diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ELFWriter.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ELFWriter.cpp | 1090 |
1 files changed, 1090 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ELFWriter.cpp b/contrib/llvm/lib/CodeGen/ELFWriter.cpp new file mode 100644 index 0000000..b644ebe --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ELFWriter.cpp @@ -0,0 +1,1090 @@ +//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the target-independent ELF writer. This file writes out +// the ELF file in the following order: +// +// #1. ELF Header +// #2. '.text' section +// #3. '.data' section +// #4. '.bss' section (conceptual position in file) +// ... +// #X. '.shstrtab' section +// #Y. Section Table +// +// The entries in the section table are laid out as: +// #0. Null entry [required] +// #1. ".text" entry - the program code +// #2. ".data" entry - global variables with initializers. [ if needed ] +// #3. ".bss" entry - global variables without initializers. [ if needed ] +// ... +// #N. ".shstrtab" entry - String table for the section names. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "elfwriter" +#include "ELF.h" +#include "ELFWriter.h" +#include "ELFCodeEmitter.h" +#include "llvm/Constants.h" +#include "llvm/Module.h" +#include "llvm/PassManager.h" +#include "llvm/DerivedTypes.h" +#include "llvm/CodeGen/BinaryObject.h" +#include "llvm/CodeGen/MachineCodeEmitter.h" +#include "llvm/CodeGen/ObjectCodeEmitter.h" +#include "llvm/CodeGen/MachineCodeEmitter.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCSectionELF.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/Target/Mangler.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetELFWriterInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/SmallString.h" +using namespace llvm; + +char ELFWriter::ID = 0; + +//===----------------------------------------------------------------------===// +// ELFWriter Implementation +//===----------------------------------------------------------------------===// + +ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm) + : MachineFunctionPass(&ID), O(o), TM(tm), + OutContext(*new MCContext(*TM.getMCAsmInfo())), + TLOF(TM.getTargetLowering()->getObjFileLowering()), + is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64), + isLittleEndian(TM.getTargetData()->isLittleEndian()), + ElfHdr(isLittleEndian, is64Bit) { + + MAI = TM.getMCAsmInfo(); + TEW = TM.getELFWriterInfo(); + + // Create the object code emitter object for this target. + ElfCE = new ELFCodeEmitter(*this); + + // Inital number of sections + NumSections = 0; +} + +ELFWriter::~ELFWriter() { + delete ElfCE; + delete &OutContext; + + while(!SymbolList.empty()) { + delete SymbolList.back(); + SymbolList.pop_back(); + } + + while(!PrivateSyms.empty()) { + delete PrivateSyms.back(); + PrivateSyms.pop_back(); + } + + while(!SectionList.empty()) { + delete SectionList.back(); + SectionList.pop_back(); + } + + // Release the name mangler object. + delete Mang; Mang = 0; +} + +// doInitialization - Emit the file header and all of the global variables for +// the module to the ELF file. +bool ELFWriter::doInitialization(Module &M) { + // Initialize TargetLoweringObjectFile. + const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM); + + Mang = new Mangler(OutContext, *TM.getTargetData()); + + // ELF Header + // ---------- + // Fields e_shnum e_shstrndx are only known after all section have + // been emitted. They locations in the ouput buffer are recorded so + // to be patched up later. + // + // Note + // ---- + // emitWord method behaves differently for ELF32 and ELF64, writing + // 4 bytes in the former and 8 in the last for *_off and *_addr elf types + + ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0] + ElfHdr.emitByte('E'); // e_ident[EI_MAG1] + ElfHdr.emitByte('L'); // e_ident[EI_MAG2] + ElfHdr.emitByte('F'); // e_ident[EI_MAG3] + + ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS] + ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA] + ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION] + ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD] + + ElfHdr.emitWord16(ET_REL); // e_type + ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target + ElfHdr.emitWord32(EV_CURRENT); // e_version + ElfHdr.emitWord(0); // e_entry, no entry point in .o file + ElfHdr.emitWord(0); // e_phoff, no program header for .o + ELFHdr_e_shoff_Offset = ElfHdr.size(); + ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes + ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants + ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size + ElfHdr.emitWord16(0); // e_phentsize = prog header entry size + ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0 + + // e_shentsize = Section header entry size + ElfHdr.emitWord16(TEW->getSHdrSize()); + + // e_shnum = # of section header ents + ELFHdr_e_shnum_Offset = ElfHdr.size(); + ElfHdr.emitWord16(0); // Placeholder + + // e_shstrndx = Section # of '.shstrtab' + ELFHdr_e_shstrndx_Offset = ElfHdr.size(); + ElfHdr.emitWord16(0); // Placeholder + + // Add the null section, which is required to be first in the file. + getNullSection(); + + // The first entry in the symtab is the null symbol and the second + // is a local symbol containing the module/file name + SymbolList.push_back(new ELFSym()); + SymbolList.push_back(ELFSym::getFileSym()); + + return false; +} + +// AddPendingGlobalSymbol - Add a global to be processed and to +// the global symbol lookup, use a zero index because the table +// index will be determined later. +void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV, + bool AddToLookup /* = false */) { + PendingGlobals.insert(GV); + if (AddToLookup) + GblSymLookup[GV] = 0; +} + +// AddPendingExternalSymbol - Add the external to be processed +// and to the external symbol lookup, use a zero index because +// the symbol table index will be determined later. +void ELFWriter::AddPendingExternalSymbol(const char *External) { + PendingExternals.insert(External); + ExtSymLookup[External] = 0; +} + +ELFSection &ELFWriter::getDataSection() { + const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection(); + return getSection(Data->getSectionName(), Data->getType(), + Data->getFlags(), 4); +} + +ELFSection &ELFWriter::getBSSSection() { + const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection(); + return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4); +} + +// getCtorSection - Get the static constructor section +ELFSection &ELFWriter::getCtorSection() { + const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection(); + return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags()); +} + +// getDtorSection - Get the static destructor section +ELFSection &ELFWriter::getDtorSection() { + const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection(); + return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags()); +} + +// getTextSection - Get the text section for the specified function +ELFSection &ELFWriter::getTextSection(const Function *F) { + const MCSectionELF *Text = + (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM); + return getSection(Text->getSectionName(), Text->getType(), Text->getFlags()); +} + +// getJumpTableSection - Get a read only section for constants when +// emitting jump tables. TODO: add PIC support +ELFSection &ELFWriter::getJumpTableSection() { + const MCSectionELF *JT = + (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly()); + return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(), + TM.getTargetData()->getPointerABIAlignment()); +} + +// getConstantPoolSection - Get a constant pool section based on the machine +// constant pool entry type and relocation info. +ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) { + SectionKind Kind; + switch (CPE.getRelocationInfo()) { + default: llvm_unreachable("Unknown section kind"); + case 2: Kind = SectionKind::getReadOnlyWithRel(); break; + case 1: + Kind = SectionKind::getReadOnlyWithRelLocal(); + break; + case 0: + switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { + case 4: Kind = SectionKind::getMergeableConst4(); break; + case 8: Kind = SectionKind::getMergeableConst8(); break; + case 16: Kind = SectionKind::getMergeableConst16(); break; + default: Kind = SectionKind::getMergeableConst(); break; + } + } + + const MCSectionELF *CPSect = + (const MCSectionELF *)TLOF.getSectionForConstant(Kind); + return getSection(CPSect->getSectionName(), CPSect->getType(), + CPSect->getFlags(), CPE.getAlignment()); +} + +// getRelocSection - Return the relocation section of section 'S'. 