diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp | 806 |
1 files changed, 806 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp new file mode 100644 index 0000000..dd508b3 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp @@ -0,0 +1,806 @@ +//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the execution dependency fix pass. +// +// Some X86 SSE instructions like mov, and, or, xor are available in different +// variants for different operand types. These variant instructions are +// equivalent, but on Nehalem and newer cpus there is extra latency +// transferring data between integer and floating point domains. ARM cores +// have similar issues when they are configured with both VFP and NEON +// pipelines. +// +// This pass changes the variant instructions to minimize domain crossings. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/CodeGen/LivePhysRegs.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "execution-fix" + +/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track +/// of execution domains. +/// +/// An open DomainValue represents a set of instructions that can still switch +/// execution domain. Multiple registers may refer to the same open +/// DomainValue - they will eventually be collapsed to the same execution +/// domain. +/// +/// A collapsed DomainValue represents a single register that has been forced +/// into one of more execution domains. There is a separate collapsed +/// DomainValue for each register, but it may contain multiple execution +/// domains. A register value is initially created in a single execution +/// domain, but if we were forced to pay the penalty of a domain crossing, we +/// keep track of the fact that the register is now available in multiple +/// domains. +namespace { +struct DomainValue { + // Basic reference counting. + unsigned Refs; + + // Bitmask of available domains. For an open DomainValue, it is the still + // possible domains for collapsing. For a collapsed DomainValue it is the + // domains where the register is available for free. + unsigned AvailableDomains; + + // Pointer to the next DomainValue in a chain. When two DomainValues are + // merged, Victim.Next is set to point to Victor, so old DomainValue + // references can be updated by following the chain. + DomainValue *Next; + + // Twiddleable instructions using or defining these registers. + SmallVector<MachineInstr*, 8> Instrs; + + // A collapsed DomainValue has no instructions to twiddle - it simply keeps + // track of the domains where the registers are already available. + bool isCollapsed() const { return Instrs.empty(); } + + // Is domain available? + bool hasDomain(unsigned domain) const { + assert(domain < + static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && + "undefined behavior"); + return AvailableDomains & (1u << domain); + } + + // Mark domain as available. + void addDomain(unsigned domain) { + AvailableDomains |= 1u << domain; + } + + // Restrict to a single domain available. + void setSingleDomain(unsigned domain) { + AvailableDomains = 1u << domain; + } + + // Return bitmask of domains that are available and in mask. + unsigned getCommonDomains(unsigned mask) const { + return AvailableDomains & mask; + } + + // First domain available. + unsigned getFirstDomain() const { + return countTrailingZeros(AvailableDomains); + } + + DomainValue() : Refs(0) { clear(); } + + // Clear this DomainValue and point to next which has all its data. + void clear() { + AvailableDomains = 0; + Next = nullptr; + Instrs.clear(); + } +}; +} // namespace + +namespace { +/// Information about a live register. +struct LiveReg { + /// Value currently in this register, or NULL when no value is being tracked. + /// This counts as a DomainValue reference. + DomainValue *Value; + + /// Instruction that defined this register, relative to the beginning of the + /// current basic block. When a LiveReg is used to represent a live-out + /// register, this value is relative to the end of the basic block, so it + /// will be a negative number. + int Def; +}; +} // anonymous namespace + +namespace { +class ExeDepsFix : public MachineFunctionPass { + static char ID; + SpecificBumpPtrAllocator<DomainValue> Allocator; + SmallVector<DomainValue*,16> Avail; + + const TargetRegisterClass *const RC; + MachineFunction *MF; + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; + std::vector<SmallVector<int, 1>> AliasMap; + const unsigned NumRegs; + LiveReg *LiveRegs; + typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap; + LiveOutMap LiveOuts; + + /// List of undefined register reads in this block in forward order. + std::vector<std::pair<MachineInstr*, unsigned> > UndefReads; + + /// Storage for register unit liveness. + LivePhysRegs LiveRegSet; + + /// Current instruction number. + /// The first instruction in each basic block is 0. + int CurInstr; + + /// True when the current block has a predecessor that