diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp new file mode 100644 index 0000000..84c4d59 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp @@ -0,0 +1,663 @@ +//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the CriticalAntiDepBreaker class, which +// implements register anti-dependence breaking along a blocks +// critical path during post-RA scheduler. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "post-RA-sched" +#include "CriticalAntiDepBreaker.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +CriticalAntiDepBreaker:: +CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) : + AntiDepBreaker(), MF(MFi), + MRI(MF.getRegInfo()), + TII(MF.getTarget().getInstrInfo()), + TRI(MF.getTarget().getRegisterInfo()), + RegClassInfo(RCI), + Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)), + KillIndices(TRI->getNumRegs(), 0), + DefIndices(TRI->getNumRegs(), 0) {} + +CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { +} + +void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { + const unsigned BBSize = BB->size(); + for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { + // Clear out the register class data. + Classes[i] = static_cast<const TargetRegisterClass *>(0); + + // Initialize the indices to indicate that no registers are live. + KillIndices[i] = ~0u; + DefIndices[i] = BBSize; + } + + // Clear "do not change" set. + KeepRegs.clear(); + + bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn()); + + // Determine the live-out physregs for this block. + if (IsReturnBlock) { + // In a return block, examine the function live-out regs. + for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), + E = MRI.liveout_end(); I != E; ++I) { + unsigned Reg = *I; + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[Reg] = BB->size(); + DefIndices[Reg] = ~0u; + + // Repeat, for all aliases. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + unsigned AliasReg = *Alias; + Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[AliasReg] = BB->size(); + DefIndices[AliasReg] = ~0u; + } + } + } + + // In a non-return block, examine the live-in regs of all successors. + // Note a return block can have successors if the return instruction is + // predicated. + for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), + SE = BB->succ_end(); SI != SE; ++SI) + for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), + E = (*SI)->livein_end(); I != E; ++I) { + unsigned Reg = *I; + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[Reg] = BB->size(); + DefIndices[Reg] = ~0u; + + // Repeat, for all aliases. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + unsigned AliasReg = *Alias; + Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[AliasReg] = BB->size(); + DefIndices[AliasReg] = ~0u; + } + } + + // Mark live-out callee-saved registers. In a return block this is + // all callee-saved registers. In non-return this is any + // callee-saved register that is not saved in the prolog. + const MachineFrameInfo *MFI = MF.getFrameInfo(); + BitVector Pristine = MFI->getPristineRegs(BB); + for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { + unsigned Reg = *I; + if (!IsReturnBlock && !Pristine.test(Reg)) continue; + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[Reg] = BB->size(); + DefIndices[Reg] = ~0u; + + // Repeat, for all aliases. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + unsigned AliasReg = *Alias; + Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[AliasReg] = BB->size(); + DefIndices[AliasReg] = ~0u; + } + } +} + +void CriticalAntiDepBreaker::FinishBlock() { + RegRefs.clear(); + KeepRegs.clear(); +} + +void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, + unsigned InsertPosIndex) { + if (MI->isDebugValue()) + return; + assert(Count < InsertPosIndex && "Instruction index out of expected range!"); + + for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { + if (KillIndices[Reg] != ~0u) { + // If Reg is currently live, then mark that it can't be renamed as + // we don't know the extent of its live-range anymore (now that it + // has been scheduled). + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + KillIndices[Reg] = Count; + } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { + // Any register which was defined within the previous scheduling region + // may have been rescheduled and its lifetime may overlap with registers + // in ways not reflected in our current liveness