'RelA' +// is true if the relocation section contains entries with addends. +ELFSection &ELFWriter::getRelocSection(ELFSection &S) { + unsigned SectionType = TEW->hasRelocationAddend() ? + ELFSection::SHT_RELA : ELFSection::SHT_REL; + + std::string SectionName(".rel"); + if (TEW->hasRelocationAddend()) + SectionName.append("a"); + SectionName.append(S.getName()); + + return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment()); +} + +// getGlobalELFVisibility - Returns the ELF specific visibility type +unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) { + switch (GV->getVisibility()) { + default: + llvm_unreachable("unknown visibility type"); + case GlobalValue::DefaultVisibility: + return ELFSym::STV_DEFAULT; + case GlobalValue::HiddenVisibility: + return ELFSym::STV_HIDDEN; + case GlobalValue::ProtectedVisibility: + return ELFSym::STV_PROTECTED; + } + return 0; +} + +// getGlobalELFBinding - Returns the ELF specific binding type +unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) { + if (GV->hasInternalLinkage()) + return ELFSym::STB_LOCAL; + + if (GV->isWeakForLinker() && !GV->hasCommonLinkage()) + return ELFSym::STB_WEAK; + + return ELFSym::STB_GLOBAL; +} + +// getGlobalELFType - Returns the ELF specific type for a global +unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) { + if (GV->isDeclaration()) + return ELFSym::STT_NOTYPE; + + if (isa<Function>(GV)) + return ELFSym::STT_FUNC; + + return ELFSym::STT_OBJECT; +} + +// IsELFUndefSym - True if the global value must be marked as a symbol +// which points to a SHN_UNDEF section. This means that the symbol has +// no definition on the module. +static bool IsELFUndefSym(const GlobalValue *GV) { + return GV->isDeclaration() || (isa<Function>(GV)); +} + +// AddToSymbolList - Update the symbol lookup and If the symbol is +// private add it to PrivateSyms list, otherwise to SymbolList. +void ELFWriter::AddToSymbolList(ELFSym *GblSym) { + assert(GblSym->isGlobalValue() && "Symbol must be a global value"); + + const GlobalValue *GV = GblSym->getGlobalValue(); + if (GV->hasPrivateLinkage()) { + // For a private symbols, keep track of the index inside + // the private list since it will never go to the symbol + // table and won't be patched up later. + PrivateSyms.push_back(GblSym); + GblSymLookup[GV] = PrivateSyms.size()-1; + } else { + // Non private symbol are left with zero indices until + // they are patched up during the symbol table emition + // (where the indicies are created). + SymbolList.push_back(GblSym); + GblSymLookup[GV] = 0; + } +} + +// EmitGlobal - Choose the right section for global and emit it +void ELFWriter::EmitGlobal(const GlobalValue *GV) { + + // Check if the referenced symbol is already emitted + if (GblSymLookup.find(GV) != GblSymLookup.end()) + return; + + // Handle ELF Bind, Visibility and Type for the current symbol + unsigned SymBind = getGlobalELFBinding(GV); + unsigned SymType = getGlobalELFType(GV); + bool IsUndefSym = IsELFUndefSym(GV); + + ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind) + : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV)); + + if (!IsUndefSym) { + assert(isa<GlobalVariable>(GV) && "GV not a global variable!"); + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); + + // Handle special llvm globals + if (EmitSpecialLLVMGlobal(GVar)) + return; + + // Get the ELF section where this global belongs from TLOF + const MCSectionELF *S = + (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM); + ELFSection &ES = + getSection(S->getSectionName(), S->getType(), S->getFlags()); + SectionKind Kind = S->getKind(); + + // The symbol align should update the section alignment if needed + const TargetData *TD = TM.getTargetData(); + unsigned Align = TD->getPreferredAlignment(GVar); + unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType()); + GblSym->Size = Size; + + if (S->HasCommonSymbols()) { // Symbol must go to a common section + GblSym->SectionIdx = ELFSection::SHN_COMMON; + + // A new linkonce section is created for each global in the + // common section, the default alignment is 1 and the symbol + // value contains its alignment. + ES.Align = 1; + GblSym->Value = Align; + + } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS. + GblSym->SectionIdx = ES.SectionIdx; + + // Update the size with alignment and the next object can + // start in the right offset in the section + if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1); + ES.Align = std::max(ES.Align, Align); + + // GblSym->Value should contain the virtual offset inside the section. + // Virtual because the BSS space is not allocated on ELF objects + GblSym->Value = ES.Size; + ES.Size += Size; + + } else { // The symbol must go to some kind of data section + GblSym->SectionIdx = ES.SectionIdx; + + // GblSym->Value should contain the symbol offset inside the section, + // and all symbols should start on their required alignment boundary + ES.Align = std::max(ES.Align, Align); + ES.emitAlignment(Align); + GblSym->Value = ES.size(); + + // Emit the global to the data section 'ES' + EmitGlobalConstant(GVar->getInitializer(), ES); + } + } + + AddToSymbolList(GblSym); +} + +void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS, + ELFSection &GblS) { + + // Print