hasn't been visited + /// yet. + bool SeenUnknownBackEdge; + +public: + ExeDepsFix(const TargetRegisterClass *rc) + : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + const char *getPassName() const override { + return "Execution dependency fix"; + } + +private: + iterator_range<SmallVectorImpl<int>::const_iterator> + regIndices(unsigned Reg) const; + + // DomainValue allocation. + DomainValue *alloc(int domain = -1); + DomainValue *retain(DomainValue *DV) { + if (DV) ++DV->Refs; + return DV; + } + void release(DomainValue*); + DomainValue *resolve(DomainValue*&); + + // LiveRegs manipulations. + void setLiveReg(int rx, DomainValue *DV); + void kill(int rx); + void force(int rx, unsigned domain); + void collapse(DomainValue *dv, unsigned domain); + bool merge(DomainValue *A, DomainValue *B); + + void enterBasicBlock(MachineBasicBlock*); + void leaveBasicBlock(MachineBasicBlock*); + void visitInstr(MachineInstr*); + void processDefs(MachineInstr*, bool Kill); + void visitSoftInstr(MachineInstr*, unsigned mask); + void visitHardInstr(MachineInstr*, unsigned domain); + bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref); + void processUndefReads(MachineBasicBlock*); +}; +} // namespace + +char ExeDepsFix::ID = 0; + +/// Translate TRI register number to a list of indices into our smaller tables +/// of interesting registers. +iterator_range<SmallVectorImpl<int>::const_iterator> +ExeDepsFix::regIndices(unsigned Reg) const { + assert(Reg < AliasMap.size() && "Invalid register"); + const auto &Entry = AliasMap[Reg]; + return make_range(Entry.begin(), Entry.end()); +} + +DomainValue *ExeDepsFix::alloc(int domain) { + DomainValue *dv = Avail.empty() ? + new(Allocator.Allocate()) DomainValue : + Avail.pop_back_val(); + if (domain >= 0) + dv->addDomain(domain); + assert(dv->Refs == 0 && "Reference count wasn't cleared"); + assert(!dv->Next && "Chained DomainValue shouldn't have been recycled"); + return dv; +} + +/// Release a reference to DV. When the last reference is released, +/// collapse if needed. +void ExeDepsFix::release(DomainValue *DV) { + while (DV) { + assert(DV->Refs && "Bad DomainValue"); + if (--DV->Refs) + return; + + // There are no more DV references. Collapse any contained instructions. + if (DV->AvailableDomains && !DV->isCollapsed()) + collapse(DV, DV->getFirstDomain()); + + DomainValue *Next = DV->Next; + DV->clear(); + Avail.push_back(DV); + // Also release the next DomainValue in the chain. + DV = Next; + } +} + +/// Follow the chain of dead DomainValues until a live DomainValue is reached. +/// Update the referenced pointer when necessary. +DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) { + DomainValue *DV = DVRef; + if (!DV || !DV->Next) + return DV; + + // DV has a chain. Find the end. + do DV = DV->Next; + while (DV->Next); + + // Update DVRef to point to DV. + retain(DV); + release(DVRef); + DVRef = DV; + return DV; +} + +/// Set LiveRegs[rx] = dv, updating reference counts. +void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(LiveRegs && "Must enter basic block first."); + + if (LiveRegs[rx].Value == dv) + return; + if (LiveRegs[rx].Value) + release(LiveRegs[rx].Value); + LiveRegs[rx].Value = retain(dv); +} + +// Kill register rx, recycle or collapse any DomainValue. +void ExeDepsFix::kill(int rx) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(LiveRegs && "Must enter basic block first."); + if (!LiveRegs[rx].Value) + return; + + release(LiveRegs[rx].Value); + LiveRegs[rx].Value = nullptr; +} + +/// Force register rx into domain. +void ExeDepsFix::force(int rx, unsigned domain) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(LiveRegs && "Must enter basic block first."); + if (DomainValue *dv = LiveRegs[rx].Value) { + if (dv->isCollapsed()) + dv->addDomain(domain); + else if (dv->hasDomain(domain)) + collapse(dv, domain); + else { + // This is an incompatible open DomainValue. Collapse it to whatever and + // force the new value into domain. This costs a domain crossing. + collapse(dv, dv->getFirstDomain()); + assert(LiveRegs[rx].Value && "Not live after collapse?"); + LiveRegs[rx].Value->addDomain(domain); + } + } else { + // Set up basic collapsed DomainValue. + setLiveReg(rx, alloc(domain)); + } +} + +/// Collapse open DomainValue into given domain. If there are multiple +/// registers using dv, they each get a unique collapsed DomainValue. +void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) { + assert(dv->hasDomain(domain) && "Cannot collapse"); + + // Collapse all the instructions. + while (!dv->Instrs.empty()) + TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain); + dv->setSingleDomain(domain); + + // If there are multiple users, give them new, unique DomainValues. + if (LiveRegs && dv->Refs > 1) + for (unsigned rx = 0; rx != NumRegs; ++rx) + if (LiveRegs[rx].Value == dv) + setLiveReg(rx, alloc(domain)); +} + +/// All instructions and registers in B are moved to