diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveInterval.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/LiveInterval.cpp | 1433 |
1 files changed, 1433 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveInterval.cpp b/contrib/llvm/lib/CodeGen/LiveInterval.cpp new file mode 100644 index 0000000..d75e441 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/LiveInterval.cpp @@ -0,0 +1,1433 @@ +//===-- LiveInterval.cpp - Live Interval Representation -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveRange and LiveInterval classes. Given some +// numbering of each the machine instructions an interval [i, j) is said to be a +// live range for register v if there is no instruction with number j' >= j +// such that v is live at j' and there is no instruction with number i' < i such +// that v is live at i'. In this implementation ranges can have holes, +// i.e. a range might look like [1,20), [50,65), [1000,1001). Each +// individual segment is represented as an instance of LiveRange::Segment, +// and the whole range is represented as an instance of LiveRange. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveInterval.h" +#include "RegisterCoalescer.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <algorithm> +using namespace llvm; + +namespace { +//===----------------------------------------------------------------------===// +// Implementation of various methods necessary for calculation of live ranges. +// The implementation of the methods abstracts from the concrete type of the +// segment collection. +// +// Implementation of the class follows the Template design pattern. The base +// class contains generic algorithms that call collection-specific methods, +// which are provided in concrete subclasses. In order to avoid virtual calls +// these methods are provided by means of C++ template instantiation. +// The base class calls the methods of the subclass through method impl(), +// which casts 'this' pointer to the type of the subclass. +// +//===----------------------------------------------------------------------===// + +template <typename ImplT, typename IteratorT, typename CollectionT> +class CalcLiveRangeUtilBase { +protected: + LiveRange *LR; + +protected: + CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} + +public: + typedef LiveRange::Segment Segment; + typedef IteratorT iterator; + + VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { + assert(!Def.isDead() && "Cannot define a value at the dead slot"); + + iterator I = impl().find(Def); + if (I == segments().end()) { + VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); + impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); + return VNI; + } + + Segment *S = segmentAt(I); + if (SlotIndex::isSameInstr(Def, S->start)) { + assert(S->valno->def == S->start && "Inconsistent existing value def"); + + // It is possible to have both normal and early-clobber defs of the same + // register on an instruction. It doesn't make a lot of sense, but it is + // possible to specify in inline assembly. + // + // Just convert everything to early-clobber. + Def = std::min(Def, S->start); + if (Def != S->start) + S->start = S->valno->def = Def; + return S->valno; + } + assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); + VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); + segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); + return VNI; + } + + VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { + if (segments().empty()) + return nullptr; + iterator I = + impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); + if (I == segments().begin()) + return nullptr; + --I; + if (I->end <= StartIdx) + return nullptr; + if (I->end < Use) + extendSegmentEndTo(I, Use); + return I->valno; + } + + /// This method is used when we want to extend the segment specified + /// by I to end at the specified endpoint. To do this, we should + /// merge and eliminate all segments that this will overlap + /// with. The iterator is not invalidated. + void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { + assert(I != segments().end() && "Not a valid segment!"); + Segment *S = segmentAt(I); + VNInfo *ValNo = I->valno; + + // Search for the first segment that we can't merge with. + iterator MergeTo = std::next(I); + for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) + assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); + + // If NewEnd was in the middle of a segment, make sure to get its endpoint. + S->end = std::max(NewEnd, std::prev(MergeTo)->end); + + // If the newly formed segment now touches the segment after it and if they + // have the same value number, merge the two segments into one segment. + if (MergeTo != segments().end() && MergeTo->start <= I->end && + MergeTo->valno == ValNo) { + S->end = MergeTo->end; + ++MergeTo; + } + + // Erase any dead segments. + segments().erase(std::next(I), MergeTo); + } + + /// This method is used when we want to extend the segment specified + /// by I to start at the specified endpoint. To do this, we should + /// merge and eliminate all segments that this will overlap with. + iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { + assert(I != segments().end() && "Not a valid segment!"); + Segment *S = segmentAt(I); + VNInfo *ValNo = I->valno; + + // Search for the first segment that we can't merge with. + iterator MergeTo = I; + do { + if (MergeTo == segments().begin()) { + S->start = NewStart; + segments().erase(MergeTo, I); + return I; + } + assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); + --MergeTo; + } while (NewStart <= MergeTo->start); + + // If we start in the middle of another segment, just delete a range and + // extend that segment. + if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { + segmentAt(MergeTo)->end = S->end; + } else { + // Otherwise, extend the segment right after. + ++MergeTo; + Segment *MergeToSeg = segmentAt(MergeTo); + MergeToSeg->start = NewStart; + MergeToSeg->end = S->end; + } + + segments().erase(std::next(MergeTo), std::next(I)); + return MergeTo; + } + + iterator addSegment(Segment S) { + SlotIndex Start = S.start, End = S.end; + iterator I = impl().findInsertPos(S); + + // If the inserted segment starts in the middle or right at the end of + // another segment, just extend that segment to contain the segment of S. + if (I != segments().begin()) { + iterator B = std::prev(I); + if (S.valno == B->valno) { + if (B->start <= Start && B->end >= Start) { + extendSegmentEndTo(B, End); + return B; + } + } else { + // Check to make sure that we are not overlapping two live segments with + // different valno's. + assert(B->end <= Start && + "Cannot overlap two segments with differing ValID's" + " (did you def the same reg twice in a MachineInstr?)"); + } + } + + // Otherwise, if this segment ends in the middle of, or right next + // to, another segment, merge it into that segment. + if (I != segments().end()) { + if (S.valno == I->valno) { + if (I->start <= End) { + I = extendSegmentStartTo(I, Start); + + // If S is a complete superset of a segment, we may need to grow its + // endpoint as well. + if (End > I->end) + extendSegmentEndTo(I, End); + return I; + } + } else { + // Check to make sure that we are not overlapping two live segments with + // different valno's. + assert(I->start >= End && + "Cannot overlap two segments with differing ValID's"); + } + } + + // Otherwise, this is just a new segment that doesn't interact with + // anything. + // Insert it. + return segments().insert(I, S); + } + +private: + ImplT &impl() { return *static_cast<ImplT *>(this); } + + CollectionT &segments() { return impl().segmentsColl(); } + + Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } +}; + +//===----------------------------------------------------------------------===// +// Instantiation of the methods for calculation of live ranges +// based on a segment vector. +//===----------------------------------------------------------------------===// + +class CalcLiveRangeUtilVector; +typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, + LiveRange::Segments> CalcLiveRangeUtilVectorBase; + +class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { +public: + CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} + +private: + friend CalcLiveRangeUtilVectorBase; + + LiveRange::Segments &segmentsColl() { return LR->segments; } + + void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } + + iterator find(SlotIndex Pos) { return LR->find(Pos); } + + iterator findInsertPos(Segment S) { + return std::upper_bound(LR->begin(), LR->end(), S.start); + } +}; + +//===----------------------------------------------------------------------===// +// Instantiation of the methods for calculation of live ranges +// based on a segment set. +//===----------------------------------------------------------------------===// + +class CalcLiveRangeUtilSet; +typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, + LiveRange::SegmentSet::iterator, + LiveRange::SegmentSet> CalcLiveRangeUtilSetBase; + +class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { +public: + CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} + +private: + friend CalcLiveRangeUtilSetBase; + + LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } + + void insertAtEnd(const Segment &S) { + LR->segmentSet->insert(LR->segmentSet->end(), S); + } + + iterator find(SlotIndex Pos) { + iterator I = + LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); + if (I == LR->segmentSet->begin()) + return I; + iterator PrevI = std::prev(I); + if (Pos < (*PrevI).end) + return PrevI; + return I; + } + + iterator findInsertPos(Segment S) { + iterator I = LR->segmentSet->upper_bound(S); + if (I != LR->segmentSet->end() && !(S.start < *I)) + ++I; + return I; + } +}; +} // namespace + +//===----------------------------------------------------------------------===// +// LiveRange methods +//===----------------------------------------------------------------------===// + +LiveRange::iterator LiveRange::find(SlotIndex Pos) { + // This algorithm is basically std::upper_bound. + // Unfortunately, std::upper_bound cannot be used with mixed types until we + // adopt C++0x. Many libraries can do it, but not all. + if (empty() || Pos >= endIndex()) + return end(); + iterator I = begin(); + size_t Len = size(); + do { + size_t Mid = Len >> 1; + if (Pos < I[Mid].end) + Len = Mid; + else + I += Mid + 1, Len -= Mid + 1; + } while (Len); + return I; +} + +VNInfo *LiveRange::createDeadDef(SlotIndex Def, + VNInfo::Allocator &VNInfoAllocator) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator); +} + +// overlaps - Return true if the intersection of the two live ranges is +// not empty. +// +// An example for overlaps(): +// +// 0: A = ... +// 4: B = ... +// 8: C = A + B ;; last use of