the fields in successive locations. Pad to align if needed! + const TargetData *TD = TM.getTargetData(); + unsigned Size = TD->getTypeAllocSize(CVS->getType()); + const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); + uint64_t sizeSoFar = 0; + for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { + const Constant* field = CVS->getOperand(i); + + // Check if padding is needed and insert one or more 0s. + uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); + uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) + - cvsLayout->getElementOffset(i)) - fieldSize; + sizeSoFar += fieldSize + padSize; + + // Now print the actual field value. + EmitGlobalConstant(field, GblS); + + // Insert padding - this may include padding to increase the size of the + // current field up to the ABI size (if the struct is not packed) as well + // as padding to ensure that the next field starts at the right offset. + GblS.emitZeros(padSize); + } + assert(sizeSoFar == cvsLayout->getSizeInBytes() && + "Layout of constant struct may be incorrect!"); +} + +void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) { + const TargetData *TD = TM.getTargetData(); + unsigned Size = TD->getTypeAllocSize(CV->getType()); + + if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { + for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) + EmitGlobalConstant(CVA->getOperand(i), GblS); + return; + } else if (isa<ConstantAggregateZero>(CV)) { + GblS.emitZeros(Size); + return; + } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { + EmitGlobalConstantStruct(CVS, GblS); + return; + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + APInt Val = CFP->getValueAPF().bitcastToAPInt(); + if (CFP->getType()->isDoubleTy()) + GblS.emitWord64(Val.getZExtValue()); + else if (CFP->getType()->isFloatTy()) + GblS.emitWord32(Val.getZExtValue()); + else if (CFP->getType()->isX86_FP80Ty()) { + unsigned PadSize = TD->getTypeAllocSize(CFP->getType())- + TD->getTypeStoreSize(CFP->getType()); + GblS.emitWordFP80(Val.getRawData(), PadSize); + } else if (CFP->getType()->isPPC_FP128Ty()) + llvm_unreachable("PPC_FP128Ty global emission not implemented"); + return; + } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + if (Size == 1) + GblS.emitByte(CI->getZExtValue()); + else if (Size == 2) + GblS.emitWord16(CI->getZExtValue()); + else if (Size == 4) + GblS.emitWord32(CI->getZExtValue()); + else + EmitGlobalConstantLargeInt(CI, GblS); + return; + } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { + const VectorType *PTy = CP->getType(); + for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) + EmitGlobalConstant(CP->getOperand(I), GblS); + return; + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { + // Resolve a constant expression which returns a (Constant, Offset) + // pair. If 'Res.first' is a GlobalValue, emit a relocation with + // the offset 'Res.second', otherwise emit a global constant like + // it is always done for not contant expression types. + CstExprResTy Res = ResolveConstantExpr(CE); + const Constant *Op = Res.first; + + if (isa<GlobalValue>(Op)) + EmitGlobalDataRelocation(cast<const GlobalValue>(Op), + TD->getTypeAllocSize(Op->getType()), + GblS, Res.second); + else + EmitGlobalConstant(Op, GblS); + + return; + } else if (CV->getType()->getTypeID() == Type::PointerTyID) { + // Fill the data entry with zeros or emit a relocation entry + if (isa<ConstantPointerNull>(CV)) + GblS.emitZeros(Size); + else + EmitGlobalDataRelocation(cast<const GlobalValue>(CV), + Size, GblS); + return; + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { + // This is a constant address for a global variable or function and + // therefore must be referenced using a relocation entry. + EmitGlobalDataRelocation(GV, Size, GblS); + return; + } + + std::string msg; + raw_string_ostream ErrorMsg(msg); + ErrorMsg << "Constant unimp for type: " << *CV->getType(); + report_fatal_error(ErrorMsg.str()); +} + +// ResolveConstantExpr - Resolve the constant expression until it stop +// yielding other constant expressions. +CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) { + const TargetData *TD = TM.getTargetData(); + + // There ins't constant expression inside others anymore + if (!isa<ConstantExpr>(CV)) + return std::make_pair(CV, 0); + + const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); + switch (CE->getOpcode()) { + case Instruction::BitCast: + return ResolveConstantExpr(CE->getOperand(0)); + + case Instruction::GetElementPtr: { + const Constant *ptrVal = CE->getOperand(0); + SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); + int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], + idxVec.size()); + return