state. For each such + // register, adjust the liveness state to be conservatively correct. + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + + // Move the def index to the end of the previous region, to reflect + // that the def could theoretically have been scheduled at the end. + DefIndices[Reg] = InsertPosIndex; + } + } + + PrescanInstruction(MI); + ScanInstruction(MI, Count); +} + +/// CriticalPathStep - Return the next SUnit after SU on the bottom-up +/// critical path. +static const SDep *CriticalPathStep(const SUnit *SU) { + const SDep *Next = 0; + unsigned NextDepth = 0; + // Find the predecessor edge with the greatest depth. + for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); + P != PE; ++P) { + const SUnit *PredSU = P->getSUnit(); + unsigned PredLatency = P->getLatency(); + unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; + // In the case of a latency tie, prefer an anti-dependency edge over + // other types of edges. + if (NextDepth < PredTotalLatency || + (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { + NextDepth = PredTotalLatency; + Next = &*P; + } + } + return Next; +} + +void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { + // It's not safe to change register allocation for source operands of + // that have special allocation requirements. Also assume all registers + // used in a call must not be changed (ABI). + // FIXME: The issue with predicated instruction is more complex. We are being + // conservative here because the kill markers cannot be trusted after + // if-conversion: + // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] + // ... + // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] + // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] + // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) + // + // The first R6 kill is not really a kill since it's killed by a predicated + // instruction which may not be executed. The second R6 def may or may not + // re-define R6 so it's not safe to change it since the last R6 use cannot be + // changed. + bool Special = MI->getDesc().isCall() || + MI->getDesc().hasExtraSrcRegAllocReq() || + TII->isPredicated(MI); + + // Scan the register operands for this instruction and update + // Classes and RegRefs. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + const TargetRegisterClass *NewRC = 0; + + if (i < MI->getDesc().getNumOperands()) + NewRC = TII->getRegClass(MI->getDesc(), i, TRI); + + // For now, only allow the register to be changed if its register + // class is consistent across all uses. + if (!Classes[Reg] && NewRC) + Classes[Reg] = NewRC; + else if (!NewRC || Classes[Reg] != NewRC) + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + + // Now check for aliases. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + // If an alias of the reg is used during the live range, give up. + // Note that this allows us to skip checking if AntiDepReg + // overlaps with any of the aliases, among other things. + unsigned AliasReg = *Alias; + if (Classes[AliasReg]) { + Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + } + } + + // If we're still willing to consider this register, note the reference. + if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) + RegRefs.insert(std::make_pair(Reg, &MO)); + + if (MO.isUse() && Special) { + if (KeepRegs.insert(Reg)) { + for (const unsigned *Subreg = TRI->getSubRegisters(Reg); + *Subreg; ++Subreg) + KeepRegs.insert(*Subreg); + } + } + } +} + +void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, + unsigned Count) { + // Update liveness. + // Proceding upwards, registers that are defed but not used in this + // instruction are now dead. + + if (!TII->isPredicated(MI)) { + // Predicated defs are modeled as read + write, i.e. similar to two + // address updates. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + if (!MO.isDef()) continue; + // Ignore two-addr defs. + if (MI->isRegTiedToUseOperand(i)) continue; + + DefIndices[Reg] = Count; + KillIndices[Reg] = ~0u; + assert(((KillIndices[Reg] == ~0u) != + (DefIndices[Reg] == ~0u)) && + "Kill and Def maps aren't consistent for Reg!"); + KeepRegs.erase(Reg); + Classes[Reg] = 0; + RegRefs.erase(Reg); + // Repeat, for all subregs. + for (const unsigned *Subreg = TRI->getSubRegisters(Reg); + *Subreg; ++Subreg) { + unsigned SubregReg = *Subreg; + DefIndices[SubregReg] = Count; + KillIndices[SubregReg] = ~0u; + KeepRegs.erase(SubregReg); + Classes[SubregReg] = 0; + RegRefs.erase(SubregReg); + } + // Conservatively mark super-registers as unusable. + for (const unsigned *Super = TRI->getSuperRegisters(Reg); + *Super; ++Super) { + unsigned SuperReg = *Super; + Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1); + } + } + } + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + if (!MO.isUse()) continue; + + const TargetRegisterClass *NewRC = 0; + if (i < MI->getDesc().getNumOperands()) + NewRC = TII->getRegClass(MI->getDesc(), i, TRI); + + // For now, only allow the register to be changed if its register + // class is consistent across all uses. + if (!Classes[Reg] && NewRC) + Classes[Reg] = NewRC; + else if (!NewRC || Classes[Reg] != NewRC) + Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + + RegRefs.insert(std::make_pair(Reg, &MO)); + + // It wasn't previously live but now it is, this is a kill. + if (KillIndices[Reg] == ~0u) { + KillIndices[Reg] = Count; + DefIndices[Reg] = ~0u; + assert(((KillIndices[Reg] == ~0u) != + (DefIndices[Reg] == ~0u)) && + "Kill and Def maps aren't consistent for Reg!"); + } + // Repeat, for all aliases. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + unsigned AliasReg = *Alias; + if (KillIndices[AliasReg] == ~0u) { + KillIndices[AliasReg] = Count; + DefIndices[AliasReg] = ~0u; + } + } + } +} + +// Check all machine operands that reference the antidependent register and must +// be replaced by NewReg. Return true if any of their parent instructions may +// clobber the new register. +// +// Note: AntiDepReg may be referenced by a two-address instruction such that +// it's use operand is tied to a def operand. We guard against the case in which +// the two-address instruction also defines NewReg, as may happen with +// pre/postincrement loads. In this case, both the use and def operands are in +// RegRefs because the def is inserted by PrescanInstruction and not erased +// during ScanInstruction. So checking for an instructions with definitions of +// both NewReg and AntiDepReg covers it. +bool +CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, + RegRefIter RegRefEnd, + unsigned NewReg) +{ + for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { + MachineOperand *RefOper = I->second; + + // Don't allow the instruction defining AntiDepReg to earlyclobber its + // operands, in case they may be assigned to NewReg. In this case antidep + // breaking must fail, but it's too rare to bother optimizing. + if (RefOper->isDef() && RefOper->isEarlyClobber()) + return true; + + // Handle cases in which this instructions defines NewReg. + MachineInstr *MI = RefOper->getParent(); + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &CheckOper = MI->getOperand(i); + + if (!CheckOper.isReg() || !CheckOper.isDef() || + CheckOper.getReg() != NewReg) + continue; + + // Don't allow the instruction to define NewReg and AntiDepReg. + // When AntiDepReg is renamed it will be an illegal op. + if (RefOper->isDef()) + return true; + + // Don't allow an instruction using AntiDepReg to be earlyclobbered by + // NewReg + if (CheckOper.isEarlyClobber()) + return true; + + // Don't allow inline asm to define NewReg at all. Who know what it's + // doing with it. + if (MI->isInlineAsm()) + return true; + } + } + return false; +} + +unsigned +CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin, + RegRefIter RegRefEnd, + unsigned AntiDepReg, + unsigned LastNewReg, + const TargetRegisterClass *RC) +{ + ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC); + for (unsigned i = 0; i != Order.size(); ++i) { + unsigned NewReg = Order[i]; + // Don't replace a register with itself. + if (NewReg == AntiDepReg) continue; + // Don't replace a register with one that was recently used to repair + // an anti-dependence with this AntiDepReg, because that would + // re-introduce that anti-dependence. + if (NewReg == LastNewReg) continue; + // If any instructions that define AntiDepReg also define the NewReg, it's + // not suitable. For example, Instruction with multiple definitions can + // result in this condition. + if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; + // If NewReg is dead and NewReg's most recent def is not before + // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. + assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) + && "Kill and Def maps aren't consistent for AntiDepReg!"); + assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) + && "Kill