summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/InlineSpiller.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/InlineSpiller.cpp1293
1 files changed, 1293 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/InlineSpiller.cpp b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
new file mode 100644
index 0000000..d5ea666
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
@@ -0,0 +1,1293 @@
+//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The inline spiller modifies the machine function directly instead of
+// inserting spills and restores in VirtRegMap.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "Spiller.h"
+#include "VirtRegMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
+STATISTIC(NumSnippets, "Number of spilled snippets");
+STATISTIC(NumSpills, "Number of spills inserted");
+STATISTIC(NumSpillsRemoved, "Number of spills removed");
+STATISTIC(NumReloads, "Number of reloads inserted");
+STATISTIC(NumReloadsRemoved, "Number of reloads removed");
+STATISTIC(NumFolded, "Number of folded stack accesses");
+STATISTIC(NumFoldedLoads, "Number of folded loads");
+STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
+STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
+STATISTIC(NumHoists, "Number of hoisted spills");
+
+static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
+ cl::desc("Disable inline spill hoisting"));
+
+namespace {
+class InlineSpiller : public Spiller {
+ MachineFunctionPass &Pass;
+ MachineFunction &MF;
+ LiveIntervals &LIS;
+ LiveStacks &LSS;
+ AliasAnalysis *AA;
+ MachineDominatorTree &MDT;
+ MachineLoopInfo &Loops;
+ VirtRegMap &VRM;
+ MachineFrameInfo &MFI;
+ MachineRegisterInfo &MRI;
+ const TargetInstrInfo &TII;
+ const TargetRegisterInfo &TRI;
+
+ // Variables that are valid during spill(), but used by multiple methods.
+ LiveRangeEdit *Edit;
+ LiveInterval *StackInt;
+ int StackSlot;
+ unsigned Original;
+
+ // All registers to spill to StackSlot, including the main register.
+ SmallVector<unsigned, 8> RegsToSpill;
+
+ // All COPY instructions to/from snippets.
+ // They are ignored since both operands refer to the same stack slot.
+ SmallPtrSet<MachineInstr*, 8> SnippetCopies;
+
+ // Values that failed to remat at some point.
+ SmallPtrSet<VNInfo*, 8> UsedValues;
+
+public:
+ // Information about a value that was defined by a copy from a sibling
+ // register.
+ struct SibValueInfo {
+ // True when all reaching defs were reloads: No spill is necessary.
+ bool AllDefsAreReloads;
+
+ // True when value is defined by an original PHI not from splitting.
+ bool DefByOrigPHI;
+
+ // True when the COPY defining this value killed its source.
+ bool KillsSource;
+
+ // The preferred register to spill.
+ unsigned SpillReg;
+
+ // The value of SpillReg that should be spilled.
+ VNInfo *SpillVNI;
+
+ // The block where SpillVNI should be spilled. Currently, this must be the
+ // block containing SpillVNI->def.
+ MachineBasicBlock *SpillMBB;
+
+ // A defining instruction that is not a sibling copy or a reload, or NULL.
+ // This can be used as a template for rematerialization.
+ MachineInstr *DefMI;
+
+ // List of values that depend on this one. These values are actually the
+ // same, but live range splitting has placed them in different registers,
+ // or SSA update needed to insert PHI-defs to preserve SSA form. This is
+ // copies of the current value and phi-kills. Usually only phi-kills cause
+ // more than one dependent value.
+ TinyPtrVector<VNInfo*> Deps;
+
+ SibValueInfo(unsigned Reg, VNInfo *VNI)
+ : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
+ SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
+
+ // Returns true when a def has been found.
+ bool hasDef() const { return DefByOrigPHI || DefMI; }
+ };
+
+private:
+ // Values in RegsToSpill defined by sibling copies.
+ typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
+ SibValueMap SibValues;
+
+ // Dead defs generated during spilling.