A +// +// The live ranges should look like: +// +// A = [3, 11) +// B = [7, x) +// C = [11, y) +// +// A->overlaps(C) should return false since we want to be able to join +// A and C. +// +bool LiveRange::overlapsFrom(const LiveRange& other, + const_iterator StartPos) const { + assert(!empty() && "empty range"); + const_iterator i = begin(); + const_iterator ie = end(); + const_iterator j = StartPos; + const_iterator je = other.end(); + + assert((StartPos->start <= i->start || StartPos == other.begin()) && + StartPos != other.end() && "Bogus start position hint!"); + + if (i->start < j->start) { + i = std::upper_bound(i, ie, j->start); + if (i != begin()) --i; + } else if (j->start < i->start) { + ++StartPos; + if (StartPos != other.end() && StartPos->start <= i->start) { + assert(StartPos < other.end() && i < end()); + j = std::upper_bound(j, je, i->start); + if (j != other.begin()) --j; + } + } else { + return true; + } + + if (j == je) return false; + + while (i != ie) { + if (i->start > j->start) { + std::swap(i, j); + std::swap(ie, je); + } + + if (i->end > j->start) + return true; + ++i; + } + + return false; +} + +bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, + const SlotIndexes &Indexes) const { + assert(!empty() && "empty range"); + if (Other.empty()) + return false; + + // Use binary searches to find initial positions. + const_iterator I = find(Other.beginIndex()); + const_iterator IE = end(); + if (I == IE) + return false; + const_iterator J = Other.find(I->start); + const_iterator JE = Other.end(); + if (J == JE) + return false; + + for (;;) { + // J has just been advanced to satisfy: + assert(J->end >= I->start); + // Check for an overlap. + if (J->start < I->end) { + // I and J are overlapping. Find the later start. + SlotIndex Def = std::max(I->start, J->start); + // Allow the overlap if Def is a coalescable copy. + if (Def.isBlock() || + !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) + return true; + } + // Advance the iterator that ends first to check for more overlaps. + if (J->end > I->end) { + std::swap(I, J); + std::swap(IE, JE); + } + // Advance J until J->end >= I->start. + do + if (++J == JE) + return false; + while (J->end < I->start); + } +} + +/// overlaps - Return true if the live range overlaps an interval specified +/// by [Start, End). +bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { + assert(Start < End && "Invalid range"); + const_iterator I = std::lower_bound(begin(), end(), End); + return I != begin() && (--I)->end > Start; +} + +bool LiveRange::covers(const LiveRange &Other) const { + if (empty()) + return Other.empty(); + + const_iterator I = begin(); + for (const Segment &O : Other.segments) { + I = advanceTo(I, O.start); + if (I == end() || I->start > O.start) + return false; + + // Check adjacent live segments and see if we can get behind O.end. + while (I->end < O.end) { + const_iterator Last = I; + // Get next segment and abort if it was not adjacent. + ++I; + if (I == end() || Last->end != I->start) + return false; + } + } + return true; +} + +/// ValNo is dead, remove it. If it is the largest value number, just nuke it +/// (and any other deleted values neighboring it), otherwise mark it as ~1U so +/// it can be nuked later. +void LiveRange::markValNoForDeletion(VNInfo *ValNo) { + if (ValNo->id == getNumValNums()-1) { + do { + valnos.pop_back(); + } while (!valnos.empty() && valnos.back()->isUnused()); + } else { + ValNo->markUnused(); + } +} + +/// RenumberValues - Renumber all values in order of appearance and delete the +/// remaining unused values. +void LiveRange::RenumberValues() { + SmallPtrSet<VNInfo*, 8> Seen; + valnos.clear(); + for (const Segment &S : segments) { + VNInfo *VNI = S.valno; + if (!Seen.insert(VNI).second) + continue; + assert(!VNI->isUnused() && "Unused valno used by live segment"); + VNI->id = (unsigned)valnos.size(); + valnos.push_back(VNI); + } +} + +void LiveRange::addSegmentToSet(Segment S) { + CalcLiveRangeUtilSet(this).addSegment(S); +} + +LiveRange::iterator LiveRange::addSegment(Segment S) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) { + addSegmentToSet(S); + return end(); + } + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).addSegment(S); +} + +void LiveRange::append(const Segment S) { + // Check that the segment belongs to the back of the list. + assert(segments.empty() || segments.back().end <= S.start); + segments.push_back(S); +} + +/// extendInBlock - If this range is live before Kill in the basic +/// block that starts at StartIdx, extend it to be live up to Kill and return +/// the value. If there is no live range before Kill, return NULL. +VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); +} + +/// Remove the specified segment from this range. Note that the segment must +/// be in a single Segment in its entirety. +void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, + bool RemoveDeadValNo) { + // Find the Segment containing this span. + iterator I = find(Start); + assert(I != end() && "Segment is not in range!"); + assert(I->containsInterval(Start, End) + && "Segment is not entirely in range!"); + + // If the span we are removing is at the start of the Segment, adjust it. + VNInfo *ValNo = I->valno; + if (I->start == Start) { + if (I->end == End) { + if (RemoveDeadValNo) { + // Check if val# is dead. + bool isDead = true; + for (const_iterator II = begin(), EE = end(); II != EE; ++II) + if (II != I && II->valno == ValNo) { + isDead = false; + break; + } + if (isDead) { + // Now that ValNo is dead, remove it. + markValNoForDeletion(ValNo); + } + } + + segments.erase(I); // Removed the whole Segment. + } else + I->start = End; + return; + } + + // Otherwise if the span we are removing is at the end of the Segment, + // adjust the other way. + if (I->end == End) { + I->end = Start; + return; + } + + // Otherwise, we are splitting the Segment into two pieces. + SlotIndex OldEnd = I->end; + I->end = Start; // Trim the old segment. + + // Insert the new one. + segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); +} + +/// removeValNo - Remove all the segments defined by the specified value#. +/// Also remove the value# from value# list. +void LiveRange::removeValNo(VNInfo *ValNo) { + if (empty()) return; + segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) { + return S.valno == ValNo; + }), end()); + // Now that ValNo is dead, remove it. + markValNoForDeletion(ValNo); +} + +void LiveRange::join(LiveRange &Other, + const int *LHSValNoAssignments, + const int *RHSValNoAssignments, + SmallVectorImpl<VNInfo *> &NewVNInfo) { + verify(); + + // Determine if any of our values are mapped. This is uncommon, so we want + // to avoid the range scan if not. + bool MustMapCurValNos = false; + unsigned NumVals = getNumValNums(); + unsigned NumNewVals = NewVNInfo.size(); + for (unsigned i = 0; i != NumVals; ++i) { + unsigned LHSValID = LHSValNoAssignments[i]; + if (i != LHSValID || + (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { + MustMapCurValNos = true; + break; + } + } + + // If we have to apply a mapping to our base range assignment, rewrite it now. + if (MustMapCurValNos && !empty()) { + // Map the first live range. + + iterator OutIt = begin(); + OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; + for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { + VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; + assert(nextValNo && "Huh?"); + + // If this live range has the same value # as its immediate predecessor, + // and if they are neighbors, remove one Segment. This happens when we + // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. + if (OutIt->valno == nextValNo && OutIt->end == I->start) { + OutIt->end = I->end; + } else { + // Didn't merge. Move OutIt to the next segment, + ++OutIt; + OutIt->valno = nextValNo; + if (OutIt != I) { + OutIt->start = I->start; + OutIt->end = I->end; + } + } + } + // If we merge some segments, chop off the end. + ++OutIt; + segments.erase(OutIt, end()); + } + + // Rewrite Other values before changing the VNInfo ids. + // This can leave Other in an invalid state because we're not coalescing + // touching segments that now have identical values. That's OK since Other is + // not supposed to be valid after calling join(); + for (Segment &S : Other.segments) + S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; + + // Update val# info. Renumber them and make sure they all belong to this + // LiveRange now. Also remove dead val#'s. + unsigned NumValNos = 0; + for (unsigned i = 0; i < NumNewVals; ++i) { + VNInfo *VNI = NewVNInfo[i]; + if (VNI) { + if (NumValNos >= NumVals) + valnos.push_back(VNI); + else + valnos[NumValNos] = VNI; + VNI->id = NumValNos++; // Renumber val#. + } + } + if (NumNewVals < NumVals) + valnos.resize(NumNewVals); // shrinkify + + // Okay, now insert the RHS live segments into the LHS. + LiveRangeUpdater Updater(this); + for (Segment &S : Other.segments) + Updater.add(S); +} + +/// Merge all of the segments in RHS into this live range as the specified +/// value number. The segments in RHS are allowed to overlap with segments in +/// the current range, but only if the overlapping segments have the +/// specified value number. +void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, + VNInfo *LHSValNo) { + LiveRangeUpdater Updater(this); + for (const Segment &S : RHS.segments) + Updater.add(S.start, S.end, LHSValNo); +} + +/// MergeValueInAsValue - Merge all of the live segments of a specific val# +/// in RHS into this live range as the specified value number. +/// The segments in RHS are allowed to overlap with segments in the +/// current range, it will replace the value numbers of the overlaped +/// segments with the specified value number. +void LiveRange::MergeValueInAsValue(const LiveRange &RHS, + const VNInfo *RHSValNo, + VNInfo *LHSValNo) { + LiveRangeUpdater Updater(this); + for (const Segment &S : RHS.segments) + if (S.valno == RHSValNo) + Updater.add(S.start, S.end, LHSValNo); +} + +/// MergeValueNumberInto - This method is called when two value nubmers +/// are found to be equivalent. This eliminates V1, replacing all +/// segments with the V1 value number with the V2 value number. This can +/// cause merging of V1/V2 values numbers and compaction of the value space. +VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { + assert(V1 != V2 && "Identical value#'s are always equivalent!"); + + // This code actually merges the (numerically) larger value number into the + // smaller value number, which is likely to allow us to compactify the value + // space. The only thing we have to be careful of is to preserve the + // instruction that defines the result value. + + // Make sure V2 is smaller than V1. + if (V1->id < V2->id) { + V1->copyFrom(*V2); + std::swap(V1, V2); + } + + // Merge