diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp | 1325 |
1 files changed, 1033 insertions, 292 deletions
diff --git a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp index 6ab6acc..5844124 100644 --- a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp +++ b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp @@ -20,6 +20,7 @@ #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" @@ -63,6 +64,9 @@ STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); +STATISTIC(NumAndsAdded, + "Number of and mask instructions added to form ext loads"); +STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); @@ -109,25 +113,18 @@ static cl::opt<bool> StressExtLdPromotion( namespace { typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; -struct TypeIsSExt { - Type *Ty; - bool IsSExt; - TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} -}; +typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; class TypePromotionTransaction; class CodeGenPrepare : public FunctionPass { - /// TLI - Keep a pointer of a TargetLowering to consult for determining - /// transformation profitability. const TargetMachine *TM; const TargetLowering *TLI; const TargetTransformInfo *TTI; const TargetLibraryInfo *TLInfo; - /// CurInstIterator - As we scan instructions optimizing them, this is the - /// next instruction to optimize. Xforms that can invalidate this should - /// update it. + /// As we scan instructions optimizing them, this is the next instruction + /// to optimize. Transforms that can invalidate this should update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. @@ -141,10 +138,10 @@ class TypePromotionTransaction; /// promotion for the current function. InstrToOrigTy PromotedInsts; - /// ModifiedDT - If CFG is modified in anyway. + /// True if CFG is modified in any way. bool ModifiedDT; - /// OptSize - True if optimizing for size. + /// True if optimizing for size. bool OptSize; /// DataLayout for the Function being processed. @@ -167,30 +164,33 @@ class TypePromotionTransaction; } private: - bool EliminateFallThrough(Function &F); - bool EliminateMostlyEmptyBlocks(Function &F); - bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; - void EliminateMostlyEmptyBlock(BasicBlock *BB); - bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); - bool OptimizeInst(Instruction *I, bool& ModifiedDT); - bool OptimizeMemoryInst(Instruction *I, Value *Addr, + bool eliminateFallThrough(Function &F); + bool eliminateMostlyEmptyBlocks(Function &F); + bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; + void eliminateMostlyEmptyBlock(BasicBlock *BB); + bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); + bool optimizeInst(Instruction *I, bool& ModifiedDT); + bool optimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy, unsigned AS); - bool OptimizeInlineAsmInst(CallInst *CS); - bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); - bool MoveExtToFormExtLoad(Instruction *&I); - bool OptimizeExtUses(Instruction *I); - bool OptimizeSelectInst(SelectInst *SI); - bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); - bool OptimizeExtractElementInst(Instruction *Inst); - bool DupRetToEnableTailCallOpts(BasicBlock *BB); - bool PlaceDbgValues(Function &F); + bool optimizeInlineAsmInst(CallInst *CS); + bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); + bool moveExtToFormExtLoad(Instruction *&I); + bool optimizeExtUses(Instruction *I); + bool optimizeLoadExt(LoadInst *I); + bool optimizeSelectInst(SelectInst *SI); + bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); + bool optimizeSwitchInst(SwitchInst *CI); + bool optimizeExtractElementInst(Instruction *Inst); + bool dupRetToEnableTailCallOpts(BasicBlock *BB); + bool placeDbgValues(Function &F); bool sinkAndCmp(Function &F); - bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, + bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, Instruction *&Inst, const SmallVectorImpl<Instruction *> &Exts, unsigned CreatedInstCost); bool splitBranchCondition(Function &F); bool simplifyOffsetableRelocate(Instruction &I); + void stripInvariantGroupMetadata(Instruction &I); }; } @@ -218,7 +218,7 @@ bool CodeGenPrepare::runOnFunction(Function &F) { TLI = TM->getSubtargetImpl(F)->getTargetLowering(); TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); + OptSize = F.optForSize(); /// This optimization identifies DIV instructions that can be /// profitably bypassed and carried out with a shorter, faster divide. @@ -231,12 +231,12 @@ bool CodeGenPrepare::runOnFunction(Function &F) { // Eliminate blocks that contain only PHI nodes and an // unconditional branch. - EverMadeChange |= EliminateMostlyEmptyBlocks(F); + EverMadeChange |= eliminateMostlyEmptyBlocks(F); // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. - EverMadeChange |= PlaceDbgValues(F); + EverMadeChange |= placeDbgValues(F); // If there is a mask, compare against zero, and branch that can be combined // into a single target instruction, push the mask and compare into branch @@ -251,9 +251,9 @@ bool CodeGenPrepare::runOnFunction(Function &F) { while (MadeChange) { MadeChange = false; for (Function::iterator I = F.begin(); I != F.end(); ) { - BasicBlock *BB = I++; + BasicBlock *BB = &*I++; bool ModifiedDTOnIteration = false; - MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); + MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); // Restart BB iteration if the dominator tree of the Function was changed if (ModifiedDTOnIteration) @@ -296,7 +296,7 @@ bool CodeGenPrepare::runOnFunction(Function &F) { // Merge pairs of basic blocks with unconditional branches, connected by // a single edge. if (EverMadeChange || MadeChange) - MadeChange |= EliminateFallThrough(F); + MadeChange |= eliminateFallThrough(F); EverMadeChange |= MadeChange; } @@ -314,14 +314,14 @@ bool CodeGenPrepare::runOnFunction(Function &F) { return EverMadeChange; } -/// EliminateFallThrough - Merge basic blocks which are connected -/// by a single edge, where one of the basic blocks has a single successor -/// pointing to the other basic block, which has a single predecessor. -bool CodeGenPrepare::EliminateFallThrough(Function &F) { +/// Merge basic blocks which are connected by a single edge, where one of the +/// basic blocks has a single successor pointing to the other basic block, +/// which has a single predecessor. +bool CodeGenPrepare::eliminateFallThrough(Function &F) { bool Changed = false; // Scan all of the blocks in the function, except for the entry block. for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { - BasicBlock *BB = I++; + BasicBlock *BB = &*I++; // If the destination block has a single pred, then this is a trivial // edge, just collapse it. BasicBlock *SinglePred = BB->getSinglePredecessor(); @@ -342,22 +342,21 @@ bool CodeGenPrepare::EliminateFallThrough(Function &F) { BB->moveBefore(&BB->getParent()->getEntryBlock()); // We have erased a block. Update the iterator. - I = BB; + I = BB->getIterator(); } } return Changed; } -/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, -/// debug info directives, and an unconditional branch. Passes before isel -/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for -/// isel. Start by eliminating these blocks so we can split them the way we -/// want them. -bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { +/// Eliminate blocks that contain only PHI nodes, debug info directives, and an +/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split +/// edges in ways that are non-optimal for isel. Start by eliminating these +/// blocks so we can split them the way we want them. +bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { - BasicBlock *BB = I++; + BasicBlock *BB = &*I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); @@ -366,7 +365,7 @@ bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. - BasicBlock::iterator BBI = BI; + BasicBlock::iterator BBI = BI->getIterator(); if (BBI != BB->begin()) { --BBI; while (isa<DbgInfoIntrinsic>(BBI)) { @@ -383,19 +382,19 @@ bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { if (DestBB == BB) continue; - if (!CanMergeBlocks(BB, DestBB)) + if (!canMergeBlocks(BB, DestBB)) continue; - EliminateMostlyEmptyBlock(BB); + eliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } -/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a -/// single uncond branch between them, and BB contains no other non-phi +/// Return true if we can merge BB into DestBB if there is a single +/// unconditional branch between them, and BB contains no other non-phi /// instructions. -bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, +bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), @@ -461,9 +460,9 @@ bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, } -/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and -/// an unconditional branch in it. -void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { +/// Eliminate a basic block that has only phi's and an unconditional branch in +/// it. +void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast<BranchInst>(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); @@ -594,6 +593,14 @@ simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, continue; } + if (RelocatedBase->getParent() != ToReplace->getParent()) { + // Base and derived relocates are in different basic blocks. + // In this case transform is only valid when base dominates derived + // relocate. However it would be too expensive to check dominance + // for each such relocate, so we skip the whole transformation. + continue; + } + Value *Base = ThisRelocate.getBasePtr(); auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); if (!Derived || Derived->getPointerOperand() != Base) @@ -631,21 +638,20 @@ simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, // In this case, we can