+ SmallVector<MachineInstr*, 8> DeadDefs;
+
+ ~InlineSpiller() {}
+
+public:
+ InlineSpiller(MachineFunctionPass &pass,
+ MachineFunction &mf,
+ VirtRegMap &vrm)
+ : Pass(pass),
+ MF(mf),
+ LIS(pass.getAnalysis<LiveIntervals>()),
+ LSS(pass.getAnalysis<LiveStacks>()),
+ AA(&pass.getAnalysis<AliasAnalysis>()),
+ MDT(pass.getAnalysis<MachineDominatorTree>()),
+ Loops(pass.getAnalysis<MachineLoopInfo>()),
+ VRM(vrm),
+ MFI(*mf.getFrameInfo()),
+ MRI(mf.getRegInfo()),
+ TII(*mf.getTarget().getInstrInfo()),
+ TRI(*mf.getTarget().getRegisterInfo()) {}
+
+ void spill(LiveRangeEdit &);
+
+private:
+ bool isSnippet(const LiveInterval &SnipLI);
+ void collectRegsToSpill();
+
+ bool isRegToSpill(unsigned Reg) {
+ return std::find(RegsToSpill.begin(),
+ RegsToSpill.end(), Reg) != RegsToSpill.end();
+ }
+
+ bool isSibling(unsigned Reg);
+ MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
+ void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
+ void analyzeSiblingValues();
+
+ bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
+ void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
+
+ void markValueUsed(LiveInterval*, VNInfo*);
+ bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
+ void reMaterializeAll();
+
+ bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
+ bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
+ MachineInstr *LoadMI = 0);
+ void insertReload(LiveInterval &NewLI, SlotIndex,
+ MachineBasicBlock::iterator MI);
+ void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
+ SlotIndex, MachineBasicBlock::iterator MI);
+
+ void spillAroundUses(unsigned Reg);
+ void spillAll();
+};
+}
+
+namespace llvm {
+Spiller *createInlineSpiller(MachineFunctionPass &pass,
+ MachineFunction &mf,
+ VirtRegMap &vrm) {
+ return new InlineSpiller(pass, mf, vrm);
+}
+}
+
+//===----------------------------------------------------------------------===//
+// Snippets
+//===----------------------------------------------------------------------===//
+
+// When spilling a virtual register, we also spill any snippets it is connected
+// to. The snippets are small live ranges that only have a single real use,
+// leftovers from live range splitting. Spilling them enables memory operand
+// folding or tightens the live range around the single use.
+//
+// This minimizes register pressure and maximizes the store-to-load distance for
+// spill slots which can be important in tight loops.
+
+/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
+/// otherwise return 0.
+static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
+ if (!MI->isFullCopy())
+ return 0;
+ if (MI->getOperand(0).getReg() == Reg)
+ return MI->getOperand(1).getReg();
+ if (MI->getOperand(1).getReg() == Reg)
+ return MI->getOperand(0).getReg();
+ return 0;
+}
+
+/// isSnippet - Identify if a live interval is a snippet that should be spilled.
+/// It is assumed that SnipLI is a virtual register with the same original as
+/// Edit->getReg().
+bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
+ unsigned Reg = Edit->getReg();
+
+ // A snippet is a tiny live range with only a single instruction using it
+ // besides copies to/from Reg or spills/fills. We accept:
+ //
+ // %snip = COPY %Reg / FILL fi#
+ // %snip = USE %snip
+ // %Reg = COPY %snip / SPILL %snip, fi#
+ //
+ if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
+ return false;
+
+ MachineInstr *UseMI = 0;
+
+ // Check that all uses satisfy our criteria.
+ for (MachineRegisterInfo::reg_nodbg_iterator
+ RI = MRI.reg_nodbg_begin(SnipLI.reg);
+ MachineInstr *MI = RI.skipInstruction();) {
+
+ // Allow copies to/from Reg.
+ if (isFullCopyOf(MI, Reg))
+ continue;
+
+ // Allow stack slot loads.
+ int FI;
+ if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
+ continue;
+
+ // Allow stack slot stores.
+ if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
+ continue;
+
+ // Allow a single additional instruction.
+ if (UseMI && MI != UseMI)
+ return false;
+ UseMI = MI;
+ }
+ return true;
+}
+
+/// collectRegsToSpill - Collect live range snippets that only have a single
+/// real use.
+void InlineSpiller::collectRegsToSpill() {
+ unsigned Reg = Edit->getReg();
+
+ // Main register always spills.
+ RegsToSpill.assign(1, Reg);
+ SnippetCopies.clear();
+
+ // Snippets all have the same original, so there can't be any for an original
+ // register.
+ if (Original == Reg)
+ return;
+
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
+ MachineInstr *MI = RI.skipInstruction();) {
+ unsigned SnipReg = isFullCopyOf(MI, Reg);
+ if (!isSibling(SnipReg))
+ continue;
+ LiveInterval &SnipLI = LIS.getInterval(SnipReg);
+ if (!isSnippet(SnipLI))
+ continue;
+ SnippetCopies.insert(MI);
+ if (isRegToSpill(SnipReg))
+ continue;
+ RegsToSpill.push_back(SnipReg);
+ DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
+ ++NumSnippets;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Sibling Values
+//===----------------------------------------------------------------------===//
+
+// After live range splitting, some values to be spilled may be defined by
+// copies from sibling registers. We trace the sibling copies back to the
+// original value if it still exists. We need it for rematerialization.
+//
+// Even when the value can't be rematerialized, we still want to determine if
+// the value has already been spilled, or we may want to hoist the spill from a
+// loop.