and Def maps aren't consistent for NewReg!"); + if (KillIndices[NewReg] != ~0u || + Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || + KillIndices[AntiDepReg] > DefIndices[NewReg]) + continue; + return NewReg; + } + + // No registers are free and available! + return 0; +} + +unsigned CriticalAntiDepBreaker:: +BreakAntiDependencies(const std::vector<SUnit>& SUnits, + MachineBasicBlock::iterator Begin, + MachineBasicBlock::iterator End, + unsigned InsertPosIndex, + DbgValueVector &DbgValues) { + // The code below assumes that there is at least one instruction, + // so just duck out immediately if the block is empty. + if (SUnits.empty()) return 0; + + // Keep a map of the MachineInstr*'s back to the SUnit representing them. + // This is used for updating debug information. + DenseMap<MachineInstr*,const SUnit*> MISUnitMap; + + // Find the node at the bottom of the critical path. + const SUnit *Max = 0; + for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { + const SUnit *SU = &SUnits[i]; + MISUnitMap[SU->getInstr()] = SU; + if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) + Max = SU; + } + +#ifndef NDEBUG + { + DEBUG(dbgs() << "Critical path has total latency " + << (Max->getDepth() + Max->Latency) << "\n"); + DEBUG(dbgs() << "Available regs:"); + for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { + if (KillIndices[Reg] == ~0u) + DEBUG(dbgs() << " " << TRI->getName(Reg)); + } + DEBUG(dbgs() << '\n'); + } +#endif + + // Track progress along the critical path through the SUnit graph as we walk + // the instructions. + const SUnit *CriticalPathSU = Max; + MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); + + // Consider this pattern: + // A = ... + // ... = A + // A = ... + // ... = A + // A = ... + // ... = A + // A = ... + // ... = A + // There are three anti-dependencies here, and without special care, + // we'd break all of them using the same register: + // A = ... + // ... = A + // B = ... + // ... = B + // B = ... + // ... = B + // B = ... + // ... = B + // because at each anti-dependence, B is the first register that + // isn't A which is free. This re-introduces anti-dependencies + // at all but one of the original anti-dependencies that we were + // trying to break. To avoid this, keep track of the most recent + // register that each register was replaced with, avoid + // using it to repair an anti-dependence on the same register. + // This lets us produce this: + // A = ... + // ... = A + // B = ... + // ... = B + // C = ... + // ... = C + // B = ... + // ... = B + // This still has an anti-dependence on B, but at least it isn't on the + // original critical path. + // + // TODO: If we tracked more than one register here, we could potentially + // fix that remaining critical edge too. This is a little more involved, + // because unlike the most recent register, less recent registers should + // still be considered, though only if no other registers are available. + std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); + + // Attempt to break anti-dependence edges on the critical path. Walk the + // instructions from the bottom up, tracking information about liveness + // as we go to help determine which registers are available. + unsigned Broken = 0; + unsigned Count = InsertPosIndex - 1; + for (MachineBasicBlock::iterator I = End, E = Begin; + I != E; --Count) { + MachineInstr *MI = --I; + if (MI->isDebugValue()) + continue; + + // Check if this instruction has a dependence on the critical path that + // is an anti-dependence that we may be able to break. If it is, set + // AntiDepReg to the non-zero register associated with the anti-dependence. + // + // We limit our attention to the critical path as a heuristic to avoid + // breaking anti-dependence edges that aren't going to significantly + // impact the overall schedule. There are a limited number of registers + // and we want to save them for the important edges. + // + // TODO: Instructions with multiple defs could have multiple + // anti-dependencies. The current code here only knows how to break one + // edge per instruction. Note that we'd have to be able to break all of + // the anti-dependencies in an instruction in order to be effective. + unsigned AntiDepReg = 0; + if (MI == CriticalPathMI) { + if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { + const SUnit *NextSU = Edge->getSUnit(); + + // Only consider anti-dependence