not find the bitcast any more. So we insert a new bitcast // no matter there is already one or not. In this way, we can handle all cases, and // the extra bitcast should be optimized away in later passes. - Instruction *ActualRelocatedBase = RelocatedBase; + Value *ActualRelocatedBase = RelocatedBase; if (RelocatedBase->getType() != Base->getType()) { ActualRelocatedBase = - cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); + Builder.CreateBitCast(RelocatedBase, Base->getType()); } Value *Replacement = Builder.CreateGEP( Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); - Instruction *ReplacementInst = cast<Instruction>(Replacement); Replacement->takeName(ToReplace); // If the newly generated derived pointer's type does not match the original derived // pointer's type, cast the new derived pointer to match it. Same reasoning as above. - Instruction *ActualReplacement = ReplacementInst; - if (ReplacementInst->getType() != ToReplace->getType()) { + Value *ActualReplacement = Replacement; + if (Replacement->getType() != ToReplace->getType()) { ActualReplacement = - cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); + Builder.CreateBitCast(Replacement, ToReplace->getType()); } ToReplace->replaceAllUsesWith(ActualReplacement); ToReplace->eraseFromParent(); @@ -723,6 +729,12 @@ static bool SinkCast(CastInst *CI) { // Preincrement use iterator so we don't invalidate it. ++UI; + // If the block selected to receive the cast is an EH pad that does not + // allow non-PHI instructions before the terminator, we can't sink the + // cast. + if (UserBB->getTerminator()->isEHPad()) + continue; + // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; @@ -731,9 +743,9 @@ static bool SinkCast(CastInst *CI) { if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - InsertedCast = - CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", - InsertPt); + assert(InsertPt != UserBB->end()); + InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), + CI->getType(), "", &*InsertPt); } // Replace a use of the cast with a use of the new cast. @@ -751,10 +763,9 @@ static bool SinkCast(CastInst *CI) { return MadeChange; } -/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop -/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), -/// sink it into user blocks to reduce the number of virtual -/// registers that must be created and coalesced. +/// If the specified cast instruction is a noop copy (e.g. it's casting from +/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to +/// reduce the number of virtual registers that must be created and coalesced. /// /// Return true if any changes are made. /// @@ -789,8 +800,8 @@ static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, return SinkCast(CI); } -/// CombineUAddWithOverflow - try to combine CI into a call to the -/// llvm.uadd.with.overflow intrinsic if possible. +/// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if +/// possible. /// /// Return true if any changes were made. static bool CombineUAddWithOverflow(CmpInst *CI) { @@ -818,7 +829,7 @@ static bool CombineUAddWithOverflow(CmpInst *CI) { assert(*AddI->user_begin() == CI && "expected!"); #endif - Module *M = CI->getParent()->getParent()->getParent(); + Module *M = CI->getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); auto *InsertPt = AddI->hasOneUse() ? CI : AddI; @@ -836,16 +847,16 @@ static bool CombineUAddWithOverflow(CmpInst *CI) { return true; } -/// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce -/// the number of virtual registers that must be created and coalesced. This is -/// a clear win except on targets with multiple condition code registers -/// (PowerPC), where it might lose; some adjustment may be wanted there. +/// Sink the given CmpInst into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. This is a clear win except on +/// targets with multiple condition code registers (PowerPC), where it might +/// lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool SinkCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); - /// InsertedCmp - Only insert a cmp in each block once. + /// Only insert a cmp in each block once. DenseMap<BasicBlock*, CmpInst*> InsertedCmps; bool MadeChange = false; @@ -872,10 +883,10 @@ static bool SinkCmpExpression(CmpInst *CI) { if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); InsertedCmp = - CmpInst::Create(CI->getOpcode(), - CI->getPredicate(), CI->getOperand(0), - CI->getOperand(1), "", InsertPt); + CmpInst::Create(CI->getOpcode(), CI->getPredicate(), + CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); } // Replace a use of the cmp with a use of the new cmp. @@ -903,8 +914,8 @@ static bool OptimizeCmpExpression(CmpInst *CI) { return false; } -/// isExtractBitsCandidateUse - Check if the candidates could -/// be combined with shift instruction, which includes: +/// Check if the candidates could be combined with a shift instruction, which +/// includes: /// 1. Truncate instruction /// 2. And instruction and the imm is a mask of the low bits: /// imm & (imm+1) == 0 @@ -922,8 +933,7 @@ static bool isExtractBitsCandidateUse(Instruction *User) { return true; } -/// SinkShiftAndTruncate - sink both shift and truncate instruction -/// to the use of truncate's BB. +/// Sink both shift and truncate instruction to the use of truncate's BB. static bool SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, @@ -970,20 +980,22 @@ SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, if (!InsertedShift && !InsertedTrunc) { BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); + assert(InsertPt != TruncUserBB->end()); // Sink the shift if (ShiftI->getOpcode() == Instruction::AShr) - InsertedShift = - BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); else - InsertedShift = - BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); // Sink the trunc BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); TruncInsertPt++; + assert(TruncInsertPt != TruncUserBB->end()); InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, - TruncI->getType(), "", TruncInsertPt); + TruncI->getType(), "", &*TruncInsertPt); MadeChange = true; @@ -993,10 +1005,10 @@ SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, return MadeChange; } -/// OptimizeExtractBits - sink the shift *right* instruction into user blocks if -/// the uses could potentially be combined with this shift instruction and -/// generate BitExtract instruction. It will only be applied if the architecture -/// supports BitExtract instruction. Here is an example: +/// Sink the shift *right* instruction into user blocks if the uses could +/// potentially be combined with this shift instruction and generate BitExtract +/// instruction. It will only be applied if the architecture supports BitExtract +/// instruction. Here is an example: /// BB1: /// %x.extract.shift = lshr i64 %arg1, 32 /// BB2: @@ -1067,13 +1079,14 @@ static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, if (!InsertedShift) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); if (ShiftI->getOpcode() == Instruction::AShr) - InsertedShift = - BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); else - InsertedShift = - BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); MadeChange = true; } @@ -1089,10 +1102,10 @@ static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, return MadeChange; } -// ScalarizeMaskedLoad() translates masked load intrinsic, like +// Translate a masked load intrinsic like // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, // <16 x i1> %mask, <16 x i32> %passthru) -// to a chain of basic blocks, whith loading element one-by-one if +// to a chain of basic blocks, with loading element one-by-one if // the appropriate mask bit is set // // %1 = bitcast i8* %addr to i32* @@ -1126,35 +1139,68 @@ static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, // static void ScalarizeMaskedLoad(CallInst *CI) { Value *Ptr = CI->getArgOperand(0); - Value *Src0 = CI->getArgOperand(3); + Value *Alignment = CI->getArgOperand(1); Value *Mask = CI->getArgOperand(2); - VectorType *VecType = dyn_cast<VectorType>(CI->getType()); - Type *EltTy = VecType->getElementType(); + Value *Src0 = CI->getArgOperand(3); + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + VectorType *VecType = dyn_cast<VectorType>(CI->getType()); assert(VecType && "Unexpected return type of masked load intrinsic"); + Type *EltTy = CI->getType()->getVectorElementType(); + IRBuilder<> Builder(CI->getContext()); Instruction *InsertPt = CI; BasicBlock *IfBlock = CI->getParent(); BasicBlock *CondBlock = nullptr; BasicBlock *PrevIfBlock = CI->getParent(); - Builder.SetInsertPoint(InsertPt); + Builder.SetInsertPoint(InsertPt); Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + // Short-cut if the mask is all-true. + bool IsAllOnesMask = isa<Constant>(Mask) && + cast<Constant>(Mask)->isAllOnesValue(); + + if (IsAllOnesMask) { + Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + // Adjust alignment for the scalar instruction. + AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); // Bitcast %addr fron i8* to EltTy* Type *NewPtrType = EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); + unsigned VectorWidth = VecType->getNumElements(); + Value *UndefVal = UndefValue::get(VecType); // The result vector Value *VResult = UndefVal; + if (isa<ConstantVector>(Mask)) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); + VResult = Builder.CreateInsertElement(VResult, Load, + Builder.getInt32(Idx)); + } + Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + PHINode *Phi = nullptr; Value *PrevPhi = UndefVal; - unsigned VectorWidth = VecType->getNumElements(); for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { // Fill the "else" block, created in the previous iteration @@ -1182,16 +1228,17 @@ static void ScalarizeMaskedLoad(CallInst *CI) { // %Elt = load i32* %EltAddr // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx // - CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); + CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); Builder.SetInsertPoint(InsertPt); Value *Gep = Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); - LoadInst* Load = Builder.CreateLoad(Gep, false); + LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); // Create "else" block, fill it in the next iteration - BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); + BasicBlock *NewIfBlock = + CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); Builder.SetInsertPoint(InsertPt); Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); @@ -1208,7 +1255,7 @@ static void ScalarizeMaskedLoad(CallInst *CI) { CI->eraseFromParent(); } -// ScalarizeMaskedStore() translates masked store intrinsic, like +// Translate a masked store intrinsic, like // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, // <16 x i1> %mask) // to a chain of basic blocks, that stores element one-by-one if @@ -1237,34 +1284,61 @@ static void ScalarizeMaskedLoad(CallInst *CI) { // br label %else2 // . . . static void ScalarizeMaskedStore(CallInst *CI) { - Value *Ptr = CI->getArgOperand(1); Value *Src = CI->getArgOperand(0); + Value *Ptr = CI->getArgOperand(1); + Value *Alignment = CI->getArgOperand(2); Value *Mask = CI->getArgOperand(3); + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); VectorType *VecType = dyn_cast<VectorType>(Src->getType()); - Type *EltTy = VecType->getElementType(); - assert(VecType && "Unexpected data type in masked store intrinsic"); + Type *EltTy = VecType->getElementType(); + IRBuilder<> Builder(CI->getContext()); Instruction *InsertPt = CI; BasicBlock *IfBlock = CI->getParent(); Builder.SetInsertPoint(InsertPt); Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + // Short-cut if the mask is all-true. + bool IsAllOnesMask = isa<Constant>(Mask) && + cast<Constant>(Mask)->isAllOnesValue(); + + if (IsAllOnesMask) { + Builder.CreateAlignedStore(Src, Ptr, AlignVal); + CI->eraseFromParent(); + return; + } + + // Adjust alignment for the scalar instruction. + AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); // Bitcast %addr fron i8* to EltTy* Type *NewPtrType = EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); - unsigned VectorWidth = VecType->getNumElements(); + + if (isa<ConstantVector>(Mask)) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + Builder.CreateAlignedStore(OneElt, Gep, AlignVal); + } + CI->eraseFromParent(); + return; + } + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { // Fill the "else" block, created in the previous iteration // // %mask_1 = extractelement <16 x i1> %mask, i32 Idx // %to_store = icmp eq i1 %mask_1, true - // br i1 %to_load, label %cond.store, label %else + // br i1 %to_store, label %cond.store, label %else // Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, @@ -1276,13 +1350,146 @@ static void ScalarizeMaskedStore(CallInst *CI) { // %EltAddr = getelementptr i32* %1, i32 0 // %store i32 %OneElt, i32* %EltAddr // - BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); + BasicBlock *CondBlock = + IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); Builder.SetInsertPoint(InsertPt); - + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); Value *Gep = Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); - Builder.CreateStore(OneElt, Gep); + Builder.CreateAlignedStore(OneElt, Gep, AlignVal); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = + CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + IfBlock = NewIfBlock; + } + CI->eraseFromParent(); +} + +// Translate a masked gather intrinsic like +// <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, +// <16 x i1> %Mask, <16 x i32> %Src) +// to a chain of basic blocks, with loading element one-by-one if +// the appropriate mask bit is set +// +// % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind +// % Mask0 = extractelement <16 x i1> %Mask, i32 0 +// % ToLoad0 = icmp eq i1 % Mask0, true +// br i1 % ToLoad0, label %cond.load, label %else +// +// cond.load: +// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 +// % Load0 = load i32, i32* % Ptr0, align 4 +// % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 +// br label %else +// +// else: +// %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] +// % Mask1 = extractelement <16 x i1> %Mask, i32 1 +// % ToLoad1 = icmp eq i1 % Mask1, true +// br i1 % ToLoad1, label %cond.load1, label %else2 +// +// cond.load1: +// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 +// % Load1 = load i32, i32* % Ptr1, align 4 +// % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 +// br label %else2 +// . . . +// % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src +// ret <16 x i32> %Result +static void ScalarizeMaskedGather(CallInst *CI) { + Value *Ptrs = CI->getArgOperand(0); + Value *Alignment = CI->getArgOperand(1); + Value *Mask = CI->getArgOperand(2); + Value *Src0 = CI->getArgOperand(3); + + VectorType *VecType = dyn_cast<VectorType>(CI->getType()); + + assert(VecType && "Unexpected return type of masked load intrinsic"); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + BasicBlock *CondBlock = nullptr; + BasicBlock *PrevIfBlock = CI->getParent(); + Builder.SetInsertPoint(InsertPt); + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + Value *UndefVal = UndefValue::get(VecType); + + // The result vector + Value *VResult = UndefVal; + unsigned VectorWidth = VecType->getNumElements(); + + // Shorten the way if the mask is a vector of constants. + bool IsConstMask = isa<ConstantVector>(Mask); + + if (IsConstMask) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, + "Load" + Twine(Idx)); + VResult = Builder.CreateInsertElement(VResult, Load, + Builder.getInt32(Idx), + "Res" + Twine(Idx)); + } + Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + PHINode *Phi = nullptr; + Value *PrevPhi = UndefVal; + + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + + // Fill the "else" block, created in the previous iteration + // + // %Mask1 = extractelement <16 x i1> %Mask, i32 1 + // %ToLoad1 = icmp eq i1 %Mask1, true + // br i1 %ToLoad1, label %cond.load, label %else + // + if (Idx > 0) { + Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + PrevPhi = Phi; + VResult = Phi; + } + + Value *Predicate = Builder.CreateExtractElement(Mask, + Builder.getInt32(Idx), + "Mask" + Twine(Idx)); + Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1), + "ToLoad" + Twine(Idx)); + + // Create "cond" block + // + // %EltAddr = getelementptr i32* %1, i32 0 + // %Elt = load i32* %EltAddr + // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx + // + CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); + Builder.SetInsertPoint(InsertPt); + + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, + "Load" + Twine(Idx)); + VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), + "Res" + Twine(Idx)); // Create "else" block, fill it in the next iteration BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); @@ -1290,12 +1497,204 @@ static void ScalarizeMaskedStore(CallInst *CI) { Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); OldBr->eraseFromParent(); + PrevIfBlock = IfBlock; IfBlock = NewIfBlock; } + + Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); + CI->replaceAllUsesWith(NewI); CI->eraseFromParent(); } -bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { +// Translate a masked scatter intrinsic, like +// void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, +// <16 x i1> %Mask) +// to a chain of basic blocks, that stores element one-by-one if +// the appropriate mask bit is set. +// +// % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind +// % Mask0 = extractelement <16 x i1> % Mask, i32 0 +// % ToStore0 = icmp eq i1 % Mask0, true +// br i1 %ToStore0, label %cond.store, label %else +// +// cond.store: +// % Elt0 = extractelement <16 x i32> %Src, i32 0 +// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 +// store i32 %Elt0, i32* % Ptr0, align 4 +// br label %else +// +// else: +// % Mask1 = extractelement <16 x i1> % Mask, i32 1 +// % ToStore1 = icmp eq i1 % Mask1, true +// br i1 % ToStore1, label %cond.store1, label %else2 +// +// cond.store1: +// % Elt1 = extractelement <16 x i32> %Src, i32 1 +// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 +// store i32 % Elt1, i32* % Ptr1, align 4 +// br label %else2 +// . . . +static void ScalarizeMaskedScatter(CallInst *CI) { + Value *Src = CI->getArgOperand(0); + Value *Ptrs = CI->getArgOperand(1); + Value *Alignment = CI->getArgOperand(2); + Value *Mask = CI->getArgOperand(3); + + assert(isa<VectorType>(Src->getType()) && + "Unexpected data type in masked scatter intrinsic"); + assert(isa<VectorType>(Ptrs->getType()) && + isa<PointerType>(Ptrs->getType()->getVectorElementType()) && + "Vector of pointers is expected in masked scatter intrinsic"); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + Builder.SetInsertPoint(InsertPt); + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + unsigned VectorWidth = Src->getType()->getVectorNumElements(); + + // Shorten the way if the mask is a vector of constants. + bool IsConstMask = isa<ConstantVector>(Mask); + + if (IsConstMask) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), + "Elt" + Twine(Idx)); + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); + } + CI->eraseFromParent(); + return; + } + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + // Fill the "else" block, created in the previous iteration + // + // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx + // % ToStore = icmp eq i1 % Mask1, true + // br i1 % ToStore, label %cond.store, label %else + // + Value *Predicate = Builder.CreateExtractElement(Mask, + Builder.getInt32(Idx), + "Mask" + Twine(Idx)); + Value *Cmp = + Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1), + "ToStore" + Twine(Idx)); + + // Create "cond" block + // + // % Elt1 = extractelement <16 x i32> %Src, i32 1 + // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 + // %store i32 % Elt1, i32* % Ptr1 + // + BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); + Builder.SetInsertPoint(InsertPt); + + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), + "Elt" + Twine(Idx)); + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + IfBlock = NewIfBlock; + } + CI->eraseFromParent(); +} + +/// If counting leading or trailing zeros is an expensive operation and a zero +/// input is defined, add a check for zero to avoid calling the intrinsic. +/// +/// We want to transform: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) +/// +/// into: +/// entry: +/// %cmpz = icmp eq i64 %A, 0 +/// br i1 %cmpz, label %cond.end, label %cond.false +/// cond.false: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) +/// br label %cond.end +/// cond.end: +/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] +/// +/// If the transform is performed, return true and set ModifiedDT to true. +static bool despeculateCountZeros(IntrinsicInst *CountZeros, + const TargetLowering *TLI, + const DataLayout *DL, + bool &ModifiedDT) { + if (!TLI || !DL) + return false; + + // If a zero input is undefined, it doesn't make sense to despeculate that. + if (match(CountZeros->getOperand(1), m_One())) + return false; + + // If it's cheap to speculate, there's nothing to do. + auto IntrinsicID = CountZeros->getIntrinsicID(); + if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || + (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) + return false; + + // Only handle legal scalar cases. Anything else requires too much work. + Type *Ty = CountZeros->getType(); + unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); + if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) + return false; + + // The intrinsic will be sunk behind a compare against zero and branch. + BasicBlock *StartBlock = CountZeros->getParent(); + BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); + + // Create another block after the count zero intrinsic. A PHI will be added + // in this block to select the result of the intrinsic or the bit-width + // constant if the input to the intrinsic is zero. + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); + BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); + + // Set up a builder to create a compare, conditional branch, and PHI. + IRBuilder<> Builder(CountZeros->getContext()); + Builder.SetInsertPoint(StartBlock->getTerminator()); + Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); + + // Replace the unconditional branch that was created by the first split with + // a compare against zero and a conditional branch. + Value *Zero = Constant::getNullValue(Ty); + Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); + Builder.CreateCondBr(Cmp, EndBlock, CallBlock); + StartBlock->getTerminator()->eraseFromParent(); + + // Create a PHI in the end block to select either the output of the intrinsic + // or the bit width of the operand. + Builder.SetInsertPoint(&EndBlock->front()); + PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); + CountZeros->replaceAllUsesWith(PN); + Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); + PN->addIncoming(BitWidth, StartBlock); + PN->addIncoming(CountZeros, CallBlock); + + // We are explicitly handling the zero case, so we can set the intrinsic's + // undefined zero argument to 'true'. This will also prevent reprocessing the + // intrinsic; we only despeculate when a zero input is defined. + CountZeros->setArgOperand(1, Builder.getTrue()); + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. @@ -1311,7 +1710,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { return true; } // Sink address computing for memory operands into the block. - if (OptimizeInlineAsmInst(CI)) + if (optimizeInlineAsmInst(CI)) return true; } @@ -1372,14 +1771,14 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakVH to hold onto it in case this // happens. - WeakVH IterHandle(CurInstIterator); + WeakVH IterHandle(&*CurInstIterator); replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); // If the iterator instruction was recursively deleted, start over at the // start of the block. - if (IterHandle != CurInstIterator) { + if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } @@ -1387,7 +1786,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { } case Intrinsic::masked_load: { // Scalarize unsupported vector masked load - if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { + if (!TTI->isLegalMaskedLoad(CI->getType())) { ScalarizeMaskedLoad(CI); ModifiedDT = true; return true; @@ -1395,13 +1794,29 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { return false; } case Intrinsic::masked_store: { - if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { + if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { ScalarizeMaskedStore(CI); ModifiedDT = true; return true; } return false; } + case Intrinsic::masked_gather: { + if (!TTI->isLegalMaskedGather(CI->getType())) { + ScalarizeMaskedGather(CI); + ModifiedDT = true; + return true; + } + return false; + } + case Intrinsic::masked_scatter: { + if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { + ScalarizeMaskedScatter(CI); + ModifiedDT = true; + return true; + } + return false; + } case Intrinsic::aarch64_stlxr: case Intrinsic::aarch64_stxr: { ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); @@ -1415,6 +1830,15 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { InsertedInsts.insert(ExtVal); return true; } + case Intrinsic::invariant_group_barrier: + II->replaceAllUsesWith(II->getArgOperand(0)); + II->eraseFromParent(); + return true; + + case Intrinsic::cttz: + case Intrinsic::ctlz: + // If counting zeros is expensive, try to avoid it. + return despeculateCountZeros(II, TLI, DL, ModifiedDT); } if (TLI) { @@ -1426,7 +1850,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { Type *AccessTy; if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) while (!PtrOps.empty()) - if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) + if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) return true; } } @@ -1447,9 +1871,8 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { return false; } -/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return -/// instructions to the predecessor to enable tail call optimizations. The -/// case it is currently looking for is: +/// Look for opportunities to duplicate return instructions to the predecessor +/// to enable tail call optimizations. The case it is currently looking for is: /// @code /// bb0: /// %tmp0 = tail call i32 @f0() @@ -1478,7 +1901,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// @endcode -bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { +bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { if (!TLI) return false; @@ -1597,7 +2020,7 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { namespace { -/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode +/// This is an extended version of TargetLowering::AddrMode /// which holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg; @@ -1709,10 +2132,10 @@ class TypePromotionTransaction { public: /// \brief Record the position of \p Inst. InsertionHandler(Instruction *Inst) { - BasicBlock::iterator It = Inst; + BasicBlock::iterator It = Inst->getIterator(); HasPrevInstruction = (It != (Inst->getParent()->begin())); if (HasPrevInstruction) - Point.PrevInst = --It; + Point.PrevInst = &*--It; else Point.BB = Inst->getParent(); } @@ -1724,7 +2147,7 @@ class TypePromotionTransaction { Inst->removeFromParent(); Inst->insertAfter(Point.PrevInst); } else { - Instruction *Position = Point.BB->getFirstInsertionPt(); + Instruction *Position = &*Point.BB->getFirstInsertionPt(); if (Inst->getParent()) Inst->moveBefore(Position); else @@ -1797,7 +2220,7 @@ class TypePromotionTransaction { Value *Val = Inst->getOperand(It); OriginalValues.push_back(Val); // Set a dummy one. - // We could use OperandSetter here, but that would implied an overhead + // We could use OperandSetter here, but that would imply an overhead // that we are not willing to pay. Inst->setOperand(It, UndefValue::get(Val->getType())); } @@ -2111,7 +2534,7 @@ class AddressingModeMatcher { unsigned AddrSpace; Instruction *MemoryInst; - /// AddrMode - This is the addressing mode that we're building up. This is + /// This is the addressing mode that we're building up. This is /// part of the return value of this addressing mode matching stuff. ExtAddrMode &AddrMode; @@ -2122,9 +2545,8 @@ class AddressingModeMatcher { /// The ongoing transaction where every action should be registered. TypePromotionTransaction &TPT; - /// IgnoreProfitability - This is set to true when we should not do - /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode - /// always returns true. + /// This is set to true when we should not do profitability checks. + /// When true, IsProfitableToFoldIntoAddressingMode always returns true. bool IgnoreProfitability; AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, @@ -2143,7 +2565,7 @@ class AddressingModeMatcher { } public: - /// Match - Find the maximal addressing mode that a load/store of V can fold, + /// Find the maximal addressing mode that a load/store of V can fold, /// give an access type of AccessTy. This returns a list of involved /// instructions in AddrModeInsts. /// \p InsertedInsts The instructions inserted by other CodeGenPrepare @@ -2161,32 +2583,32 @@ public: bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, MemoryInst, Result, InsertedInsts, - PromotedInsts, TPT).MatchAddr(V, 