+
+bool InlineSpiller::isSibling(unsigned Reg) {
+ return TargetRegisterInfo::isVirtualRegister(Reg) &&
+ VRM.getOriginal(Reg) == Original;
+}
+
+#ifndef NDEBUG
+static raw_ostream &operator<<(raw_ostream &OS,
+ const InlineSpiller::SibValueInfo &SVI) {
+ OS << "spill " << PrintReg(SVI.SpillReg) << ':'
+ << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
+ if (SVI.SpillMBB)
+ OS << " in BB#" << SVI.SpillMBB->getNumber();
+ if (SVI.AllDefsAreReloads)
+ OS << " all-reloads";
+ if (SVI.DefByOrigPHI)
+ OS << " orig-phi";
+ if (SVI.KillsSource)
+ OS << " kill";
+ OS << " deps[";
+ for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
+ OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
+ OS << " ]";
+ if (SVI.DefMI)
+ OS << " def: " << *SVI.DefMI;
+ else
+ OS << '\n';
+ return OS;
+}
+#endif
+
+/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
+/// known. Otherwise remember the dependency for later.
+///
+/// @param SVI SibValues entry to propagate.
+/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
+void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
+ VNInfo *VNI) {
+ // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
+ TinyPtrVector<VNInfo*> FirstDeps;
+ if (VNI) {
+ FirstDeps.push_back(VNI);
+ SVI->second.Deps.push_back(VNI);
+ }
+
+ // Has the value been completely determined yet? If not, defer propagation.
+ if (!SVI->second.hasDef())
+ return;
+
+ // Work list of values to propagate. It would be nice to use a SetVector
+ // here, but then we would be forced to use a SmallSet.
+ SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
+ SmallPtrSet<VNInfo*, 8> WorkSet;
+
+ do {
+ SVI = WorkList.pop_back_val();
+ WorkSet.erase(SVI->first);
+ TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
+ VNI = 0;
+
+ SibValueInfo &SV = SVI->second;
+ if (!SV.SpillMBB)
+ SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
+
+ DEBUG(dbgs() << " prop to " << Deps->size() << ": "
+ << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
+
+ assert(SV.hasDef() && "Propagating undefined value");
+
+ // Should this value be propagated as a preferred spill candidate? We don't
+ // propagate values of registers that are about to spill.
+ bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
+ unsigned SpillDepth = ~0u;
+
+ for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
+ DepE = Deps->end(); DepI != DepE; ++DepI) {
+ SibValueMap::iterator DepSVI = SibValues.find(*DepI);
+ assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
+ SibValueInfo &DepSV = DepSVI->second;
+ if (!DepSV.SpillMBB)
+ DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
+
+ bool Changed = false;
+
+ // Propagate defining instruction.
+ if (!DepSV.hasDef()) {
+ Changed = true;
+ DepSV.DefMI = SV.DefMI;
+ DepSV.DefByOrigPHI = SV.DefByOrigPHI;
+ }
+
+ // Propagate AllDefsAreReloads. For PHI values, this computes an AND of
+ // all predecessors.
+ if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
+ Changed = true;
+ DepSV.AllDefsAreReloads = false;
+ }
+
+ // Propagate best spill value.
+ if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
+ if (SV.SpillMBB == DepSV.SpillMBB) {
+ // DepSV is in the same block. Hoist when dominated.
+ if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
+ // This is an alternative def earlier in the same MBB.
+ // Hoist the spill as far as possible in SpillMBB. This can ease
+ // register pressure:
+ //
+ // x = def
+ // y = use x
+ // s = copy x
+ //
+ // Hoisting the spill of s to immediately after the def removes the
+ // interference between x and y:
+ //
+ // x = def
+ // spill x
+ // y = use x<kill>
+ //
+ // This hoist only helps when the DepSV copy kills its source.
+ Changed = true;
+ DepSV.SpillReg = SV.SpillReg;
+ DepSV.SpillVNI = SV.SpillVNI;
+ DepSV.SpillMBB = SV.SpillMBB;
+ }
+ } else {
+ // DepSV is in a different block.
+ if (SpillDepth == ~0u)
+ SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
+
+ // Also hoist spills to blocks with smaller loop depth, but make sure
+ // that the new value dominates. Non-phi dependents are always
+ // dominated, phis need checking.
+ if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
+ (!DepSVI->first->isPHIDef() ||
+ MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
+ Changed = true;
+ DepSV.SpillReg = SV.SpillReg;
+ DepSV.SpillVNI = SV.SpillVNI;
+ DepSV.SpillMBB = SV.SpillMBB;
+ }
+ }
+ }
+
+ if (!Changed)
+ continue;
+
+ // Something changed in DepSVI. Propagate to dependents.
+ if (WorkSet.insert(DepSVI->first))
+ WorkList.push_back(DepSVI);
+
+ DEBUG(dbgs() << " update " << DepSVI->first->id << '@'
+ << DepSVI->first->def << " to:\t" << DepSV);
+ }
+ } while (!WorkList.empty());
+}
+
+/// traceSiblingValue - Trace a value that is about to be spilled back to the
+/// real defining instructions by looking through sibling copies. Always stay
+/// within the range of OrigVNI so the registers are known to carry the same
+/// value.
+///
+/// Determine if the value is defined by all reloads, so spilling isn't
+/// necessary - the value is already in the stack slot.
+///
+/// Return a defining instruction that may be a candidate for rematerialization.
+///
+MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
+ VNInfo *OrigVNI) {
+ // Check if a cached value already exists.