std::make_pair(ptrVal, Offset); + } + case Instruction::IntToPtr: { + Constant *Op = CE->getOperand(0); + Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()), + false/*ZExt*/); + return ResolveConstantExpr(Op); + } + case Instruction::PtrToInt: { + Constant *Op = CE->getOperand(0); + const Type *Ty = CE->getType(); + + // We can emit the pointer value into this slot if the slot is an + // integer slot greater or equal to the size of the pointer. + if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) + return ResolveConstantExpr(Op); + + llvm_unreachable("Integer size less then pointer size"); + } + case Instruction::Add: + case Instruction::Sub: { + // Only handle cases where there's a constant expression with GlobalValue + // as first operand and ConstantInt as second, which are the cases we can + // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1 + // 1) Instruction::Add => (global) + CstInt + // 2) Instruction::Sub => (global) + -CstInt + const Constant *Op0 = CE->getOperand(0); + const Constant *Op1 = CE->getOperand(1); + assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt"); + + CstExprResTy Res = ResolveConstantExpr(Op0); + assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue"); + + const APInt &RHS = cast<ConstantInt>(Op1)->getValue(); + switch (CE->getOpcode()) { + case Instruction::Add: + return std::make_pair(Res.first, RHS.getSExtValue()); + case Instruction::Sub: + return std::make_pair(Res.first, (-RHS).getSExtValue()); + } + } + } + + report_fatal_error(CE->getOpcodeName() + + StringRef(": Unsupported ConstantExpr type")); + + return std::make_pair(CV, 0); // silence warning +} + +void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size, + ELFSection &GblS, int64_t Offset) { + // Create the relocation entry for the global value + MachineRelocation MR = + MachineRelocation::getGV(GblS.getCurrentPCOffset(), + TEW->getAbsoluteLabelMachineRelTy(), + const_cast<GlobalValue*>(GV), + Offset); + + // Fill the data entry with zeros + GblS.emitZeros(Size); + + // Add the relocation entry for the current data section + GblS.addRelocation(MR); +} + +void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI, + ELFSection &S) { + const TargetData *TD = TM.getTargetData(); + unsigned BitWidth = CI->getBitWidth(); + assert(isPowerOf2_32(BitWidth) && + "Non-power-of-2-sized integers not handled!"); + + const uint64_t *RawData = CI->getValue().getRawData(); + uint64_t Val = 0; + for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { + Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i]; + S.emitWord64(Val); + } +} + +/// EmitSpecialLLVMGlobal - Check to see if the specified global is a +/// special global used by LLVM. If so, emit it and return true, otherwise +/// do nothing and return false. +bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { + if (GV->getName() == "llvm.used") + llvm_unreachable("not implemented yet"); + + // Ignore debug and non-emitted data. This handles llvm.compiler.used. + if (GV->getSection() == "llvm.metadata" || + GV->hasAvailableExternallyLinkage()) + return true; + + if (!GV->hasAppendingLinkage()) return false; + + assert(GV->hasInitializer() && "Not a special LLVM global!"); + + const TargetData *TD = TM.getTargetData(); + unsigned Align = TD->getPointerPrefAlignment(); + if (GV->getName() == "llvm.global_ctors") { + ELFSection &Ctor = getCtorSection(); + Ctor.emitAlignment(Align); + EmitXXStructorList(GV->getInitializer(), Ctor); + return true; + } + + if (GV->getName() == "llvm.global_dtors") { + ELFSection &Dtor = getDtorSection(); + Dtor.emitAlignment(Align); + EmitXXStructorList(GV->getInitializer(), Dtor); + return true; + } + + return false; +} + +/// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the +/// function pointers, ignoring the init priority. +void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) { + // Should be an array of '{ int, void ()* }' structs. The first value is the + // init priority, which we ignore. + if (!isa<ConstantArray>(List)) return; + ConstantArray *InitList = cast<ConstantArray>(List); + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) + if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ + if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. + + if (CS->getOperand(1)->isNullValue()) + return; // Found a null terminator, exit printing. + // Emit the function pointer. + EmitGlobalConstant(CS->getOperand(1), Xtor); + } +} + +bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { + // Nothing to do here, this is all done through the ElfCE object above. + return