0); + PromotedInsts, TPT).matchAddr(V, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); return Result; } private: - bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); - bool MatchAddr(Value *V, unsigned Depth); - bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, + bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); + bool matchAddr(Value *V, unsigned Depth); + bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, bool *MovedAway = nullptr); - bool IsProfitableToFoldIntoAddressingMode(Instruction *I, + bool isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter); - bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); - bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost, + bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); + bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const; }; -/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. +/// Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. -bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, +bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) - return MatchAddr(ScaleReg, Depth); + return matchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) @@ -2233,9 +2655,9 @@ bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, return true; } -/// MightBeFoldableInst - This is a little filter, which returns true if an -/// addressing computation involving I might be folded into a load/store -/// accessing it. This doesn't need to be perfect, but needs to accept at least +/// This is a little filter, which returns true if an addressing computation +/// involving I might be folded into a load/store accessing it. +/// This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { @@ -2301,9 +2723,7 @@ class TypePromotionHelper { /// \brief Utility function to determine if \p OpIdx should be promoted when /// promoting \p Inst. static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { - if (isa<SelectInst>(Inst) && OpIdx == 0) - return false; - return true; + return !(isa<SelectInst>(Inst) && OpIdx == 0); } /// \brief Utility function to promote the operand of \p Ext when this @@ -2413,8 +2833,7 @@ bool TypePromotionHelper::canGetThrough(const Instruction *Inst, Value *OpndVal = Inst->getOperand(0); // Check if we can use this operand in the extension. - // If the type is larger than the result type of the extension, - // we cannot. + // If the type is larger than the result type of the extension, we cannot. if (!OpndVal->getType()->isIntegerTy() || OpndVal->getType()->getIntegerBitWidth() > ConsideredExtType->getIntegerBitWidth()) @@ -2433,18 +2852,16 @@ bool TypePromotionHelper::canGetThrough(const Instruction *Inst, // #1 get the type of the operand and check the kind of the extended bits. const Type *OpndType; InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); - if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) - OpndType = It->second.Ty; + if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) + OpndType = It->second.getPointer(); else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) OpndType = Opnd->getOperand(0)->getType(); else return false; - // #2 check that the truncate just drop extended bits. - if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) - return true; - - return false; + // #2 check that the truncate just drops extended bits. + return Inst->getType()->getIntegerBitWidth() >= + OpndType->getIntegerBitWidth(); } TypePromotionHelper::Action TypePromotionHelper::getAction( @@ -2553,7 +2970,7 @@ Value *TypePromotionHelper::promoteOperandForOther( } TPT.replaceAllUsesWith(ExtOpnd, Trunc); - // Restore the operand of Ext (which has been replace by the previous call + // Restore the operand of Ext (which has been replaced by the previous call // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. TPT.setOperand(Ext, 0, ExtOpnd); } @@ -2631,8 +3048,7 @@ Value *TypePromotionHelper::promoteOperandForOther( return ExtOpnd; } -/// IsPromotionProfitable - Check whether or not promoting an instruction -/// to a wider type was profitable. +/// Check whether or not promoting an instruction to a wider type is profitable. /// \p NewCost gives the cost of extension instructions created by the /// promotion. /// \p OldCost gives the cost of extension instructions before the promotion @@ -2640,7 +3056,7 @@ Value *TypePromotionHelper::promoteOperandForOther( /// matched in the addressing mode the promotion. /// \p PromotedOperand is the value that has been promoted. /// \return True if the promotion is profitable, false otherwise. -bool AddressingModeMatcher::IsPromotionProfitable( +bool AddressingModeMatcher::isPromotionProfitable( unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); // The cost of the new extensions is greater than the cost of the @@ -2656,9 +3072,9 @@ bool AddressingModeMatcher::IsPromotionProfitable( return isPromotedInstructionLegal(TLI, DL, PromotedOperand); } -/// MatchOperationAddr - Given an instruction or constant expr, see if we can -/// fold the operation into the addressing mode. If so, update the addressing -/// mode and return true, otherwise return false without modifying AddrMode. +/// Given an instruction or constant expr, see if we can fold the operation +/// into the addressing mode. If so, update the addressing mode and return +/// true, otherwise return false without modifying AddrMode. /// If \p MovedAway is not NULL, it contains the information of whether or /// not AddrInst has to be folded into the addressing mode on success. /// If \p MovedAway == true, \p AddrInst will not be part of the addressing @@ -2667,7 +3083,7 @@ bool AddressingModeMatcher::IsPromotionProfitable( /// This state can happen when AddrInst is a sext, since it may be moved away. /// Therefore, AddrInst may not be valid when MovedAway is true and it must /// not be referenced anymore. -bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, +bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, bool *MovedAway) { // Avoid exponential behavior on extremely deep expression trees. @@ -2680,13 +3096,13 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. - return MatchAddr(AddrInst->getOperand(0), Depth); + return matchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: { auto AS = AddrInst->getType()->getPointerAddressSpace(); auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) - return MatchAddr(AddrInst->getOperand(0), Depth); + return matchAddr(AddrInst->getOperand(0), Depth); return false; } case Instruction::BitCast: @@ -2698,14 +3114,14 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) - return MatchAddr(AddrInst->getOperand(0), Depth); + return matchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::AddrSpaceCast: { unsigned SrcAS = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) - return MatchAddr(AddrInst->getOperand(0), Depth); + return matchAddr(AddrInst->getOperand(0), Depth); return false; } case Instruction::Add: { @@ -2719,8 +3135,8 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); - if (MatchAddr(AddrInst->getOperand(1), Depth+1) && - MatchAddr(AddrInst->getOperand(0), Depth+1)) + if (matchAddr(AddrInst->getOperand(1), Depth+1) && + matchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. @@ -2729,8 +3145,8 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, TPT.rollback(LastKnownGood); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. - if (MatchAddr(AddrInst->getOperand(0), Depth+1) && - MatchAddr(AddrInst->getOperand(1), Depth+1)) + if (matchAddr(AddrInst->getOperand(0), Depth+1) && + matchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. @@ -2752,7 +3168,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, if (Opcode == Instruction::Shl) Scale = 1LL << Scale; - return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); + return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most @@ -2791,7 +3207,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, if (ConstantOffset == 0 || TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { // Check to see if we can fold the base pointer in too. - if (MatchAddr(AddrInst->getOperand(0), Depth+1)) + if (matchAddr(AddrInst->getOperand(0), Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; @@ -2806,7 +3222,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. - if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { + if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; @@ -2818,7 +3234,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, } // Match the remaining variable portion of the GEP. - if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. @@ -2829,7 +3245,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; - if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; @@ -2879,12 +3295,12 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); - if (!MatchAddr(PromotedOperand, Depth) || - // The total of the new cost is equals to the cost of the created + if (!matchAddr(PromotedOperand, Depth) || + // The total of the new cost is equal to the cost of the created // instructions. - // The total of the old cost is equals to the cost of the extension plus + // The total of the old cost is equal to the cost of the extension plus // what we have saved in the addressing mode. - !IsPromotionProfitable(CreatedInstsCost, + !isPromotionProfitable(CreatedInstsCost, ExtCost + (AddrModeInsts.size() - OldSize), PromotedOperand)) { AddrMode = BackupAddrMode; @@ -2899,12 +3315,12 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, return false; } -/// MatchAddr - If we can, try to add the value of 'Addr' into the current -/// addressing mode. If Addr can't be added to AddrMode this returns false and -/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type -/// or intptr_t for the target. +/// If we can, try to add the value of 'Addr' into the current addressing mode. +/// If Addr can't be