+ SibValueMap::iterator SVI;
+ bool Inserted;
+ tie(SVI, Inserted) =
+ SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
+ if (!Inserted) {
+ DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
+ << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
+ return SVI->second.DefMI;
+ }
+
+ DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
+ << UseVNI->id << '@' << UseVNI->def << '\n');
+
+ // List of (Reg, VNI) that have been inserted into SibValues, but need to be
+ // processed.
+ SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
+ WorkList.push_back(std::make_pair(UseReg, UseVNI));
+
+ do {
+ unsigned Reg;
+ VNInfo *VNI;
+ tie(Reg, VNI) = WorkList.pop_back_val();
+ DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
+ << ":\t");
+
+ // First check if this value has already been computed.
+ SVI = SibValues.find(VNI);
+ assert(SVI != SibValues.end() && "Missing SibValues entry");
+
+ // Trace through PHI-defs created by live range splitting.
+ if (VNI->isPHIDef()) {
+ // Stop at original PHIs. We don't know the value at the predecessors.
+ if (VNI->def == OrigVNI->def) {
+ DEBUG(dbgs() << "orig phi value\n");
+ SVI->second.DefByOrigPHI = true;
+ SVI->second.AllDefsAreReloads = false;
+ propagateSiblingValue(SVI);
+ continue;
+ }
+
+ // This is a PHI inserted by live range splitting. We could trace the
+ // live-out value from predecessor blocks, but that search can be very
+ // expensive if there are many predecessors and many more PHIs as
+ // generated by tail-dup when it sees an indirectbr. Instead, look at
+ // all the non-PHI defs that have the same value as OrigVNI. They must
+ // jointly dominate VNI->def. This is not optimal since VNI may actually
+ // be jointly dominated by a smaller subset of defs, so there is a change
+ // we will miss a AllDefsAreReloads optimization.
+
+ // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
+ SmallVector<VNInfo*, 8> PHIs, NonPHIs;
+ LiveInterval &LI = LIS.getInterval(Reg);
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+
+ for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
+ VI != VE; ++VI) {
+ VNInfo *VNI2 = *VI;
+ if (VNI2->isUnused())
+ continue;
+ if (!OrigLI.containsOneValue() &&
+ OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
+ continue;
+ if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
+ PHIs.push_back(VNI2);
+ else
+ NonPHIs.push_back(VNI2);
+ }
+ DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
+ << " phi-defs, and " << NonPHIs.size()
+ << " non-phi/orig defs\n");
+
+ // Create entries for all the PHIs. Don't add them to the worklist, we
+ // are processing all of them in one go here.
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+ SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
+
+ // Add every PHI as a dependent of all the non-PHIs.
+ for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
+ VNInfo *NonPHI = NonPHIs[i];
+ // Known value? Try an insertion.
+ tie(SVI, Inserted) =
+ SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
+ // Add all the PHIs as dependents of NonPHI.
+ for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
+ SVI->second.Deps.push_back(PHIs[pi]);
+ // This is the first time we see NonPHI, add it to the worklist.
+ if (Inserted)
+ WorkList.push_back(std::make_pair(Reg, NonPHI));
+ else
+ // Propagate to all inserted PHIs, not just VNI.
+ propagateSiblingValue(SVI);
+ }
+
+ // Next work list item.
+ continue;
+ }
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
+ assert(MI && "Missing def");
+
+ // Trace through sibling copies.
+ if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
+ if (isSibling(SrcReg)) {
+ LiveInterval &SrcLI = LIS.getInterval(SrcReg);
+ LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getRegSlot(true));
+ assert(SrcLR && "Copy from non-existing value");
+ // Check if this COPY kills its source.
+ SVI->second.KillsSource = (SrcLR->end == VNI->def);
+ VNInfo *SrcVNI = SrcLR->valno;
+ DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
+ << SrcVNI->id << '@' << SrcVNI->def
+ << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
+ // Known sibling source value? Try an insertion.
+ tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
+ SibValueInfo(SrcReg, SrcVNI)));
+ // This is the first time we see Src, add it to the worklist.
+ if (Inserted)
+ WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
+ propagateSiblingValue(SVI, VNI);
+ // Next work list item.
+ continue;
+ }
+ }
+
+ // Track reachable reloads.
+ SVI->second.DefMI = MI;
+ SVI->second.SpillMBB = MI->getParent();
+ int FI;
+ if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
+ DEBUG(dbgs() << "reload\n");
+ propagateSiblingValue(SVI);
+ // Next work list item.
+ continue;
+ }
+
+ // Potential remat candidate.
+ DEBUG(dbgs() << "def " << *MI);
+ SVI->second.AllDefsAreReloads = false;
+ propagateSiblingValue(SVI);
+ } while (!WorkList.empty());
+
+ // Look up the value we were looking for. We already did this lokup at the
+ // top of the function, but SibValues may have been invalidated.