V1 segments into V2. + for (iterator I = begin(); I != end(); ) { + iterator S = I++; + if (S->valno != V1) continue; // Not a V1 Segment. + + // Okay, we found a V1 live range. If it had a previous, touching, V2 live + // range, extend it. + if (S != begin()) { + iterator Prev = S-1; + if (Prev->valno == V2 && Prev->end == S->start) { + Prev->end = S->end; + + // Erase this live-range. + segments.erase(S); + I = Prev+1; + S = Prev; + } + } + + // Okay, now we have a V1 or V2 live range that is maximally merged forward. + // Ensure that it is a V2 live-range. + S->valno = V2; + + // If we can merge it into later V2 segments, do so now. We ignore any + // following V1 segments, as they will be merged in subsequent iterations + // of the loop. + if (I != end()) { + if (I->start == S->end && I->valno == V2) { + S->end = I->end; + segments.erase(I); + I = S+1; + } + } + } + + // Now that V1 is dead, remove it. + markValNoForDeletion(V1); + + return V2; +} + +void LiveRange::flushSegmentSet() { + assert(segmentSet != nullptr && "segment set must have been created"); + assert( + segments.empty() && + "segment set can be used only initially before switching to the array"); + segments.append(segmentSet->begin(), segmentSet->end()); + segmentSet = nullptr; + verify(); +} + +void LiveInterval::freeSubRange(SubRange *S) { + S->~SubRange(); + // Memory was allocated with BumpPtr allocator and is not freed here. +} + +void LiveInterval::removeEmptySubRanges() { + SubRange **NextPtr = &SubRanges; + SubRange *I = *NextPtr; + while (I != nullptr) { + if (!I->empty()) { + NextPtr = &I->Next; + I = *NextPtr; + continue; + } + // Skip empty subranges until we find the first nonempty one. + do { + SubRange *Next = I->Next; + freeSubRange(I); + I = Next; + } while (I != nullptr && I->empty()); + *NextPtr = I; + } +} + +void LiveInterval::clearSubRanges() { + for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { + Next = I->Next; + freeSubRange(I); + } + SubRanges = nullptr; +} + +/// Helper function for constructMainRangeFromSubranges(): Search the CFG +/// backwards until we find a place covered by a LiveRange segment that actually +/// has a valno set. +static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, + const MachineBasicBlock *MBB, + SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { + // We start the search at the end of MBB. + SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); + // In our use case we can't live the area covered by the live segments without + // finding an actual VNI def. + LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); + assert(I != LR.end()); + LiveRange::Segment &S = *I; + if (S.valno != nullptr) + return S.valno; + + VNInfo *VNI = nullptr; + // Continue at predecessors (we could even go to idom with domtree available). + for (const MachineBasicBlock *Pred : MBB->predecessors()) { + // Avoid going in circles. + if (!Visited.insert(Pred).second) + continue; + + VNI = searchForVNI(Indexes, LR, Pred, Visited); + if (VNI != nullptr) { + S.valno = VNI; + break; + } + } + + return VNI; +} + +static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) { + SmallPtrSet<const MachineBasicBlock*, 5> Visited; + + LiveRange::iterator OutIt; + VNInfo *PrevValNo = nullptr; + for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + LiveRange::Segment &S = *I; + // Determine final VNI if necessary. + if (S.valno == nullptr) { + // This can only happen at the begin of a basic block. + assert(S.start.isBlock() && "valno should only be missing at block begin"); + + Visited.clear(); + const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); + for (const MachineBasicBlock *Pred : MBB->predecessors()) { + VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited); + if (VNI != nullptr) { + S.valno = VNI; + break; + } + } + assert(S.valno != nullptr && "could not determine valno"); + } + // Merge with previous segment if it has the same VNI. + if (PrevValNo == S.valno && OutIt->end == S.start) { + OutIt->end = S.end; + } else { + // Didn't merge. Move OutIt to next segment. + if (PrevValNo == nullptr) + OutIt = LI.begin(); + else + ++OutIt; + + if (OutIt != I) + *OutIt = *I; + PrevValNo = S.valno; + } + } + // If we merged some segments chop off the end. + ++OutIt; + LI.segments.erase(OutIt, LI.end()); +} + +void LiveInterval::constructMainRangeFromSubranges( + const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { + // The basic observations on which this algorithm is based: + // - Each Def/ValNo in a subrange must have a corresponding def on the main + // range, but not further defs/valnos are necessary. + // - If any of the subranges is live at a point the main liverange has to be + // live too, conversily if no subrange is live the main range mustn't be + // live either. + // We do this by scannig through all the subranges simultaneously creating new + // segments in the main range as segments start/ends come up in the subranges. + assert(hasSubRanges() && "expected subranges to be present"); + assert(segments.empty() && valnos.empty() && "expected empty main range"); + + // Collect subrange, iterator pairs for the walk and determine first and last + // SlotIndex involved. + SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; + SlotIndex First; + SlotIndex Last; + for (const SubRange &SR : subranges()) { + if (SR.empty()) + continue; + SRs.push_back(std::make_pair(&SR, SR.begin())); + if (!First.isValid() || SR.segments.front().start < First) + First = SR.segments.front().start; + if (!Last.isValid() || SR.segments.back().end > Last) + Last = SR.segments.back().end; + } + + // Walk over all subranges simultaneously. + Segment CurrentSegment; + bool ConstructingSegment = false; + bool NeedVNIFixup = false; + unsigned ActiveMask = 0; + SlotIndex Pos = First; + while (true) { + SlotIndex NextPos = Last; + enum { + NOTHING, + BEGIN_SEGMENT, + END_SEGMENT, + } Event = NOTHING; + // Which subregister lanes are affected by the current event. + unsigned EventMask = 0; + // Whether a BEGIN_SEGMENT is also a valno definition point. + bool IsDef = false; + // Find the next begin or end of a subrange segment. Combine masks if we + // have multiple begins/ends at the same position. Ends take precedence over + // Begins. + for (auto &SRP : SRs) { + const SubRange &SR = *SRP.first; + const_iterator &I = SRP.second; + // Advance iterator of subrange to a segment involving Pos; the earlier + // segments are already merged at this point. + while (I != SR.end() && + (I->end < Pos || + (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) + ++I; + if (I == SR.end()) + continue; + if ((ActiveMask & SR.LaneMask) == 0 && + Pos <= I->start && I->start <= NextPos) { + // Merge multiple begins at the same position. + if (I->start == NextPos && Event == BEGIN_SEGMENT) { + EventMask |= SR.LaneMask; + IsDef |= I->valno->def == I->start; + } else if (I->start < NextPos || Event != END_SEGMENT) { + Event = BEGIN_SEGMENT; + NextPos = I->start; + EventMask = SR.LaneMask; + IsDef = I->valno->def == I->start; + } + } + if ((ActiveMask & SR.LaneMask) != 0 && + Pos <= I->end && I->end <= NextPos) { + // Merge multiple ends at the same position. + if (I->end == NextPos && Event == END_SEGMENT) + EventMask |= SR.LaneMask; + else { + Event = END_SEGMENT; + NextPos = I->end; + EventMask = SR.LaneMask; + } + } + } + + // Advance scan position. + Pos = NextPos; + if (Event == BEGIN_SEGMENT) { + if (ConstructingSegment && IsDef) { + // Finish previous segment because we have to start a new one. + CurrentSegment.end = Pos; + append(CurrentSegment); + ConstructingSegment = false; + } + + // Start a new segment if necessary. + if (!ConstructingSegment) { + // Determine value number for the segment. + VNInfo *VNI; + if (IsDef) { + VNI = getNextValue(Pos, VNIAllocator); + } else { + // We have to reuse an existing value number, if we are lucky + // then we already passed one of the predecessor blocks and determined + // its value number (with blocks in reverse postorder this would be + // always true but we have no such guarantee). + assert(Pos.isBlock()); + const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); + // See if any of the predecessor blocks has a lower number and a VNI + for (const MachineBasicBlock *Pred : MBB->predecessors()) { + SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); + VNI = getVNInfoBefore(PredEnd); + if (VNI != nullptr) + break; + } + // Def will come later: We have to do an extra fixup pass. + if (VNI == nullptr) + NeedVNIFixup = true; + } + + // In rare cases we can produce adjacent segments with the same value + // number (if they come from different subranges, but happen to have + // the same defining instruction). VNIFixup will fix those cases. + if (!empty() && segments.back().end == Pos && + segments.back().valno == VNI) + NeedVNIFixup = true; + CurrentSegment.start = Pos; + CurrentSegment.valno = VNI; + ConstructingSegment = true; + } + ActiveMask |= EventMask; + } else if (Event == END_SEGMENT) { + assert(ConstructingSegment); + // Finish segment if no lane is active anymore. + ActiveMask &= ~EventMask; + if (ActiveMask == 0) { + CurrentSegment.end = Pos; + append(CurrentSegment); + ConstructingSegment = false; + } + } else { + // We reached the end of the last subranges and can stop. + assert(Event == NOTHING); + break; + } + } + + // We might not be able to assign new valnos for all segments if the basic + // block containing the definition comes after a segment using the valno. + // Do a fixup pass for this uncommon case. + if (NeedVNIFixup) + determineMissingVNIs(Indexes, *this); + + assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended"); + verify(); +} + +unsigned LiveInterval::getSize() const { + unsigned Sum = 0; + for (const Segment &S : segments) + Sum += S.start.distance(S.end); + return Sum; +} + +raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { + return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LiveRange::Segment::dump() const { + dbgs() << *this << "\n"; +} +#endif + +void LiveRange::print(raw_ostream &OS) const { + if (empty()) + OS << "EMPTY"; + else { + for (const Segment &S : segments) { + OS << S; + assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); + } + } + + // Print value number info. + if (getNumValNums()) { + OS << " "; + unsigned vnum = 0; + for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; + ++i, ++vnum) { + const VNInfo *vni = *i; + if (vnum) OS << " "; + OS << vnum << "@"; + if (vni->isUnused()) { + OS << "x"; + } else { + OS << vni->def; + if (vni->isPHIDef()) + OS << "-phi"; + } + } + } +} + +void LiveInterval::print(raw_ostream &OS) const { + OS << PrintReg(reg) << ' '; + super::print(OS); + // Print subranges + for (const SubRange &SR : subranges()) { + OS << format(" L%04X ", SR.LaneMask) << SR; + } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LiveRange::dump() const { + dbgs() << *this << "\n"; +} + +void LiveInterval::dump() const { + dbgs() << *this << "\n"; +} +#endif + +#ifndef NDEBUG +void LiveRange::verify() const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + assert(I->start.isValid()); + assert(I->end.isValid()); + assert(I->start < I->end); + assert(I->valno != nullptr); + assert(I->valno->id < valnos.size()); + assert(I->valno == valnos[I->valno->id]); + if (std::next(I) != E) { + assert(I->end <= std::next(I)->start); + if (I->end == std::next(I)->start) + assert(I->valno != std::next(I)->valno); + } + } +} + +void LiveInterval::verify(const MachineRegisterInfo *MRI) const { + super::verify(); + + // Make sure SubRanges are fine and LaneMasks are disjunct. + unsigned Mask = 0; + unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; + for (const SubRange &SR : subranges()) { + // Subrange lanemask should be disjunct to any previous subrange masks. + assert((Mask & SR.LaneMask) == 0); + Mask |= SR.LaneMask; + + // subrange mask should not contained in maximum lane mask for the vreg. + assert((Mask & ~MaxMask) == 0); + + SR.verify(); + // Main liverange should cover subrange. + assert(covers(SR)); + } +} +#endif + + +//===----------------------------------------------------------------------===// +// LiveRangeUpdater class +//===----------------------------------------------------------------------===// +// +// The LiveRangeUpdater class always maintains these invariants: +// +// - When LastStart is invalid, Spills is empty and the iterators are invalid. +// This is the initial state, and the state created by flush(). +// In this state, isDirty() returns false. +// +// Otherwise, segments are kept in three separate areas: +// +// 1. [begin; WriteI) at the front of LR. +// 2. [ReadI; end) at the back of LR. +// 3. Spills. +// +// - LR.begin() <= WriteI <= ReadI <= LR.end(). +// - Segments in all three areas are fully ordered and coalesced. +// - Segments in area 1 precede and can't coalesce with segments in area 2. +// - Segments in Spills precede and can't coalesce with segments in area 2. +// - No coalescing is possible between segments in Spills and segments in area +// 1, and there are no overlapping segments. +// +// The segments in Spills are not ordered with respect to the segments in area +// 1. They need to be merged. +// +// When they exist, Spills.back().start <= LastStart, +// and WriteI[-1].start <= LastStart. + +void LiveRangeUpdater::print(raw_ostream &OS) const { + if (!isDirty()) { + if (LR) + OS << "Clean updater: " << *LR << '\n'; + else + OS << "Null updater.\n"; + return; + } + assert(LR && "Can't have null LR in dirty updater."); + OS << " updater with gap = " << (ReadI - WriteI) + << ", last start = " << LastStart + << ":\n Area 1:"; + for (const auto &S : make_range(LR->begin(), WriteI)) + OS << ' ' << S; + OS << "\n Spills:"; + for (unsigned I = 0, E = Spills.size(); I != E; ++I) + OS << ' ' << Spills[I]; + OS << "\n Area 2:"; + for (const auto &S : make_range(ReadI, LR->end())) + OS << ' ' << S; + OS << '\n'; +} + +void LiveRangeUpdater::dump() const +{ + print(errs()); +} + +// Determine if A and B should be coalesced. +static inline bool coalescable(const LiveRange::Segment &A, + const LiveRange::Segment &B) { + assert(A.start <= B.start && "Unordered live segments."); + if (A.end == B.start) + return A.valno == B.valno; + if (A.end < B.start) + return false; + assert(A.valno == B.valno && "Cannot overlap different values"); + return true; +} + +void LiveRangeUpdater::add(LiveRange::Segment Seg) { + assert(LR && "Cannot add to a null destination"); + + // Fall back to the regular add method if the live range + // is using the segment set instead of the segment vector. + if (LR->segmentSet != nullptr) { + LR->addSegmentToSet(Seg); + return; + } + + // Flush the state if Start moves backwards. + if (!LastStart.isValid() || LastStart > Seg.start) { + if (isDirty()) + flush(); + // This brings us to an uninitialized state. Reinitialize. + assert(Spills.empty() && "Leftover spilled segments"); + WriteI = ReadI = LR->begin(); + } + + // Remember start for next time. + LastStart = Seg.start; + + // Advance ReadI until it ends after Seg.start. + LiveRange::iterator E = LR->end(); + if (ReadI != E && ReadI->end <= Seg.start) { + // First try to close the gap between WriteI and ReadI with spills. + if (ReadI != WriteI) + mergeSpills(); + // Then advance ReadI. + if (ReadI == WriteI) + ReadI = WriteI = LR->find(Seg.start); + else + while (ReadI != E && ReadI->end <= Seg.start) + *WriteI++ = *ReadI++; + } + + assert(ReadI == E || ReadI->end > Seg.start); + + // Check if the ReadI segment begins early. + if (ReadI != E && ReadI->start <= Seg.start) { + assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); + // Bail if Seg is completely contained in ReadI. + if (ReadI->end >= Seg.end) + return; + // Coalesce into Seg. + Seg.start = ReadI->start; + ++ReadI; + } + + // Coalesce as much as possible from ReadI into Seg. + while (ReadI != E && coalescable(Seg, *ReadI)) { + Seg.end = std::max(Seg.end, ReadI->end); + ++ReadI; + } + + // Try coalescing Spills.back() into Seg. + if (!Spills.empty() && coalescable(Spills.back(), Seg)) { + Seg.start = Spills.back().start; + Seg.end = std::max(Spills.back().end, Seg.end); + Spills.pop_back(); + } + + // Try coalescing