added to AddrMode this returns false and leaves AddrMode +/// unmodified. This assumes that Addr is either a pointer type or intptr_t +/// for the target. /// -bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { +bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { // Start a transaction at this point that we will rollback if the matching // fails. TypePromotionTransaction::ConstRestorationPt LastKnownGood = @@ -2929,8 +3345,8 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { // Check to see if it is possible to fold this operation. bool MovedAway = false; - if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { - // This instruction may have been move away. If so, there is nothing + if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { + // This instruction may have been moved away. If so, there is nothing // to check here. if (MovedAway) return true; @@ -2938,7 +3354,7 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || - IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { + isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } @@ -2950,7 +3366,7 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { TPT.rollback(LastKnownGood); } } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { - if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) + if (matchOperationAddr(CE, CE->getOpcode(), Depth)) return true; TPT.rollback(LastKnownGood); } else if (isa<ConstantPointerNull>(Addr)) { @@ -2983,9 +3399,8 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { return false; } -/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified -/// inline asm call are due to memory operands. If so, return true, otherwise -/// return false. +/// Check to see if all uses of OpVal by the specified inline asm call are due +/// to memory operands. If so, return true, otherwise return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetMachine &TM) { const Function *F = CI->getParent()->getParent(); @@ -3011,8 +3426,8 @@ static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, return true; } -/// FindAllMemoryUses - Recursively walk all the uses of I until we find a -/// memory use. If we find an obviously non-foldable instruction, return true. +/// Recursively walk all the uses of I until we find a memory use. +/// If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses( Instruction *I, @@ -3059,11 +3474,11 @@ static bool FindAllMemoryUses( return false; } -/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at -/// the use site that we're folding it into. If so, there is no cost to -/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values -/// that we know are live at the instruction already. -bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, +/// Return true if Val is already known to be live at the use site that we're +/// folding it into. If so, there is no cost to include it in the addressing +/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the +/// instruction already. +bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) @@ -3085,11 +3500,11 @@ bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, return Val->isUsedInBasicBlock(MemoryInst->getParent()); } -/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing -/// mode of the machine to fold the specified instruction into a load or store -/// that ultimately uses it. However, the specified instruction has multiple -/// uses. Given this, it may actually increase register pressure to fold it -/// into the load. For example, consider this code: +/// It is possible for the addressing mode of the machine to fold the specified +/// instruction into a load or store that ultimately uses it. +/// However, the specified instruction has multiple uses. +/// Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 @@ -3107,7 +3522,7 @@ bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: -IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, +isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; @@ -3124,9 +3539,9 @@ IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. - if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = nullptr; - if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = nullptr; // If folding this instruction (and it's subexprs) didn't extend any live @@ -3171,7 +3586,7 @@ IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, MemoryInst, Result, InsertedInsts, PromotedInsts, TPT); Matcher.IgnoreProfitability = true; - bool Success = Matcher.MatchAddr(Address, 0); + bool Success = Matcher.matchAddr(Address, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); // The match was to check the profitability, the changes made are not @@ -3192,7 +3607,7 @@ IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, } // end anonymous namespace -/// IsNonLocalValue - Return true if the specified values are defined in a +/// Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast<Instruction>(V)) @@ -3200,16 +3615,15 @@ static bool IsNonLocalValue(Value *V, BasicBlock *BB) { return false; } -/// OptimizeMemoryInst - Load and Store Instructions often have -/// addressing modes that can do significant amounts of computation. As such, -/// instruction selection will try to get the load or store to do as much -/// computation as possible for the program. The problem is that isel can only -/// see within a single block. As such, we sink as much legal addressing mode -/// stuff into the block as possible. +/// Load and Store Instructions often have addressing modes that can do +/// significant amounts of computation. As such, instruction selection will try +/// to get the load or store to do as much computation as possible for the +/// program. The problem is that isel can only see within a single block. As +/// such, we sink as much legal addressing mode work into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. -bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, +bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, unsigned AddrSpace) { Value *Repl = Addr; @@ -3530,12 +3944,12 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, if (Repl->use_empty()) { // This can cause recursive deletion, which can invalidate our iterator. // Use a WeakVH to hold onto it in case this happens. - WeakVH IterHandle(CurInstIterator); + WeakVH IterHandle(&*CurInstIterator); BasicBlock *BB = CurInstIterator->getParent(); RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); - if (IterHandle != CurInstIterator) { + if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { // If the iterator instruction was recursively deleted, start over at the // start of the block. CurInstIterator = BB->begin(); @@ -3546,10 +3960,9 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, return true; } -/// OptimizeInlineAsmInst - If there are any memory operands, use -/// OptimizeMemoryInst to sink their address computing into the block when -/// possible / profitable. -bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { +/// If there are any memory operands, use OptimizeMemoryInst to sink their +/// address computing into the block when possible / profitable. +bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; const TargetRegisterInfo *TRI = @@ -3566,7 +3979,7 @@ bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); - MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); + MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } @@ -3646,7 +4059,7 @@ static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { /// %add = add nuw i64 %zext, 4 /// \encode /// Thanks to the promotion, we can match zext(load i32*) to i64. -bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, +bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, Instruction *&Inst, const SmallVectorImpl<Instruction *> &Exts, unsigned CreatedInstsCost = 0) { @@ -3696,7 +4109,7 @@ bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, } // The promotion is profitable. // Check if it exposes an ext(load). - (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); + (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || // If we have created a new extension, i.e., now we have two // extensions. We must make sure one of them is merged with @@ -3713,13 +4126,13 @@ bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, return false; } -/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same -/// basic block as the load, unless conditions are unfavorable. This allows -/// SelectionDAG to fold the extend into the load. +/// Move a zext or sext fed by a load into the same basic block as the load, +/// unless conditions are unfavorable. This allows SelectionDAG to fold the +/// extend into the load. /// \p I[in/out] the extension may be modified during the process if some /// promotions apply. /// -bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { +bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { // Try to promote a chain of computation if it allows to form // an extended load. TypePromotionTransaction TPT; @@ -3730,7 +4143,7 @@ bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { // Look for a load being extended. LoadInst *LI = nullptr; Instruction *OldExt = I; - bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); + bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); if (!LI || !I) { assert(!HasPromoted && !LI && "If we did not match any load instruction " "the code must remain the same"); @@ -3780,7 +4193,7 @@ bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { return true; } -bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { +bool CodeGenPrepare::optimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all @@ -3838,7 +4251,8 @@ bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); + assert(InsertPt != UserBB->end()); + InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); InsertedInsts.insert(InsertedTrunc); } @@ -3851,9 +4265,202 @@ bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { return MadeChange; } -/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be -/// turned into an explicit branch. -static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { +// Find loads whose uses only use some of the loaded value's bits. Add an "and" +// just after the load if the target can fold this into one extload instruction, +// with the hope of eliminating some of the other later "and" instructions using +// the loaded value. "and"s that are made trivially redundant by the insertion +// of the new "and" are removed by this function, while others (e.g. those whose +// path from the load goes through a phi) are left for isel to potentially +// remove. +// +// For example: +// +// b0: +// x = load i32 +// ... +// b1: +// y = and x, 0xff +// z = use y +// +// becomes: +// +// b0: +// x = load i32 +// x' = and x, 0xff +// ... +// b1: +// z = use x' +// +// whereas: +// +// b0: +// x1 = load i32 +// ... +// b1: +// x2 = load i32 +// ... +// b2: +// x = phi x1, x2 +// y = and x, 0xff +// +// becomes (after a call to optimizeLoadExt for each load): +// +// b0: +// x1 = load i32 +// x1' = and x1, 0xff +// ... +// b1: +// x2 = load i32 +// x2' = and x2, 0xff +// ... +// b2: +// x = phi x1', x2' +// y = and x, 0xff +// + +bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { + + if (!Load->isSimple() || + !