false; +} + +/// doFinalization - Now that the module has been completely processed, emit +/// the ELF file to 'O'. +bool ELFWriter::doFinalization(Module &M) { + // Emit .data section placeholder + getDataSection(); + + // Emit .bss section placeholder + getBSSSection(); + + // Build and emit data, bss and "common" sections. + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + EmitGlobal(I); + + // Emit all pending globals + for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end(); + I != E; ++I) + EmitGlobal(*I); + + // Emit all pending externals + for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end(); + I != E; ++I) + SymbolList.push_back(ELFSym::getExtSym(*I)); + + // Emit a symbol for each section created until now, skip null section + for (unsigned i = 1, e = SectionList.size(); i < e; ++i) { + ELFSection &ES = *SectionList[i]; + ELFSym *SectionSym = ELFSym::getSectionSym(); + SectionSym->SectionIdx = ES.SectionIdx; + SymbolList.push_back(SectionSym); + ES.Sym = SymbolList.back(); + } + + // Emit string table + EmitStringTable(M.getModuleIdentifier()); + + // Emit the symbol table now, if non-empty. + EmitSymbolTable(); + + // Emit the relocation sections. + EmitRelocations(); + + // Emit the sections string table. + EmitSectionTableStringTable(); + + // Dump the sections and section table to the .o file. + OutputSectionsAndSectionTable(); + + return false; +} + +// RelocateField - Patch relocatable field with 'Offset' in 'BO' +// using a 'Value' of known 'Size' +void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset, + int64_t Value, unsigned Size) { + if (Size == 32) + BO.fixWord32(Value, Offset); + else if (Size == 64) + BO.fixWord64(Value, Offset); + else + llvm_unreachable("don't know howto patch relocatable field"); +} + +/// EmitRelocations - Emit relocations +void ELFWriter::EmitRelocations() { + + // True if the target uses the relocation entry to hold the addend, + // otherwise the addend is written directly to the relocatable field. + bool HasRelA = TEW->hasRelocationAddend(); + + // Create Relocation sections for each section which needs it. + for (unsigned i=0, e=SectionList.size(); i != e; ++i) { + ELFSection &S = *SectionList[i]; + + // This section does not have relocations + if (!S.hasRelocations()) continue; + ELFSection &RelSec = getRelocSection(S); + + // 'Link' - Section hdr idx of the associated symbol table + // 'Info' - Section hdr idx of the section to which the relocation applies + ELFSection &SymTab = getSymbolTableSection(); + RelSec.Link = SymTab.SectionIdx; + RelSec.Info = S.SectionIdx; + RelSec.EntSize = TEW->getRelocationEntrySize(); + + // Get the relocations from Section + std::vector<MachineRelocation> Relos = S.getRelocations(); + for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(), + MRE = Relos.end(); MRI != MRE; ++MRI) { + MachineRelocation &MR = *MRI; + + // Relocatable field offset from the section start + unsigned RelOffset = MR.getMachineCodeOffset(); + + // Symbol index in the symbol table + unsigned SymIdx = 0; + + // Target specific relocation field type and size + unsigned RelType = TEW->getRelocationType(MR.getRelocationType()); + unsigned RelTySize = TEW->getRelocationTySize(RelType); + int64_t Addend = 0; + + // There are several machine relocations types, and each one of + // them needs a different approach to retrieve the symbol table index. + if (MR.isGlobalValue()) { + const GlobalValue *G = MR.getGlobalValue(); + int64_t GlobalOffset = MR.getConstantVal(); + SymIdx = GblSymLookup[G]; + if (G->hasPrivateLinkage()) { + // If the target uses a section offset in the relocation: + // SymIdx + Addend = section sym for global + section offset + unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx; + Addend = PrivateSyms[SymIdx]->Value + GlobalOffset; + SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); + } else { + Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset); + } + } else if (MR.isExternalSymbol()) { + const char *ExtSym = MR.getExternalSymbol(); + SymIdx = ExtSymLookup[ExtSym]; + Addend = TEW->getDefaultAddendForRelTy(RelType); + } else { + // Get the symbol index for the section symbol + unsigned SectionIdx = MR.getConstantVal(); + SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); + + // The symbol offset inside the section + int64_t SymOffset = (int64_t)MR.getResultPointer(); + + // For pc relative relocations where symbols are defined in the same + // section they are referenced, ignore the relocation entry and patch + // the relocatable field with the symbol offset