A, and B is released. +bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) { + assert(!A->isCollapsed() && "Cannot merge into collapsed"); + assert(!B->isCollapsed() && "Cannot merge from collapsed"); + if (A == B) + return true; + // Restrict to the domains that A and B have in common. + unsigned common = A->getCommonDomains(B->AvailableDomains); + if (!common) + return false; + A->AvailableDomains = common; + A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); + + // Clear the old DomainValue so we won't try to swizzle instructions twice. + B->clear(); + // All uses of B are referred to A. + B->Next = retain(A); + + for (unsigned rx = 0; rx != NumRegs; ++rx) { + assert(LiveRegs && "no space allocated for live registers"); + if (LiveRegs[rx].Value == B) + setLiveReg(rx, A); + } + return true; +} + +/// Set up LiveRegs by merging predecessor live-out values. +void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) { + // Detect back-edges from predecessors we haven't processed yet. + SeenUnknownBackEdge = false; + + // Reset instruction counter in each basic block. + CurInstr = 0; + + // Set up UndefReads to track undefined register reads. + UndefReads.clear(); + LiveRegSet.clear(); + + // Set up LiveRegs to represent registers entering MBB. + if (!LiveRegs) + LiveRegs = new LiveReg[NumRegs]; + + // Default values are 'nothing happened a long time ago'. + for (unsigned rx = 0; rx != NumRegs; ++rx) { + LiveRegs[rx].Value = nullptr; + LiveRegs[rx].Def = -(1 << 20); + } + + // This is the entry block. + if (MBB->pred_empty()) { + for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(), + e = MBB->livein_end(); i != e; ++i) { + for (int rx : regIndices(*i)) { + // Treat function live-ins as if they were defined just before the first + // instruction. Usually, function arguments are set up immediately + // before the call. + LiveRegs[rx].Def = -1; + } + } + DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n"); + return; + } + + // Try to coalesce live-out registers from predecessors. + for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(), + pe = MBB->pred_end(); pi != pe; ++pi) { + LiveOutMap::const_iterator fi = LiveOuts.find(*pi); + if (fi == LiveOuts.end()) { + SeenUnknownBackEdge = true; + continue; + } + assert(fi->second && "Can't have NULL entries"); + + for (unsigned rx = 0; rx != NumRegs; ++rx) { + // Use the most recent predecessor def for each register. + LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def); + + DomainValue *pdv = resolve(fi->second[rx].Value); + if (!pdv) + continue; + if (!LiveRegs[rx].Value) { + setLiveReg(rx, pdv); + continue; + } + + // We have a live DomainValue from more than one predecessor. + if (LiveRegs[rx].Value->isCollapsed()) { + // We are already collapsed, but predecessor is not. Force it. + unsigned Domain = LiveRegs[rx].Value->getFirstDomain(); + if (!pdv->isCollapsed() && pdv->hasDomain(Domain)) + collapse(pdv, Domain); + continue; + } + + // Currently open, merge in predecessor. + if (!pdv->isCollapsed()) + merge(LiveRegs[rx].Value, pdv); + else + force(rx, pdv->getFirstDomain()); + } + } + DEBUG(dbgs() << "BB#" << MBB->getNumber() + << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n")); +} + +void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) { + assert(LiveRegs && "Must enter basic block first."); + // Save live registers at end of MBB - used by enterBasicBlock(). + // Also use LiveOuts as a visited set to detect back-edges. + bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second; + + if (First) { + // LiveRegs was inserted in LiveOuts. Adjust all defs to be relative to + // the end of this block instead of the beginning. + for (unsigned i = 0, e = NumRegs; i != e; ++i) + LiveRegs[i].Def -= CurInstr; + } else { + // Insertion failed, this must be the second pass. + // Release all the DomainValues instead of keeping them. + for (unsigned i = 0, e = NumRegs; i != e; ++i) + release(LiveRegs[i].Value); + delete[] LiveRegs; + } + LiveRegs = nullptr; +} + +void ExeDepsFix::visitInstr(MachineInstr *MI) { + if (MI->isDebugValue()) + return; + + // Update instructions with explicit execution domains. + std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI); + if (DomP.first) { + if (DomP.second) + visitSoftInstr(MI, DomP.second); + else + visitHardInstr(MI, DomP.first); + } + + // Process defs to track register ages, and kill values clobbered by generic + // instructions. + processDefs(MI, !DomP.first); +} + +/// \brief Return true to if it makes sense to break dependence on a partial def +/// or undef use. +bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx, + unsigned Pref) { + unsigned reg = MI->getOperand(OpIdx).getReg(); + for (int rx : regIndices(reg)) { + unsigned Clearance = CurInstr - LiveRegs[rx].Def; + DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref); + + if (Pref > Clearance) { + DEBUG(dbgs() << ": Break dependency.