ } else {
+ BR[LI->reg].EC = LR;
+ }
+ }
+
+ for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
+ EI != EE; ++EI) {
+ LiveInterval* LI = EI->first;
+ LiveRange* LR = EI->second;
+ BR[LI->reg].Def = LR;
+ }
+
+ return BR;
+ }
+
+ void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
+ MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
+ if (!OldKillMI->killsRegister(reg))
+ return; // Bail out if we don't have kill flags on the old register.
+ MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
+ assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
+ assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
+ OldKillMI->clearRegisterKills(reg, &TRI);
+ NewKillMI->addRegisterKilled(reg, &TRI);
+ }
+
+ void updateRegMaskSlots(SlotIndex OldIdx) {
+ SmallVectorImpl<SlotIndex>::iterator RI =
+ std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
+ OldIdx);
+ assert(*RI == OldIdx && "No RegMask at OldIdx.");
+ *RI = NewIdx;
+ assert(*prior(RI) < *RI && *RI < *next(RI) &&
+ "RegSlots out of order. Did you move one call across another?");
+ }
+
+ // Return the last use of reg between NewIdx and OldIdx.
+ SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
+ SlotIndex LastUse = NewIdx;
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI.use_nodbg_begin(Reg),
+ UE = MRI.use_nodbg_end();
+ UI != UE; UI.skipInstruction()) {
+ const MachineInstr* MI = &*UI;
+ SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
+ if (InstSlot > LastUse && InstSlot < OldIdx)
+ LastUse = InstSlot;
+ }
+ return LastUse;
+ }
+
+ void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+ bool LiveThrough = LR->end > OldIdx.getRegSlot();
+ if (LiveThrough)
+ return;
+ SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
+ if (LastUse != NewIdx)
+ moveKillFlags(LI->reg, NewIdx, LastUse);
+ LR->end = LastUse.getRegSlot();
+ }
+
+ void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+ // Extend the LiveRange if NewIdx is past the end.
+ if (NewIdx > LR->end) {
+ // Move kill flags if OldIdx was not originally the end
+ // (otherwise LR->end points to an invalid slot).
+ if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
+ assert(LR->end > OldIdx && "LiveRange does not cover original slot");
+ moveKillFlags(LI->reg, LR->end, NewIdx);
+ }
+ LR->end = NewIdx.getRegSlot();
+ }
+ }
+
+ void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
+ bool GoingUp = NewIdx < OldIdx;
+
+ if (GoingUp) {
+ for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
+ EI != EE; ++EI)
+ moveEnteringUpFrom(OldIdx, *EI);
+ } else {
+ for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
+ EI != EE; ++EI)
+ moveEnteringDownFrom(OldIdx, *EI);
+ }
+ }
+
+ void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+ assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
+ LR->end <= OldIdx.getDeadSlot() &&
+ "Range should be internal to OldIdx.");
+ LiveRange Tmp(*LR);
+ Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
+ Tmp.valno->def = Tmp.start;
+ Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
+ LI->removeRange(*LR);
+ LI->addRange(Tmp);
+ }
+
+ void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
+ for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
+ II != IE; ++II)
+ moveInternalFrom(OldIdx, *II);
+ }
+
+ void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
+ LiveRange* LR = P.second;
+ assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
+ "Range should start in OldIdx.");
+ assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
+ SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
+ LR->start = NewStart;
+ LR->valno->def = NewStart;
+ }
+
+ void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
+ for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
+ EI != EE; ++EI)
+ moveExitingFrom(OldIdx, *EI);
+ }
+
+ void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
+ BundleRanges& BR) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+ bool LiveThrough = LR->end > OldIdx.getRegSlot();
+ if (LiveThrough) {
+ assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
+ "Def in bundle should be def range.");
+ assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
+ "If bundle has use for this reg it should be LR.");
+ BR[LI->reg].Use = LR;
+ return;
+ }
+
+ SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
+ moveKillFlags(LI->reg, OldIdx, LastUse);
+
+ if (LR->start < NewIdx) {
+ // Becoming a new entering range.
+ assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
+ "Bundle shouldn't be re-defining reg mid-range.");
+ assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
+ "Bundle shouldn't have different use range for same reg.");
+ LR->end = LastUse.getRegSlot();
+ BR[LI->reg].Use = LR;
+ } else {
+ // Becoming a new Dead-def.
+ assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
+ "Live range starting at unexpected slot.");
+ assert(BR[LI->reg].Def == LR && "Reg should have def range.");
+ assert(BR[LI->reg].Dead == 0 &&
+ "Can't have def and dead def of same reg in a bundle.");
+ LR->end = LastUse.getDeadSlot();
+ BR[LI->reg].Dead = BR[LI->reg].Def;
+ BR[LI->reg].Def = 0;
+ }
+ }
+
+ void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
+ BundleRanges& BR) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+ if (NewIdx > LR->end) {
+ // Range extended to bundle. Add to bundle uses.
+ // Note: Currently adds kill flags to bundle start.
+ assert(BR[LI->reg].Use == 0 &&
+ "Bundle already has use range for reg.");
+ moveKillFlags(LI->reg, LR->end, NewIdx);
+ LR->end = NewIdx.getRegSlot();
+ BR[LI->reg].Use = LR;
+ } else {
+ assert(BR[LI->reg].Use != 0 &&
+ "Bundle should already have a use range for reg.");
+ }
+ }
+
+ void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
+ BundleRanges& BR) {
+ bool GoingUp = NewIdx < OldIdx;
+
+ if (GoingUp) {
+ for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
+ EI != EE; ++EI)
+ moveEnteringUpFromInto(OldIdx, *EI, BR);
+ } else {
+ for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
+ EI != EE; ++EI)
+ moveEnteringDownFromInto(OldIdx, *EI, BR);
+ }
+ }
+
+ void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
+ BundleRanges& BR) {
+ // TODO: Sane rules for moving ranges into bundles.
+ }
+
+ void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
+ BundleRanges& BR) {
+ for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
+ II != IE; ++II)
+ moveInternalFromInto(OldIdx, *II, BR);
+ }
+
+ void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
+ BundleRanges& BR) {
+ LiveInterval* LI = P.first;
+ LiveRange* LR = P.second;
+
+ assert(LR->start.isRegister() &&
+ "Don't know how to merge exiting ECs into bundles yet.");
+
+ if (LR->end > NewIdx.getDeadSlot()) {
+ // This range is becoming an exiting range on the bundle.
+ // If there was an old dead-def of this reg, delete it.
+ if (BR[LI->reg].Dead != 0) {
+ LI->removeRange(*BR[LI->reg].Dead);
+ BR[LI->reg].Dead = 0;
+ }
+ assert(BR[LI->reg].Def == 0 &&
+ "Can't have two defs for the same variable exiting a bundle.");
+ LR->start = NewIdx.getRegSlot();
+ LR->valno->def = LR->start;
+ BR[LI->reg].Def = LR;
+ } else {
+ // This range is becoming internal to the bundle.
+ assert(LR->end == NewIdx.getRegSlot() &&
+ "Can't bundle def whose kill is before the bundle");
+ if (BR[LI->reg].Dead || BR[LI->reg].Def) {
+ // Already have a def for this. Just delete range.
+ LI->removeRange(*LR);
+ } else {
+ // Make range dead, record.
+ LR->end = NewIdx.getDeadSlot();
+ BR[LI->reg].Dead = LR;
+ assert(BR[LI->reg].Use == LR &&
+ "Range becoming dead should currently be use.");
+ }
+ // In both cases the range is no longer a use on the bundle.
+ BR[LI->reg].Use = 0;
+ }
+ }
+
+ void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
+ BundleRanges& BR) {
+ for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
+ EI != EE; ++EI)
+ moveExitingFromInto(OldIdx, *EI, BR);
+ }
+
+};
+
+void LiveIntervals::handleMove(MachineInstr* MI) {
+ SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
+ indexes_->removeMachineInstrFromMaps(MI);
+ SlotIndex NewIndex = MI->isInsideBundle() ?
+ indexes_->getInstructionIndex(MI) :
+ indexes_->insertMachineInstrInMaps(MI);
+ assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
+ OldIndex < getMBBEndIdx(MI->getParent()) &&
+ "Cannot handle moves across basic block boundaries.");
+ assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
+
+ HMEditor HME(*this, *mri_, *tri_, NewIndex);
+ HME.moveAllRangesFrom(MI, OldIndex);
+}
+
+void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
+ SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
+ HMEditor HME(*this, *mri_, *tri_, NewIndex);
+ HME.moveAllRangesInto(MI, BundleStart);
+}
OpenPOWER on IntegriCloud