directly. + if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) { + int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType); + RelocateField(S, RelOffset, Value, RelTySize); + continue; + } + + Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset); + } + + // The target without addend on the relocation symbol must be + // patched in the relocation place itself to contain the addend + // otherwise write zeros to make sure there is no garbage there + RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize); + + // Get the relocation entry and emit to the relocation section + ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend); + EmitRelocation(RelSec, Rel, HasRelA); + } + } +} + +/// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel' +void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, + bool HasRelA) { + RelSec.emitWord(Rel.getOffset()); + RelSec.emitWord(Rel.getInfo(is64Bit)); + if (HasRelA) + RelSec.emitWord(Rel.getAddend()); +} + +/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable' +void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) { + if (is64Bit) { + SymbolTable.emitWord32(Sym.NameIdx); + SymbolTable.emitByte(Sym.Info); + SymbolTable.emitByte(Sym.Other); + SymbolTable.emitWord16(Sym.SectionIdx); + SymbolTable.emitWord64(Sym.Value); + SymbolTable.emitWord64(Sym.Size); + } else { + SymbolTable.emitWord32(Sym.NameIdx); + SymbolTable.emitWord32(Sym.Value); + SymbolTable.emitWord32(Sym.Size); + SymbolTable.emitByte(Sym.Info); + SymbolTable.emitByte(Sym.Other); + SymbolTable.emitWord16(Sym.SectionIdx); + } +} + +/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab' +/// Section Header Table +void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab, + const ELFSection &SHdr) { + SHdrTab.emitWord32(SHdr.NameIdx); + SHdrTab.emitWord32(SHdr.Type); + if (is64Bit) { + SHdrTab.emitWord64(SHdr.Flags); + SHdrTab.emitWord(SHdr.Addr); + SHdrTab.emitWord(SHdr.Offset); + SHdrTab.emitWord64(SHdr.Size); + SHdrTab.emitWord32(SHdr.Link); + SHdrTab.emitWord32(SHdr.Info); + SHdrTab.emitWord64(SHdr.Align); + SHdrTab.emitWord64(SHdr.EntSize); + } else { + SHdrTab.emitWord32(SHdr.Flags); + SHdrTab.emitWord(SHdr.Addr); + SHdrTab.emitWord(SHdr.Offset); + SHdrTab.emitWord32(SHdr.Size); + SHdrTab.emitWord32(SHdr.Link); + SHdrTab.emitWord32(SHdr.Info); + SHdrTab.emitWord32(SHdr.Align); + SHdrTab.emitWord32(SHdr.EntSize); + } +} + +/// EmitStringTable - If the current symbol table is non-empty, emit the string +/// table for it +void ELFWriter::EmitStringTable(const std::string &ModuleName) { + if (!SymbolList.size()) return; // Empty symbol table. + ELFSection &StrTab = getStringTableSection(); + + // Set the zero'th symbol to a null byte, as required. + StrTab.emitByte(0); + + // Walk on the symbol list and write symbol names into the string table. + unsigned Index = 1; + for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { + ELFSym &Sym = *(*I); + + std::string Name; + if (Sym.isGlobalValue()) { + SmallString<40> NameStr; + Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false); + Name.append(NameStr.begin(), NameStr.end()); + } else if (Sym.isExternalSym()) + Name.append(Sym.getExternalSymbol()); + else if (Sym.isFileType()) + Name.append(ModuleName); + + if (Name.empty()) { + Sym.NameIdx = 0; + } else { + Sym.NameIdx = Index; + StrTab.emitString(Name); + + // Keep track of the number of bytes emitted to this section. + Index += Name.size()+1; + } + } + assert(Index == StrTab.size()); + StrTab.Size = Index; +} + +// SortSymbols - On the symbol table local symbols must come before +// all other symbols with non-local bindings. The return value is +// the position of the first non local symbol. +unsigned ELFWriter::SortSymbols() { + unsigned FirstNonLocalSymbol; + std::vector<ELFSym*> LocalSyms, OtherSyms; + + for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { + if ((*I)->isLocalBind()) + LocalSyms.push_back(*I); + else + OtherSyms.push_back(*I); + } + SymbolList.clear(); + FirstNonLocalSymbol = LocalSyms.size(); + + for (unsigned i = 0; i < FirstNonLocalSymbol; ++i) + SymbolList.push_back(LocalSyms[i]); + + for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I) + SymbolList.push_back(*I); + + LocalSyms.clear(); + OtherSyms.clear(); + + return FirstNonLocalSymbol; +} + +/// EmitSymbolTable - Emit the symbol table itself. +void ELFWriter::EmitSymbolTable() { + if (!SymbolList.size()) return; // Empty symbol table. + + // Now that we have emitted the string table and know the offset into the + // string table of each symbol, emit the symbol table itself. + ELFSection &SymTab = getSymbolTableSection(); + SymTab.Align = TEW->getPrefELFAlignment(); + + // Section