\n"); + continue; + } + // The current clearance seems OK, but we may be ignoring a def from a + // back-edge. + if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) { + DEBUG(dbgs() << ": OK .\n"); + return false; + } + // A def from an unprocessed back-edge may make us break this dependency. + DEBUG(dbgs() << ": Wait for back-edge to resolve.\n"); + return false; + } + return true; +} + +// Update def-ages for registers defined by MI. +// If Kill is set, also kill off DomainValues clobbered by the defs. +// +// Also break dependencies on partial defs and undef uses. +void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) { + assert(!MI->isDebugValue() && "Won't process debug values"); + + // Break dependence on undef uses. Do this before updating LiveRegs below. + unsigned OpNum; + unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI); + if (Pref) { + if (shouldBreakDependence(MI, OpNum, Pref)) + UndefReads.push_back(std::make_pair(MI, OpNum)); + } + const MCInstrDesc &MCID = MI->getDesc(); + for (unsigned i = 0, + e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); + i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) + continue; + if (MO.isImplicit()) + break; + if (MO.isUse()) + continue; + for (int rx : regIndices(MO.getReg())) { + // This instruction explicitly defines rx. + DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr + << '\t' << *MI); + + // Check clearance before partial register updates. + // Call breakDependence before setting LiveRegs[rx].Def. + unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI); + if (Pref && shouldBreakDependence(MI, i, Pref)) + TII->breakPartialRegDependency(MI, i, TRI); + + // How many instructions since rx was last written? + LiveRegs[rx].Def = CurInstr; + + // Kill off domains redefined by generic instructions. + if (Kill) + kill(rx); + } + } + ++CurInstr; +} + +/// \break Break false dependencies on undefined register reads. +/// +/// Walk the block backward computing precise liveness. This is expensive, so we +/// only do it on demand. Note that the occurrence of undefined register reads +/// that should be broken is very rare, but when they occur we may have many in +/// a single block. +void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) { + if (UndefReads.empty()) + return; + + // Collect this block's live out register units. + LiveRegSet.init(TRI); + LiveRegSet.addLiveOuts(MBB); + + MachineInstr *UndefMI = UndefReads.back().first; + unsigned OpIdx = UndefReads.back().second; + + for (MachineBasicBlock::reverse_iterator I = MBB->rbegin(), E = MBB->rend(); + I != E; ++I) { + // Update liveness, including the current instruction's defs. + LiveRegSet.stepBackward(*I); + + if (UndefMI == &*I) { + if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg())) + TII->breakPartialRegDependency(UndefMI, OpIdx, TRI); + + UndefReads.pop_back(); + if (UndefReads.empty()) + return; + + UndefMI = UndefReads.back().first; + OpIdx = UndefReads.back().second; + } + } +} + +// A hard instruction only works in one domain. All input registers will be +// forced into that domain. +void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) { + // Collapse all uses. + for (unsigned i = mi->getDesc().getNumDefs(), + e = mi->getDesc().getNumOperands(); i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) continue; + for (int rx : regIndices(mo.getReg())) { + force(rx, domain); + } + } + + // Kill all defs and force them. + for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) continue; + for (int rx : regIndices(mo.getReg())) { + kill(rx); + force(rx, domain); + } + } +} + +// A soft instruction can be changed to work in other domains given by mask. +void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { + // Bitmask of available domains for this instruction after taking collapsed + // operands into account. + unsigned available = mask; + + // Scan the explicit use operands for incoming domains. + SmallVector<int, 4> used; + if (LiveRegs) + for (unsigned i = mi->getDesc().getNumDefs(), + e = mi->getDesc().getNumOperands(); i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) continue; + for (int rx : regIndices(mo.getReg())) { + DomainValue *dv = LiveRegs[rx].Value; + if (dv == nullptr) + continue; + // Bitmask of domains that dv and available have in common. + unsigned common = dv->getCommonDomains(available); + // Is it possible to use this collapsed register for free? + if (dv->isCollapsed()) { + // Restrict available domains to the ones in common with the operand. + // If there are no common domains, we must pay the cross-domain + // penalty for this operand. + if (common) available = common; + } else if (common) + // Open DomainValue is compatible, save it for merging. + used.push_back(rx); + else + // Open DomainValue is not compatible with instruction. It is useless + // now. + kill(rx); + } + } + + // If the collapsed operands force a single domain, propagate the