+ SVI = SibValues.find(UseVNI);
+ assert(SVI != SibValues.end() && "Didn't compute requested info");
+ DEBUG(dbgs() << " traced to:\t" << SVI->second);
+ return SVI->second.DefMI;
+}
+
+/// analyzeSiblingValues - Trace values defined by sibling copies back to
+/// something that isn't a sibling copy.
+///
+/// Keep track of values that may be rematerializable.
+void InlineSpiller::analyzeSiblingValues() {
+ SibValues.clear();
+
+ // No siblings at all?
+ if (Edit->getReg() == Original)
+ return;
+
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
+ unsigned Reg = RegsToSpill[i];
+ LiveInterval &LI = LIS.getInterval(Reg);
+ for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
+ VE = LI.vni_end(); VI != VE; ++VI) {
+ VNInfo *VNI = *VI;
+ if (VNI->isUnused())
+ continue;
+ MachineInstr *DefMI = 0;
+ if (!VNI->isPHIDef()) {
+ DefMI = LIS.getInstructionFromIndex(VNI->def);
+ assert(DefMI && "No defining instruction");
+ }
+ // Check possible sibling copies.
+ if (VNI->isPHIDef() || DefMI->isCopy()) {
+ VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
+ assert(OrigVNI && "Def outside original live range");
+ if (OrigVNI->def != VNI->def)
+ DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
+ }
+ if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
+ DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
+ << VNI->def << " may remat from " << *DefMI);
+ }
+ }
+ }
+}
+
+/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
+/// a spill at a better location.
+bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
+ SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
+ VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
+ assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
+ SibValueMap::iterator I = SibValues.find(VNI);
+ if (I == SibValues.end())
+ return false;
+
+ const SibValueInfo &SVI = I->second;
+
+ // Let the normal folding code deal with the boring case.
+ if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
+ return false;
+
+ // SpillReg may have been deleted by remat and DCE.
+ if (!LIS.hasInterval(SVI.SpillReg)) {
+ DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
+ SibValues.erase(I);
+ return false;
+ }
+
+ LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
+ if (!SibLI.containsValue(SVI.SpillVNI)) {
+ DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
+ SibValues.erase(I);
+ return false;
+ }
+
+ // Conservatively extend the stack slot range to the range of the original
+ // value. We may be able to do better with stack slot coloring by being more
+ // careful here.
+ assert(StackInt && "No stack slot assigned yet.");
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+ VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
+ StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
+ DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
+ << *StackInt << '\n');
+
+ // Already spilled everywhere.
+ if (SVI.AllDefsAreReloads) {
+ DEBUG(dbgs() << "\tno spill needed: " << SVI);
+ ++NumOmitReloadSpill;
+ return true;
+ }
+ // We are going to spill SVI.SpillVNI immediately after its def, so clear out
+ // any later spills of the same value.
+ eliminateRedundantSpills(SibLI, SVI.SpillVNI);
+
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
+ MachineBasicBlock::iterator MII;
+ if (SVI.SpillVNI->isPHIDef())
+ MII = MBB->SkipPHIsAndLabels(MBB->begin());
+ else {
+ MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
+ assert(DefMI && "Defining instruction disappeared");
+ MII = DefMI;
+ ++MII;
+ }
+ // Insert spill without kill flag immediately after def.
+ TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
+ MRI.getRegClass(SVI.SpillReg), &TRI);
+ --MII; // Point to store instruction.
+ LIS.InsertMachineInstrInMaps(MII);
+ DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
+
+ ++NumSpills;
+ ++NumHoists;
+ return true;
+}
+
+/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
+/// redundant spills of this value in SLI.reg and sibling copies.
+void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
+ assert(VNI && "Missing value");
+ SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
+ WorkList.push_back(std::make_pair(&SLI, VNI));
+ assert(StackInt && "No stack slot assigned yet.");
+
+ do {
+ LiveInterval *LI;
+ tie(LI, VNI) = WorkList.pop_back_val();
+ unsigned Reg = LI->reg;
+ DEBUG(dbgs() << "Checking redundant spills for "
+ << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
+
+ // Regs to spill are taken care of.
+ if (isRegToSpill(Reg))
+ continue;
+
+ // Add all of VNI's live range to StackInt.
+ StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
+ DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
+
+ // Find all spills and copies of VNI.
+ for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
+ MachineInstr *MI = UI.skipInstruction();) {
+ if (!MI->isCopy() && !MI->mayStore())
+ continue;
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ if (LI->getVNInfoAt(Idx) != VNI)
+ continue;
+
+ // Follow sibling copies down the dominator tree.
+ if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
+ if (isSibling(DstReg)) {
+ LiveInterval &DstLI = LIS.getInterval(DstReg);
+ VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
+ assert(DstVNI && "Missing defined value");
+ assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
+ WorkList.push_back(std::make_pair(&DstLI, DstVNI));
+ }
+ continue;
+ }
+
+ // Erase spills.
+ int FI;
+ if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
+ DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
+ // eliminateDeadDefs won't normally remove stores, so switch opcode.