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) + return false; + + // Skip loads we've already transformed or have no reason to transform. + if (Load->hasOneUse()) { + User *LoadUser = *Load->user_begin(); + if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && + !dyn_cast<PHINode>(LoadUser)) + return false; + } + + // Look at all uses of Load, looking through phis, to determine how many bits + // of the loaded value are needed. + SmallVector<Instruction *, 8> WorkList; + SmallPtrSet<Instruction *, 16> Visited; + SmallVector<Instruction *, 8> AndsToMaybeRemove; + for (auto *U : Load->users()) + WorkList.push_back(cast<Instruction>(U)); + + EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); + unsigned BitWidth = LoadResultVT.getSizeInBits(); + APInt DemandBits(BitWidth, 0); + APInt WidestAndBits(BitWidth, 0); + + while (!WorkList.empty()) { + Instruction *I = WorkList.back(); + WorkList.pop_back(); + + // Break use-def graph loops. + if (!Visited.insert(I).second) + continue; + + // For a PHI node, push all of its users. + if (auto *Phi = dyn_cast<PHINode>(I)) { + for (auto *U : Phi->users()) + WorkList.push_back(cast<Instruction>(U)); + continue; + } + + switch (I->getOpcode()) { + case llvm::Instruction::And: { + auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!AndC) + return false; + APInt AndBits = AndC->getValue(); + DemandBits |= AndBits; + // Keep track of the widest and mask we see. + if (AndBits.ugt(WidestAndBits)) + WidestAndBits = AndBits; + if (AndBits == WidestAndBits && I->getOperand(0) == Load) + AndsToMaybeRemove.push_back(I); + break; + } + + case llvm::Instruction::Shl: { + auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!ShlC) + return false; + uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); + auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); + DemandBits |= ShlDemandBits; + break; + } + + case llvm::Instruction::Trunc: { + EVT TruncVT = TLI->getValueType(*DL, I->getType()); + unsigned TruncBitWidth = TruncVT.getSizeInBits(); + auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); + DemandBits |= TruncBits; + break; + } + + default: + return false; + } + } + + uint32_t ActiveBits = DemandBits.getActiveBits(); + // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the + // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, + // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but + // (and (load x) 1) is not matched as a single instruction, rather as a LDR + // followed by an AND. + // TODO: Look into removing this restriction by fixing backends to either + // return false for isLoadExtLegal for i1 or have them select this pattern to + // a single instruction. + // + // Also avoid hoisting if we didn't see any ands with the exact DemandBits + // mask, since these are the only ands that will be removed by isel. + if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || + WidestAndBits != DemandBits) + return false; + + LLVMContext &Ctx = Load->getType()->getContext(); + Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); + EVT TruncVT = TLI->getValueType(*DL, TruncTy); + + // Reject cases that won't be matched as extloads. + if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || + !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) + return false; + + IRBuilder<> Builder(Load->getNextNode()); + auto *NewAnd = dyn_cast<Instruction>( + Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); + + // Replace all uses of load with new and (except for the use of load in the + // new and itself). + Load->replaceAllUsesWith(NewAnd); + NewAnd->setOperand(0, Load); + + // Remove any and instructions that are now redundant. + for (auto *And : AndsToMaybeRemove) + // Check that the and mask is the same as the one we decided to put on the + // new and. + if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { + And->replaceAllUsesWith(NewAnd); + if (&*CurInstIterator == And) + CurInstIterator = std::next(And->getIterator()); + And->eraseFromParent(); + ++NumAndUses; + } + + ++NumAndsAdded; + return true; +} + +/// Check if V (an operand of a select instruction) is an expensive instruction +/// that is only used once. +static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { + auto *I = dyn_cast<Instruction>(V); + // If it's safe to speculatively execute, then it should not have side + // effects; therefore, it's safe to sink and possibly *not* execute. + return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && + TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; +} + +/// Returns true if a SelectInst should be turned into an explicit branch. +static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, + SelectInst *SI) { // FIXME: This should use the same heuristics as IfConversion to determine // whether a select is better represented as a branch. This requires that // branch probability metadata is preserved for the select, which is not the @@ -3861,28 +4468,36 @@ static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); - // If the branch is predicted right, an out of order CPU can avoid blocking on - // the compare. Emit cmovs on compares with a memory operand as branches to - // avoid stalls on the load from memory. If the compare has more than one use - // there's probably another cmov or setcc around so it's not worth emitting a - // branch. - if (!Cmp) + // If a branch is predictable, an out-of-order CPU can avoid blocking on its + // comparison condition. If the compare has more than one use, there's + // probably another cmov or setcc around, so it's not worth emitting a branch. + if (!Cmp || !Cmp->hasOneUse()) return false; Value *CmpOp0 = Cmp->getOperand(0); Value *CmpOp1 = Cmp->getOperand(1); - // We check that the memory operand has one use to avoid uses of the loaded - // value directly after the compare, making branches unprofitable. - return Cmp->hasOneUse() && - ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || - (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); + // Emit "cmov on compare with a memory operand" as a branch to avoid stalls + // on a load from memory. But if the load is used more than once, do not + // change the select to a branch because the load is probably needed + // regardless of whether the branch is taken or not. + if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || + (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) + return true; + + // If either operand of the select is expensive and only needed on one side + // of the select, we should form a branch. + if (sinkSelectOperand(TTI, SI->getTrueValue()) || + sinkSelectOperand(TTI, SI->getFalseValue())) + return true; + + return false; } /// If we have a SelectInst that will likely profit from branch prediction, /// turn it into a branch. -bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { +bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); // Can we convert the 'select' to CF ? @@ -3902,34 +4517,97 @@ bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { // We have efficient codegen support for the select instruction. // Check if it is profitable to keep this 'select'. if (!TLI->isPredictableSelectExpensive() || - !isFormingBranchFromSelectProfitable(SI)) + !isFormingBranchFromSelectProfitable(TTI, SI)) return false; } ModifiedDT = true; + // Transform a sequence like this: + // start: + // %cmp = cmp uge i32 %a, %b + // %sel = select i1 %cmp, i32 %c, i32 %d + // + // Into: + // start: + // %cmp = cmp uge i32 %a, %b + // br i1 %cmp, label %select.true, label %select.false + // select.true: + // br label %select.end + // select.false: + // br label %select.end + // select.end: + // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] + // + // In addition, we may sink instructions that produce %c or %d from + // the entry block into the destination(s) of the new branch. + // If the true or false blocks do not contain a sunken instruction, that + // block and its branch may be optimized away. In that case, one side of the + // first branch will point directly to select.end, and the corresponding PHI + // predecessor block will be the start block. + // First, we split the block containing the select into 2 blocks. BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); - BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); + BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); - // Create a new block serving as the landing pad for the