Seg into WriteI[-1]. + if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { + WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); + return; + } + + // Seg doesn't coalesce with anything, and needs to be inserted somewhere. + if (WriteI != ReadI) { + *WriteI++ = Seg; + return; + } + + // Finally, append to LR or Spills. + if (WriteI == E) { + LR->segments.push_back(Seg); + WriteI = ReadI = LR->end(); + } else + Spills.push_back(Seg); +} + +// Merge as many spilled segments as possible into the gap between WriteI +// and ReadI. Advance WriteI to reflect the inserted instructions. +void LiveRangeUpdater::mergeSpills() { + // Perform a backwards merge of Spills and [SpillI;WriteI). + size_t GapSize = ReadI - WriteI; + size_t NumMoved = std::min(Spills.size(), GapSize); + LiveRange::iterator Src = WriteI; + LiveRange::iterator Dst = Src + NumMoved; + LiveRange::iterator SpillSrc = Spills.end(); + LiveRange::iterator B = LR->begin(); + + // This is the new WriteI position after merging spills. + WriteI = Dst; + + // Now merge Src and Spills backwards. + while (Src != Dst) { + if (Src != B && Src[-1].start > SpillSrc[-1].start) + *--Dst = *--Src; + else + *--Dst = *--SpillSrc; + } + assert(NumMoved == size_t(Spills.end() - SpillSrc)); + Spills.erase(SpillSrc, Spills.end()); +} + +void LiveRangeUpdater::flush() { + if (!isDirty()) + return; + // Clear the dirty state. + LastStart = SlotIndex(); + + assert(LR && "Cannot add to a null destination"); + + // Nothing to merge? + if (Spills.empty()) { + LR->segments.erase(WriteI, ReadI); + LR->verify(); + return; + } + + // Resize the WriteI - ReadI gap to match Spills. + size_t GapSize = ReadI - WriteI; + if (GapSize < Spills.size()) { + // The gap is too small. Make some room. + size_t WritePos = WriteI - LR->begin(); + LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); + // This also invalidated ReadI, but it is recomputed below. + WriteI = LR->begin() + WritePos; + } else { + // Shrink the gap if necessary. + LR->segments.erase(WriteI + Spills.size(), ReadI); + } + ReadI = WriteI + Spills.size(); + mergeSpills(); + LR->verify(); +} + +unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { + // Create initial equivalence classes. + EqClass.clear(); + EqClass.grow(LI->getNumValNums()); + + const VNInfo *used = nullptr, *unused = nullptr; + + // Determine connections. + for (const VNInfo *VNI : LI->valnos) { + // Group all unused values into one class. + if (VNI->isUnused()) { + if (unused) + EqClass.join(unused->id, VNI->id); + unused = VNI; + continue; + } + used = VNI; + if (VNI->isPHIDef()) { + const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); + assert(MBB && "Phi-def has no defining MBB"); + // Connect to values live out of predecessors. + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) + if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) + EqClass.join(VNI->id, PVNI->id); + } else { + // Normal value defined by an instruction. Check for two-addr redef. + // FIXME: This could be coincidental. Should we really check for a tied + // operand constraint? + // Note that VNI->def may be a use slot for an early clobber def. + if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) + EqClass.join(VNI->id, UVNI->id); + } + } + + // Lump all the unused values in with the last used value. + if (used && unused) + EqClass.join(used->id, unused->id); + + EqClass.compress(); + return EqClass.getNumClasses(); +} + +void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], + MachineRegisterInfo &MRI) { + assert(LIV[0] && "LIV[0] must be set"); + LiveInterval &LI = *LIV[0]; + + // Rewrite instructions. + for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), + RE = MRI.reg_end(); RI != RE;) { + MachineOperand &MO = *RI; + MachineInstr *MI = RI->getParent(); + ++RI; + // DBG_VALUE instructions don't have slot indexes, so get the index of the + // instruction before them. + // Normally, DBG_VALUE instructions are removed before this function is + // called, but it is not a requirement. + SlotIndex Idx; + if (MI->isDebugValue()) + Idx = LIS.getSlotIndexes()->getIndexBefore(MI); + else + Idx = LIS.getInstructionIndex(MI); + LiveQueryResult LRQ = LI.Query(Idx); + const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); + // In the case of an <undef> use that isn't tied to any def, VNI will be + // NULL. If the use is tied to a def, VNI will be the defined value. + if (!VNI) + continue; + MO.setReg(LIV[getEqClass(VNI)]->reg); + } + + // Move runs to new intervals. + LiveInterval::iterator J = LI.begin(), E = LI.end(); + while (J != E && EqClass[J->valno->id] == 0) + ++J; + for (LiveInterval::iterator I = J; I != E; ++I) { + if (unsigned eq = EqClass[I->valno->id]) { + assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && + "New intervals should be empty"); + LIV[eq]->segments.push_back(*I); + } else + *J++ = *I; + } + // TODO: do not cheat anymore by simply cleaning all subranges + LI.clearSubRanges(); + LI.segments.erase(J, E); + + // Transfer VNInfos to their new owners and renumber them. + unsigned j = 0, e = LI.getNumValNums(); + while (j != e && EqClass[j] == 0) + ++j; + for (unsigned i = j; i != e; ++i) { + VNInfo *VNI = LI.getValNumInfo(i); + if (unsigned eq = EqClass[i]) { + VNI->id = LIV[eq]->getNumValNums(); + LIV[eq]->valnos.push_back(VNI); + } else { + VNI->id = j; + LI.valnos[j++] = VNI; + } + } + LI.valnos.resize(j); +} |