+ MI->setDesc(TII.get(TargetOpcode::KILL));
+ DeadDefs.push_back(MI);
+ ++NumSpillsRemoved;
+ --NumSpills;
+ }
+ }
+ } while (!WorkList.empty());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Rematerialization
+//===----------------------------------------------------------------------===//
+
+/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
+/// instruction cannot be eliminated. See through snippet copies
+void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
+ SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
+ WorkList.push_back(std::make_pair(LI, VNI));
+ do {
+ tie(LI, VNI) = WorkList.pop_back_val();
+ if (!UsedValues.insert(VNI))
+ continue;
+
+ if (VNI->isPHIDef()) {
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
+ if (PVNI)
+ WorkList.push_back(std::make_pair(LI, PVNI));
+ }
+ continue;
+ }
+
+ // Follow snippet copies.
+ MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
+ if (!SnippetCopies.count(MI))
+ continue;
+ LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
+ assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
+ VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
+ assert(SnipVNI && "Snippet undefined before copy");
+ WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
+ } while (!WorkList.empty());
+}
+
+/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
+bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
+ MachineBasicBlock::iterator MI) {
+ SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
+ VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
+
+ if (!ParentVNI) {
+ DEBUG(dbgs() << "\tadding <undef> flags: ");
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
+ MO.setIsUndef();
+ }
+ DEBUG(dbgs() << UseIdx << '\t' << *MI);
+ return true;
+ }
+
+ if (SnippetCopies.count(MI))
+ return false;
+
+ // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
+ LiveRangeEdit::Remat RM(ParentVNI);
+ SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
+ if (SibI != SibValues.end())
+ RM.OrigMI = SibI->second.DefMI;
+ if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
+ markValueUsed(&VirtReg, ParentVNI);
+ DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
+ return false;
+ }
+
+ // If the instruction also writes VirtReg.reg, it had better not require the
+ // same register for uses and defs.
+ SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
+ MIBundleOperands::RegInfo RI =
+ MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
+ if (RI.Tied) {
+ markValueUsed(&VirtReg, ParentVNI);
+ DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
+ return false;
+ }
+
+ // Before rematerializing into a register for a single instruction, try to
+ // fold a load into the instruction. That avoids allocating a new register.
+ if (RM.OrigMI->canFoldAsLoad() &&
+ foldMemoryOperand(Ops, RM.OrigMI)) {
+ Edit->markRematerialized(RM.ParentVNI);
+ ++NumFoldedLoads;
+ return true;
+ }
+
+ // Alocate a new register for the remat.
+ LiveInterval &NewLI = Edit->createFrom(Original);
+ NewLI.markNotSpillable();
+
+ // Finally we can rematerialize OrigMI before MI.
+ SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
+ TRI);
+ DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
+ << *LIS.getInstructionFromIndex(DefIdx));
+
+ // Replace operands
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(Ops[i].second);
+ if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
+ MO.setReg(NewLI.reg);
+ MO.setIsKill();
+ }
+ }
+ DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
+
+ VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
+ NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
+ DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
+ ++NumRemats;
+ return true;
+}
+
+/// reMaterializeAll - Try to rematerialize as many uses as possible,
+/// and trim the live ranges after.
+void InlineSpiller::reMaterializeAll() {
+ // analyzeSiblingValues has already tested all relevant defining instructions.
+ if (!Edit->anyRematerializable(AA))
+ return;
+
+ UsedValues.clear();
+
+ // Try to remat before all uses of snippets.
+ bool anyRemat = false;
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
+ unsigned Reg = RegsToSpill[i];
+ LiveInterval &LI = LIS.getInterval(Reg);
+ for (MachineRegisterInfo::use_nodbg_iterator
+ RI = MRI.use_nodbg_begin(Reg);
+ MachineInstr *MI = RI.skipBundle();)
+ anyRemat |= reMaterializeFor(LI, MI);
+ }
+ if (!anyRemat)
+ return;
+
+ // Remove any values that were completely rematted.
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
+ unsigned Reg = RegsToSpill[i];
+ LiveInterval &LI = LIS.getInterval(Reg);
+ for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
+ continue;
+ MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
+ MI->addRegisterDead(Reg, &TRI);
+ if (!MI->allDefsAreDead())
+ continue;
+ DEBUG(dbgs() << "All defs dead: " << *MI);
+ DeadDefs.push_back(MI);
+ }
+ }
+
+ // Eliminate dead code after remat. Note that some snippet copies may be
+ // deleted here.
+ if (DeadDefs.empty())
+ return;
+ DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
+ Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
+
+ // Get rid of deleted and empty intervals.
+ for (unsigned i = RegsToSpill.size(); i != 0; --i) {
+ unsigned Reg = RegsToSpill[i-1];
+ if (!LIS.hasInterval(Reg)) {
+ RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
+ continue;
+ }
+ LiveInterval &LI = LIS.getInterval(Reg);
+ if (!LI.empty())
+ continue;
+ Edit->eraseVirtReg(Reg);
+ RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
+ }
+ DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Spilling
+//===----------------------------------------------------------------------===//
+
+/// If MI is a load or store of StackSlot, it can be removed.
+bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
+ int FI = 0;
+ unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
+ bool IsLoad = InstrReg;
+ if (!IsLoad)
+ InstrReg = TII.isStoreToStackSlot(MI, FI);
+
+ // We have a stack access. Is it the right register and slot?
+ if (InstrReg != Reg || FI != StackSlot)
+ return false;
+
+ DEBUG(dbgs() << "Coalescing stack access: " << *MI);
+ LIS.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+
+ if (IsLoad) {
+ ++NumReloadsRemoved;
+ --NumReloads;
+ } else {
+ ++NumSpillsRemoved;
+ --NumSpills;
+ }
+
+ return true;
+}
+
+/// foldMemoryOperand - Try folding stack slot references in Ops into their
+/// instructions.
+///
+/// @param Ops Operand indices from analyzeVirtReg().
+/// @param LoadMI Load instruction to use instead of stack slot when non-null.
+/// @return True on success.
+bool InlineSpiller::
+foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
+ MachineInstr *LoadMI) {
+ if (Ops.empty())
+ return false;
+ // Don't attempt folding in bundles.
+ MachineInstr *MI = Ops.front().first;
+ if (Ops.back().first != MI || MI->isBundled())
+ return false;
+
+ bool WasCopy = MI->isCopy();
+ unsigned ImpReg = 0;
+
+ // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
+ // operands.
+ SmallVector<unsigned, 8> FoldOps;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ unsigned Idx = Ops[i].second;
+ MachineOperand &MO = MI->getOperand(Idx);
+ if (MO.isImplicit()) {
+ ImpReg = MO.getReg();
+ continue;
+ }
+ // FIXME: Teach targets to deal with subregs.
+ if (MO.getSubReg())
+ return false;
+ // We cannot fold a load instruction into a def.
+ if (LoadMI && MO.isDef())
+ return false;
+ // Tied use operands should not be passed to foldMemoryOperand.
+ if (!MI->isRegTiedToDefOperand(Idx))
+ FoldOps.push_back(Idx);
+ }
+
+ MachineInstr *FoldMI =
+ LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
+ : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
+ if (!FoldMI)
+ return false;
+ LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
+ MI->eraseFromParent();
+
+ // TII.foldMemoryOperand may have left some implicit operands on the
+ // instruction. Strip them.
+ if (ImpReg)
+ for (unsigned i = FoldMI->getNumOperands(); i; --i) {
+ MachineOperand &MO = FoldMI->getOperand(i - 1);
+ if (!MO.isReg() || !MO.isImplicit())
+ break;
+ if (MO.getReg() == ImpReg)
+ FoldMI->RemoveOperand(i - 1);
+ }
+
+ DEBUG(dbgs() << "\tfolded: " << LIS.getInstructionIndex(FoldMI) << '\t'
+ << *FoldMI);
+ if (!WasCopy)
+ ++NumFolded;
+ else if (Ops.front().second == 0)
+ ++NumSpills;
+ else
+ ++NumReloads;
+ return true;
+}
+
+/// insertReload - Insert a reload of NewLI.reg before MI.
+void InlineSpiller::insertReload(LiveInterval &NewLI,
+ SlotIndex Idx,
+ MachineBasicBlock::iterator MI) {
+ MachineBasicBlock &MBB = *MI->getParent();
+ TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
+ MRI.getRegClass(NewLI.reg), &TRI);
+ --MI; // Point to load instruction.
+ SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
+ DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
+ VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
+ NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
+ ++NumReloads;
+}
+
+/// insertSpill - Insert a spill of NewLI.reg after MI.
+void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
+ SlotIndex Idx, MachineBasicBlock::iterator MI) {
+ MachineBasicBlock &MBB = *MI->getParent();
+ TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
+ MRI.getRegClass(NewLI.reg), &TRI);
+ --MI; // Point to store instruction.
+ SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
+ DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
+ VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
+ NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
+ ++NumSpills;
+}
+
+/// spillAroundUses - insert spill code around each use of Reg.
+void InlineSpiller::spillAroundUses(unsigned Reg) {
+ DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
+ LiveInterval &OldLI = LIS.getInterval(Reg);
+
+ // Iterate over instructions using Reg.
+ for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
+ MachineInstr *MI = RegI.skipBundle();) {
+
+ // Debug values are not allowed to affect codegen.
+ if (MI->isDebugValue()) {
+ // Modify DBG_VALUE now that the value is in a spill slot.
+ uint64_t Offset = MI->getOperand(1).getImm();
+ const MDNode *MDPtr = MI->getOperand(2).getMetadata();
+ DebugLoc DL = MI->getDebugLoc();
+ if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
+ Offset, MDPtr, DL)) {
+ DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
+ MachineBasicBlock *MBB = MI->getParent();
+ MBB->insert(MBB->erase(MI), NewDV);
+ } else {
+ DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
+ MI->eraseFromParent();
+ }
+ continue;
+ }
+
+ // Ignore copies to/from snippets. We'll delete them.