edges. + if (Edge->getKind() == SDep::Anti) { + AntiDepReg = Edge->getReg(); + assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); + if (!RegClassInfo.isAllocatable(AntiDepReg)) + // Don't break anti-dependencies on non-allocatable registers. + AntiDepReg = 0; + else if (KeepRegs.count(AntiDepReg)) + // Don't break anti-dependencies if an use down below requires + // this exact register. + AntiDepReg = 0; + else { + // If the SUnit has other dependencies on the SUnit that it + // anti-depends on, don't bother breaking the anti-dependency + // since those edges would prevent such units from being + // scheduled past each other regardless. + // + // Also, if there are dependencies on other SUnits with the + // same register as the anti-dependency, don't attempt to + // break it. + for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), + PE = CriticalPathSU->Preds.end(); P != PE; ++P) + if (P->getSUnit() == NextSU ? + (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : + (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { + AntiDepReg = 0; + break; + } + } + } + CriticalPathSU = NextSU; + CriticalPathMI = CriticalPathSU->getInstr(); + } else { + // We've reached the end of the critical path. + CriticalPathSU = 0; + CriticalPathMI = 0; + } + } + + PrescanInstruction(MI); + + // If MI's defs have a special allocation requirement, don't allow + // any def registers to be changed. Also assume all registers + // defined in a call must not be changed (ABI). + if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() || + TII->isPredicated(MI)) + // If this instruction's defs have special allocation requirement, don't + // break this anti-dependency. + AntiDepReg = 0; + else if (AntiDepReg) { + // If this instruction has a use of AntiDepReg, breaking it + // is invalid. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { + AntiDepReg = 0; + break; + } + } + } + + // Determine AntiDepReg's register class, if it is live and is + // consistently used within a single class. + const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; + assert((AntiDepReg == 0 || RC != NULL) && + "Register should be live if it's causing an anti-dependence!"); + if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) + AntiDepReg = 0; + + // Look for a suitable register to use to break the anti-depenence. + // + // TODO: Instead of picking the first free register, consider which might + // be the best. + if (AntiDepReg != 0) { + std::pair<std::multimap<unsigned, MachineOperand *>::iterator, + std::multimap<unsigned, MachineOperand *>::iterator> + Range = RegRefs.equal_range(AntiDepReg); + if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, + AntiDepReg, + LastNewReg[AntiDepReg], + RC)) { + DEBUG(dbgs() << "Breaking anti-dependence edge on " + << TRI->getName(AntiDepReg) + << " with " << RegRefs.count(AntiDepReg) << " references" + << " using " << TRI->getName(NewReg) << "!\n"); + + // Update the references to the old register to refer to the new + // register. + for (std::multimap<unsigned, MachineOperand *>::iterator + Q = Range.first, QE = Range.second; Q != QE; ++Q) { + Q->second->setReg(NewReg); + // If the SU for the instruction being updated has debug information + // related to the anti-dependency register, make sure to update that + // as well. + const SUnit *SU = MISUnitMap[Q->second->getParent()]; + if (!SU) continue; + for (DbgValueVector::iterator DVI = DbgValues.begin(), + DVE = DbgValues.end(); DVI != DVE; ++DVI) + if (DVI->second == Q->second->getParent()) + UpdateDbgValue(DVI->first, AntiDepReg, NewReg); + } + + // We just went back in time and modified history; the + // liveness information for the anti-dependence reg is now + // inconsistent. Set the state as if it were dead. + Classes[NewReg] = Classes[AntiDepReg]; + DefIndices[NewReg] = DefIndices[AntiDepReg]; + KillIndices[NewReg] = KillIndices[AntiDepReg]; + assert(((KillIndices[NewReg] == ~0u) != + (DefIndices[NewReg] == ~0u)) && + "Kill and Def maps aren't consistent for NewReg!"); + + Classes[AntiDepReg] = 0; + DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; + KillIndices[AntiDepReg] = ~0u; + assert(((KillIndices[AntiDepReg] == ~0u) != + (DefIndices[AntiDepReg] == ~0u)) && + "Kill and Def maps aren't consistent for AntiDepReg!"); + + RegRefs.erase(AntiDepReg); + LastNewReg[AntiDepReg] = NewReg; + ++Broken; + } + } + + ScanInstruction(MI, Count); + } + + return Broken; +} |