Index of .strtab. + SymTab.Link = getStringTableSection().SectionIdx; + + // Size of each symtab entry. + SymTab.EntSize = TEW->getSymTabEntrySize(); + + // Reorder the symbol table with local symbols first! + unsigned FirstNonLocalSymbol = SortSymbols(); + + // Emit all the symbols to the symbol table. + for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) { + ELFSym &Sym = *SymbolList[i]; + + // Emit symbol to the symbol table + EmitSymbol(SymTab, Sym); + + // Record the symbol table index for each symbol + if (Sym.isGlobalValue()) + GblSymLookup[Sym.getGlobalValue()] = i; + else if (Sym.isExternalSym()) + ExtSymLookup[Sym.getExternalSymbol()] = i; + + // Keep track on the symbol index into the symbol table + Sym.SymTabIdx = i; + } + + // One greater than the symbol table index of the last local symbol + SymTab.Info = FirstNonLocalSymbol; + SymTab.Size = SymTab.size(); +} + +/// EmitSectionTableStringTable - This method adds and emits a section for the +/// ELF Section Table string table: the string table that holds all of the +/// section names. +void ELFWriter::EmitSectionTableStringTable() { + // First step: add the section for the string table to the list of sections: + ELFSection &SHStrTab = getSectionHeaderStringTableSection(); + + // Now that we know which section number is the .shstrtab section, update the + // e_shstrndx entry in the ELF header. + ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset); + + // Set the NameIdx of each section in the string table and emit the bytes for + // the string table. + unsigned Index = 0; + + for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { + ELFSection &S = *(*I); + // Set the index into the table. Note if we have lots of entries with + // common suffixes, we could memoize them here if we cared. + S.NameIdx = Index; + SHStrTab.emitString(S.getName()); + + // Keep track of the number of bytes emitted to this section. + Index += S.getName().size()+1; + } + + // Set the size of .shstrtab now that we know what it is. + assert(Index == SHStrTab.size()); + SHStrTab.Size = Index; +} + +/// OutputSectionsAndSectionTable - Now that we have constructed the file header +/// and all of the sections, emit these to the ostream destination and emit the +/// SectionTable. +void ELFWriter::OutputSectionsAndSectionTable() { + // Pass #1: Compute the file offset for each section. + size_t FileOff = ElfHdr.size(); // File header first. + + // Adjust alignment of all section if needed, skip the null section. + for (unsigned i=1, e=SectionList.size(); i < e; ++i) { + ELFSection &ES = *SectionList[i]; + if (!ES.size()) { + ES.Offset = FileOff; + continue; + } + + // Update Section size + if (!ES.Size) + ES.Size = ES.size(); + + // Align FileOff to whatever the alignment restrictions of the section are. + if (ES.Align) + FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1); + + ES.Offset = FileOff; + FileOff += ES.Size; + } + + // Align Section Header. + unsigned TableAlign = TEW->getPrefELFAlignment(); + FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); + + // Now that we know where all of the sections will be emitted, set the e_shnum + // entry in the ELF header. + ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset); + + // Now that we know the offset in the file of the section table, update the + // e_shoff address in the ELF header. + ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset); + + // Now that we know all of the data in the file header, emit it and all of the + // sections! + O.write((char *)&ElfHdr.getData()[0], ElfHdr.size()); + FileOff = ElfHdr.size(); + + // Section Header Table blob + BinaryObject SHdrTable(isLittleEndian, is64Bit); + + // Emit all of sections to the file and build the section header table. + for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { + ELFSection &S = *(*I); + DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName() + << ", Size: " << S.Size << ", Offset: " << S.Offset + << ", SectionData Size: " << S.size() << "\n"); + + // Align FileOff to whatever the alignment restrictions of the section are. + if (S.size()) { + if (S.Align) { + for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1); + FileOff != NewFileOff; ++FileOff) + O << (char)0xAB; + } + O.write((char *)&S.getData()[0], S.Size); + FileOff += S.Size; + } + + EmitSectionHeader(SHdrTable, S); + } + + // Align output for the section table. + for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); + FileOff != NewFileOff; ++FileOff) + O << (char)0xAB; + + // Emit the section table itself. + O.write((char *)&SHdrTable.getData()[0], SHdrTable.size()); +} |