+ if (SnippetCopies.count(MI))
+ continue;
+
+ // Stack slot accesses may coalesce away.
+ if (coalesceStackAccess(MI, Reg))
+ continue;
+
+ // Analyze instruction.
+ SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
+ MIBundleOperands::RegInfo RI =
+ MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
+
+ // Find the slot index where this instruction reads and writes OldLI.
+ // This is usually the def slot, except for tied early clobbers.
+ SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
+ if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
+ if (SlotIndex::isSameInstr(Idx, VNI->def))
+ Idx = VNI->def;
+
+ // Check for a sibling copy.
+ unsigned SibReg = isFullCopyOf(MI, Reg);
+ if (SibReg && isSibling(SibReg)) {
+ // This may actually be a copy between snippets.
+ if (isRegToSpill(SibReg)) {
+ DEBUG(dbgs() << "Found new snippet copy: " << *MI);
+ SnippetCopies.insert(MI);
+ continue;
+ }
+ if (RI.Writes) {
+ // Hoist the spill of a sib-reg copy.
+ if (hoistSpill(OldLI, MI)) {
+ // This COPY is now dead, the value is already in the stack slot.
+ MI->getOperand(0).setIsDead();
+ DeadDefs.push_back(MI);
+ continue;
+ }
+ } else {
+ // This is a reload for a sib-reg copy. Drop spills downstream.
+ LiveInterval &SibLI = LIS.getInterval(SibReg);
+ eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
+ // The COPY will fold to a reload below.
+ }
+ }
+
+ // Attempt to fold memory ops.
+ if (foldMemoryOperand(Ops))
+ continue;
+
+ // Allocate interval around instruction.
+ // FIXME: Infer regclass from instruction alone.
+ LiveInterval &NewLI = Edit->createFrom(Reg);
+ NewLI.markNotSpillable();
+
+ if (RI.Reads)
+ insertReload(NewLI, Idx, MI);
+
+ // Rewrite instruction operands.
+ bool hasLiveDef = false;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
+ MO.setReg(NewLI.reg);
+ if (MO.isUse()) {
+ if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
+ MO.setIsKill();
+ } else {
+ if (!MO.isDead())
+ hasLiveDef = true;
+ }
+ }
+ DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
+
+ // FIXME: Use a second vreg if instruction has no tied ops.
+ if (RI.Writes) {
+ if (hasLiveDef)
+ insertSpill(NewLI, OldLI, Idx, MI);
+ else {
+ // This instruction defines a dead value. We don't need to spill it,
+ // but do create a live range for the dead value.
+ VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
+ NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
+ }
+ }
+
+ DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
+ }
+}
+
+/// spillAll - Spill all registers remaining after rematerialization.
+void InlineSpiller::spillAll() {
+ // Update LiveStacks now that we are committed to spilling.
+ if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
+ StackSlot = VRM.assignVirt2StackSlot(Original);
+ StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
+ StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
+ } else
+ StackInt = &LSS.getInterval(StackSlot);
+
+ if (Original != Edit->getReg())
+ VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
+
+ assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
+ StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
+ StackInt->getValNumInfo(0));
+ DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
+
+ // Spill around uses of all RegsToSpill.
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
+ spillAroundUses(RegsToSpill[i]);
+
+ // Hoisted spills may cause dead code.
+ if (!DeadDefs.empty()) {
+ DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
+ Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
+ }
+
+ // Finally delete the SnippetCopies.
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
+ MachineInstr *MI = RI.skipInstruction();) {
+ assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
+ // FIXME: Do this with a LiveRangeEdit callback.
+ LIS.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ }
+ }
+
+ // Delete all spilled registers.
+ for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
+ Edit->eraseVirtReg(RegsToSpill[i]);
+}
+
+void InlineSpiller::spill(LiveRangeEdit &edit) {
+ ++NumSpilledRanges;
+ Edit = &edit;
+ assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
+ && "Trying to spill a stack slot.");
+ // Share a stack slot among all descendants of Original.
+ Original = VRM.getOriginal(edit.getReg());
+ StackSlot = VRM.getStackSlot(Original);
+ StackInt = 0;
+
+ DEBUG(dbgs() << "Inline spilling "
+ << MRI.getRegClass(edit.getReg())->getName()
+ << ':' << edit.getParent() << "\nFrom original "
+ << LIS.getInterval(Original) << '\n');
+ assert(edit.getParent().isSpillable() &&
+ "Attempting to spill already spilled value.");
+ assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
+
+ collectRegsToSpill();
+ analyzeSiblingValues();
+ reMaterializeAll();
+
+ // Remat may handle everything.
+ if (!RegsToSpill.empty())
+ spillAll();
+
+ Edit->calculateRegClassAndHint(MF, Loops);
+}
OpenPOWER on IntegriCloud