diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp | 416 |
1 files changed, 416 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp new file mode 100644 index 0000000..39c1b9f --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp @@ -0,0 +1,416 @@ +//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass turns explicit null checks of the form +// +// test %r10, %r10 +// je throw_npe +// movl (%r10), %esi +// ... +// +// to +// +// faulting_load_op("movl (%r10), %esi", throw_npe) +// ... +// +// With the help of a runtime that understands the .fault_maps section, +// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs +// a page fault. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +static cl::opt<unsigned> PageSize("imp-null-check-page-size", + cl::desc("The page size of the target in " + "bytes"), + cl::init(4096)); + +#define DEBUG_TYPE "implicit-null-checks" + +STATISTIC(NumImplicitNullChecks, + "Number of explicit null checks made implicit"); + +namespace { + +class ImplicitNullChecks : public MachineFunctionPass { + /// Represents one null check that can be made implicit. + struct NullCheck { + // The memory operation the null check can be folded into. + MachineInstr *MemOperation; + + // The instruction actually doing the null check (Ptr != 0). + MachineInstr *CheckOperation; + + // The block the check resides in. + MachineBasicBlock *CheckBlock; + + // The block branched to if the pointer is non-null. + MachineBasicBlock *NotNullSucc; + + // The block branched to if the pointer is null. + MachineBasicBlock *NullSucc; + + NullCheck() + : MemOperation(), CheckOperation(), CheckBlock(), NotNullSucc(), + NullSucc() {} + + explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, + MachineBasicBlock *checkBlock, + MachineBasicBlock *notNullSucc, + MachineBasicBlock *nullSucc) + : MemOperation(memOperation), CheckOperation(checkOperation), + CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc) { + } + }; + + const TargetInstrInfo *TII = nullptr; + const TargetRegisterInfo *TRI = nullptr; + MachineModuleInfo *MMI = nullptr; + + bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, + SmallVectorImpl<NullCheck> &NullCheckList); + MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB, + MCSymbol *HandlerLabel); + void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); + +public: + static char ID; + + ImplicitNullChecks() : MachineFunctionPass(ID) { + initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; +}; + +/// \brief Detect re-ordering hazards and dependencies. +/// +/// This class keeps track of defs and uses, and can be queried if a given +/// machine instruction can be re-ordered from after the machine instructions +/// seen so far to before them. +class HazardDetector { + DenseSet<unsigned> RegDefs; + DenseSet<unsigned> RegUses; + const TargetRegisterInfo &TRI; + bool hasSeenClobber; + +public: + explicit HazardDetector(const TargetRegisterInfo &TRI) : + TRI(TRI), hasSeenClobber(false) {} + + /// \brief Make a note of \p MI for later queries to isSafeToHoist. + /// + /// May clobber this HazardDetector instance. \see isClobbered. + void rememberInstruction(MachineInstr *MI); + + /// \brief Return true if it is safe to hoist \p MI from after all the + /// instructions seen so far (via rememberInstruction) to before it. + bool isSafeToHoist(MachineInstr *MI); + + /// \brief Return true if this instance of HazardDetector has been clobbered + /// (i.e. has no more useful information). + /// + /// A HazardDetecter is clobbered when it sees a construct it cannot + /// understand, and it would have to return a conservative answer for all + /// future queries. Having a separate clobbered state lets the client code + /// bail early, without making queries about all of the future instructions + /// (which would have returned the most conservative answer anyway). + /// + /// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector + /// is an error. + bool isClobbered() { return hasSeenClobber; } +}; +} + + +void HazardDetector::rememberInstruction(MachineInstr *MI) { + assert(!isClobbered() && + "Don't add instructions to a clobbered hazard detector"); + + if (MI->mayStore() || MI->hasUnmodeledSideEffects()) { + hasSeenClobber = true; + return; + } + + for (auto *MMO : MI->memoperands()) { + // Right now we don't want to worry about LLVM's memory model. + if (!MMO->isUnordered()) { + hasSeenClobber = true; + return; + } + } + + for (auto &MO : MI->operands()) { + if (!MO.isReg() || !MO.getReg()) + continue; + + if (MO.isDef()) + RegDefs.insert(MO.getReg()); + else + RegUses.insert(MO.getReg()); + } +} + +bool HazardDetector::isSafeToHoist(MachineInstr *MI) { + assert(!isClobbered() && "isSafeToHoist cannot do anything useful!"); + + // Right now we don't want to worry about LLVM's memory model. This can be + // made more precise later. + for (auto *MMO : MI->memoperands()) + if (!MMO->isUnordered()) + return false; + + for (auto &MO : MI->operands()) { + if (MO.isReg() && MO.getReg()) { + for (unsigned Reg : RegDefs) + if (TRI.regsOverlap(Reg, MO.getReg())) + return false; // We found a write-after-write or read-after-write + + if (MO.isDef()) + for (unsigned Reg : RegUses) + if (TRI.regsOverlap(Reg, MO.getReg())) + return false; // We found a write-after-read + } + } + + return true; +} + +bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { + TII = MF.getSubtarget().getInstrInfo(); + TRI = MF.getRegInfo().getTargetRegisterInfo(); + MMI = &MF.getMMI(); + + SmallVector<NullCheck, 16> NullCheckList; + + for (auto &MBB : MF) + analyzeBlockForNullChecks(MBB, NullCheckList); + + if (!NullCheckList.empty()) + rewriteNullChecks(NullCheckList); + + return !NullCheckList.empty(); +} + +/// Analyze MBB to check if its terminating branch can be turned into an +/// implicit null check. If yes, append a description of the said null check to +/// NullCheckList and return true, else return false. +bool ImplicitNullChecks::analyzeBlockForNullChecks( + MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { + typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; + + MDNode *BranchMD = nullptr; + if (auto *BB = MBB.getBasicBlock()) + BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); + + if (!BranchMD) + return false; + + MachineBranchPredicate MBP; + + if (TII->AnalyzeBranchPredicate(MBB, MBP, true)) + return false; + + // Is the predicate comparing an integer to zero? + if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && + (MBP.Predicate == MachineBranchPredicate::PRED_NE || + MBP.Predicate == MachineBranchPredicate::PRED_EQ))) + return false; + + // If we cannot erase the test instruction itself, then making the null check + // implicit does not buy us much. + if (!MBP.SingleUseCondition) + return false; + + MachineBasicBlock *NotNullSucc, *NullSucc; + + if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { + NotNullSucc = MBP.TrueDest; + NullSucc = MBP.FalseDest; + } else { + NotNullSucc = MBP.FalseDest; + NullSucc = MBP.TrueDest; + } + + // We handle the simplest case for now. We can potentially do better by using + // the machine dominator tree. + if (NotNullSucc->pred_size() != 1) + return false; + + // Starting with a code fragment like: + // + // test %RAX, %RAX + // jne LblNotNull + // + // LblNull: + // callq throw_NullPointerException + // + // LblNotNull: + // Inst0 + // Inst1 + // ... + // Def = Load (%RAX + <offset>) + // ... + // + // + // we want to end up with + // + // Def = FaultingLoad (%RAX + <offset>), LblNull + // jmp LblNotNull ;; explicit or fallthrough + // + // LblNotNull: + // Inst0 + // Inst1 + // ... + // + // LblNull: + // callq throw_NullPointerException + // + // + // To see why this is legal, consider the two possibilities: + // + // 1. %RAX is null: since we constrain <offset> to be less than PageSize, the + // load instruction dereferences the null page, causing a segmentation + // fault. + // + // 2. %RAX is not null: in this case we know that the load cannot fault, as + // otherwise the load would've faulted in the original program too and the + // original program would've been undefined. + // + // This reasoning cannot be extended to justify hoisting through arbitrary + // control flow. For instance, in the example below (in pseudo-C) + // + // if (ptr == null) { throw_npe(); unreachable; } + // if (some_cond) { return 42; } + // v = ptr->field; // LD + // ... + // + // we cannot (without code duplication) use the load marked "LD" to null check + // ptr -- clause (2) above does not apply in this case. In the above program + // the safety of ptr->field can be dependent on some_cond; and, for instance, + // ptr could be some non-null invalid reference that never gets loaded from + // because some_cond is always true. + + unsigned PointerReg = MBP.LHS.getReg(); + + HazardDetector HD(*TRI); + + for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE; + ++MII) { + MachineInstr *MI = &*MII; + unsigned BaseReg, Offset; + if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) + if (MI->mayLoad() && !MI->isPredicable() && BaseReg == PointerReg && + Offset < PageSize && MI->getDesc().getNumDefs() <= 1 && + HD.isSafeToHoist(MI)) { + NullCheckList.emplace_back(MI, MBP.ConditionDef, &MBB, NotNullSucc, + NullSucc); + return true; + } + + HD.rememberInstruction(MI); + if (HD.isClobbered()) + return false; + } + + return false; +} + +/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine +/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI +/// (defining the same register), and branches to HandlerLabel if the load +/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB. +MachineInstr *ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI, + MachineBasicBlock *MBB, + MCSymbol *HandlerLabel) { + const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for + // all targets. + + DebugLoc DL; + unsigned NumDefs = LoadMI->getDesc().getNumDefs(); + assert(NumDefs <= 1 && "other cases unhandled!"); + + unsigned DefReg = NoRegister; + if (NumDefs != 0) { + DefReg = LoadMI->defs().begin()->getReg(); + assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 && + "expected exactly one def!"); + } + + auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg) + .addSym(HandlerLabel) + .addImm(LoadMI->getOpcode()); + + for (auto &MO : LoadMI->uses()) + MIB.addOperand(MO); + + MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end()); + + return MIB; +} + +/// Rewrite the null checks in NullCheckList into implicit null checks. +void ImplicitNullChecks::rewriteNullChecks( + ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { + DebugLoc DL; + + for (auto &NC : NullCheckList) { + MCSymbol *HandlerLabel = MMI->getContext().createTempSymbol(); + + // Remove the conditional branch dependent on the null check. + unsigned BranchesRemoved = TII->RemoveBranch(*NC.CheckBlock); + (void)BranchesRemoved; + assert(BranchesRemoved > 0 && "expected at least one branch!"); + + // Insert a faulting load where the conditional branch was originally. We + // check earlier ensures that this bit of code motion is legal. We do not + // touch the successors list for any basic block since we haven't changed + // control flow, we've just made it implicit. + insertFaultingLoad(NC.MemOperation, NC.CheckBlock, HandlerLabel); + NC.MemOperation->eraseFromParent(); + NC.CheckOperation->eraseFromParent(); + + // Insert an *unconditional* branch to not-null successor. + TII->InsertBranch(*NC.CheckBlock, NC.NotNullSucc, nullptr, /*Cond=*/None, + DL); + + // Emit the HandlerLabel as an EH_LABEL. + BuildMI(*NC.NullSucc, NC.NullSucc->begin(), DL, + TII->get(TargetOpcode::EH_LABEL)).addSym(HandlerLabel); + + NumImplicitNullChecks++; + } +} + +char ImplicitNullChecks::ID = 0; +char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; +INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks", + "Implicit null checks", false, false) +INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks", + "Implicit null checks", false, false) |