collapse. + if (isPowerOf2_32(available)) { + unsigned domain = countTrailingZeros(available); + TII->setExecutionDomain(mi, domain); + visitHardInstr(mi, domain); + return; + } + + // Kill off any remaining uses that don't match available, and build a list of + // incoming DomainValues that we want to merge. + SmallVector<LiveReg, 4> Regs; + for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) { + int rx = *i; + assert(LiveRegs && "no space allocated for live registers"); + const LiveReg &LR = LiveRegs[rx]; + // This useless DomainValue could have been missed above. + if (!LR.Value->getCommonDomains(available)) { + kill(rx); + continue; + } + // Sorted insertion. + bool Inserted = false; + for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end(); + i != e && !Inserted; ++i) { + if (LR.Def < i->Def) { + Inserted = true; + Regs.insert(i, LR); + } + } + if (!Inserted) + Regs.push_back(LR); + } + + // doms are now sorted in order of appearance. Try to merge them all, giving + // priority to the latest ones. + DomainValue *dv = nullptr; + while (!Regs.empty()) { + if (!dv) { + dv = Regs.pop_back_val().Value; + // Force the first dv to match the current instruction. + dv->AvailableDomains = dv->getCommonDomains(available); + assert(dv->AvailableDomains && "Domain should have been filtered"); + continue; + } + + DomainValue *Latest = Regs.pop_back_val().Value; + // Skip already merged values. + if (Latest == dv || Latest->Next) + continue; + if (merge(dv, Latest)) + continue; + + // If latest didn't merge, it is useless now. Kill all registers using it. + for (int i : used) { + assert(LiveRegs && "no space allocated for live registers"); + if (LiveRegs[i].Value == Latest) + kill(i); + } + } + + // dv is the DomainValue we are going to use for this instruction. + if (!dv) { + dv = alloc(); + dv->AvailableDomains = available; + } + dv->Instrs.push_back(mi); + + // Finally set all defs and non-collapsed uses to dv. We must iterate through + // all the operators, including imp-def ones. + for (MachineInstr::mop_iterator ii = mi->operands_begin(), + ee = mi->operands_end(); + ii != ee; ++ii) { + MachineOperand &mo = *ii; + if (!mo.isReg()) continue; + for (int rx : regIndices(mo.getReg())) { + if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) { + kill(rx); + setLiveReg(rx, dv); + } + } + } +} + +bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) { + MF = &mf; + TII = MF->getSubtarget().getInstrInfo(); + TRI = MF->getSubtarget().getRegisterInfo(); + LiveRegs = nullptr; + assert(NumRegs == RC->getNumRegs() && "Bad regclass"); + + DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: " + << TRI->getRegClassName(RC) << " **********\n"); + + // If no relevant registers are used in the function, we can skip it + // completely. + bool anyregs = false; + for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end(); + I != E; ++I) + if (MF->getRegInfo().isPhysRegUsed(*I)) { + anyregs = true; + break; + } + if (!anyregs) return false; + + // Initialize the AliasMap on the first use. + if (AliasMap.empty()) { + // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and + // therefore the LiveRegs array. + AliasMap.resize(TRI->getNumRegs()); + for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) + for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); + AI.isValid(); ++AI) + AliasMap[*AI].push_back(i); + } + + MachineBasicBlock *Entry = MF->begin(); + ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry); + SmallVector<MachineBasicBlock*, 16> Loops; + for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator + MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) { + MachineBasicBlock *MBB = *MBBI; + enterBasicBlock(MBB); + if (SeenUnknownBackEdge) + Loops.push_back(MBB); + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; + ++I) + visitInstr(I); + processUndefReads(MBB); + leaveBasicBlock(MBB); + } + + // Visit all the loop blocks again in order to merge DomainValues from + // back-edges. + for (unsigned i = 0, e = Loops.size(); i != e; ++i) { + MachineBasicBlock *MBB = Loops[i]; + enterBasicBlock(MBB); + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; + ++I) + if (!I->isDebugValue()) + processDefs(I, false); + processUndefReads(MBB); + leaveBasicBlock(MBB); + } + + // Clear the LiveOuts vectors and collapse any remaining DomainValues. + for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator + MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) { + LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI); + if (FI == LiveOuts.end() || !FI->second) + continue; + for (unsigned i = 0, e = NumRegs; i != e; ++i) + if (FI->second[i].Value) + release(FI->second[i].Value); + delete[] FI->second; + } + LiveOuts.clear(); + UndefReads.clear(); + Avail.clear(); + Allocator.DestroyAll(); + + return false; +} + +FunctionPass * +llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) { + return new ExeDepsFix(RC); +} |