branch. - BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", - NextBlock->getParent(), NextBlock); - - // Move the unconditional branch from the block with the select in it into our - // landing pad block. + // Delete the unconditional branch that was just created by the split. StartBlock->getTerminator()->eraseFromParent(); - BranchInst::Create(NextBlock, SmallBlock); + + // These are the new basic blocks for the conditional branch. + // At least one will become an actual new basic block. + BasicBlock *TrueBlock = nullptr; + BasicBlock *FalseBlock = nullptr; + + // Sink expensive instructions into the conditional blocks to avoid executing + // them speculatively. + if (sinkSelectOperand(TTI, SI->getTrueValue())) { + TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", + EndBlock->getParent(), EndBlock); + auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); + auto *TrueInst = cast<Instruction>(SI->getTrueValue()); + TrueInst->moveBefore(TrueBranch); + } + if (sinkSelectOperand(TTI, SI->getFalseValue())) { + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", + EndBlock->getParent(), EndBlock); + auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + auto *FalseInst = cast<Instruction>(SI->getFalseValue()); + FalseInst->moveBefore(FalseBranch); + } + + // If there was nothing to sink, then arbitrarily choose the 'false' side + // for a new input value to the PHI. + if (TrueBlock == FalseBlock) { + assert(TrueBlock == nullptr && + "Unexpected basic block transform while optimizing select"); + + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", + EndBlock->getParent(), EndBlock); + BranchInst::Create(EndBlock, FalseBlock); + } // Insert the real conditional branch based on the original condition. - BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); + // If we did not create a new block for one of the 'true' or 'false' paths + // of the condition, it means that side of the branch goes to the end block + // directly and the path originates from the start block from the point of + // view of the new PHI. + if (TrueBlock == nullptr) { + BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); + TrueBlock = StartBlock; + } else if (FalseBlock == nullptr) { + BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); + FalseBlock = StartBlock; + } else { + BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); + } // The select itself is replaced with a PHI Node. - PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); + PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); PN->takeName(SI); - PN->addIncoming(SI->getTrueValue(), StartBlock); - PN->addIncoming(SI->getFalseValue(), SmallBlock); + PN->addIncoming(SI->getTrueValue(), TrueBlock); + PN->addIncoming(SI->getFalseValue(), FalseBlock); + SI->replaceAllUsesWith(PN); SI->eraseFromParent(); @@ -3955,7 +4633,7 @@ static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases /// it's often worth sinking a shufflevector splat down to its use so that /// codegen can spot all lanes are identical. -bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { +bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { BasicBlock *DefBB = SVI->getParent(); // Only do this xform if variable vector shifts are particularly expensive. @@ -3987,9 +4665,10 @@ bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { if (!InsertedShuffle) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), - SVI->getOperand(1), - SVI->getOperand(2), "", InsertPt); + assert(InsertPt != UserBB->end()); + InsertedShuffle = + new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), + SVI->getOperand(2), "", &*InsertPt); } UI->replaceUsesOfWith(SVI, InsertedShuffle); @@ -4005,6 +4684,49 @@ bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { return MadeChange; } +bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { + if (!TLI || !DL) + return false; + + Value *Cond = SI->getCondition(); + Type *OldType = Cond->getType(); + LLVMContext &Context = Cond->getContext(); + MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); + unsigned RegWidth = RegType.getSizeInBits(); + + if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) + return false; + + // If the register width is greater than the type width, expand the condition + // of the switch instruction and each case constant to the width of the + // register. By widening the type of the switch condition, subsequent + // comparisons (for case comparisons) will not need to be extended to the + // preferred register width, so we will potentially eliminate N-1 extends, + // where N is the number of cases in the switch. + auto *NewType = Type::getIntNTy(Context, RegWidth); + + // Zero-extend the switch condition and case constants unless the switch + // condition is a function argument that is already being sign-extended. + // In that case, we can avoid an unnecessary mask/extension by sign-extending + // everything instead. + Instruction::CastOps ExtType = Instruction::ZExt; + if (auto *Arg = dyn_cast<Argument>(Cond)) + if (Arg->hasSExtAttr()) + ExtType = Instruction::SExt; + + auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); + ExtInst->insertBefore(SI); + SI->setCondition(ExtInst); + for (SwitchInst::CaseIt Case : SI->cases()) { + APInt NarrowConst = Case.getCaseValue()->getValue(); + APInt WideConst = (ExtType == Instruction::ZExt) ? + NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); + Case.setValue(ConstantInt::get(Context, WideConst)); + } + + return true; +} + namespace { /// \brief Helper class to promote a scalar operation to a vector one. /// This class is used to move downward extractelement transition. @@ -4138,7 +4860,7 @@ class VectorPromoteHelper { /// \brief Generate a constant vector with \p Val with the same /// number of elements as the transition. /// \p UseSplat defines whether or not \p Val should be replicated - /// accross the whole vector. + /// across the whole vector. /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, /// otherwise we generate a vector with as many undef as possible: /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only @@ -4320,7 +5042,7 @@ void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { /// Some targets can do store(extractelement) with one instruction. /// Try to push the extractelement towards the stores when the target /// has this feature and this is profitable. -bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { +bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { unsigned CombineCost = UINT_MAX; if (DisableStoreExtract || !TLI || (!StressStoreExtract && @@ -4372,7 +5094,7 @@ bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { return false; } -bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { +bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { // Bail out if we inserted the instruction to prevent optimizations from // stepping on each other's toes. if (InsertedInsts.count(I)) @@ -4413,8 +5135,8 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { TargetLowering::TypeExpandInteger) { return SinkCast(CI); } else { - bool MadeChange = MoveExtToFormExtLoad(I); - return MadeChange | OptimizeExtUses(I); + bool MadeChange = moveExtToFormExtLoad(I); + return MadeChange | optimizeExtUses(I); } } return false; @@ -4425,17 +5147,21 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { return OptimizeCmpExpression(CI); if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + stripInvariantGroupMetadata(*LI); if (TLI) { + bool Modified = optimizeLoadExt(LI); unsigned AS = LI->getPointerAddressSpace(); - return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); + Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); + return Modified; } return false; } if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + stripInvariantGroupMetadata(*SI); if (TLI) { unsigned AS = SI->getPointerAddressSpace(); - return OptimizeMemoryInst(I, SI->getOperand(1), + return optimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType(), AS); } return false; @@ -4460,23 +5186,26 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; - OptimizeInst(NC, ModifiedDT); + optimizeInst(NC, ModifiedDT); return true; } return false; } if (CallInst *CI = dyn_cast<CallInst>(I)) - return OptimizeCallInst(CI, ModifiedDT); + return optimizeCallInst(CI, ModifiedDT); if (SelectInst *SI = dyn_cast<SelectInst>(I)) - return OptimizeSelectInst(SI); + return optimizeSelectInst(SI); if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) - return OptimizeShuffleVectorInst(SVI); + return optimizeShuffleVectorInst(SVI); + + if (auto *Switch = dyn_cast<SwitchInst>(I)) + return optimizeSwitchInst(Switch); if (isa<ExtractElementInst>(I)) - return OptimizeExtractElementInst(I); + return optimizeExtractElementInst(I); return false; } @@ -4484,17 +5213,17 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. -bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { +bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); while (CurInstIterator != BB.end()) { - MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); + MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); if (ModifiedDT) return true; } - MadeChange |= DupRetToEnableTailCallOpts(&BB); + MadeChange |= dupRetToEnableTailCallOpts(&BB); return MadeChange; } @@ -4502,12 +5231,12 @@ bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. -bool CodeGenPrepare::PlaceDbgValues(Function &F) { +bool CodeGenPrepare::placeDbgValues(Function &F) { bool MadeChange = false; for (BasicBlock &BB : F) { Instruction *PrevNonDbgInst = nullptr; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { - Instruction *Insn = BI++; + Instruction *Insn = &*BI++; DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); // Leave dbg.values that refer to an alloca alone. These // instrinsics describe the address of a variable (= the alloca) @@ -4521,10 +5250,14 @@ bool CodeGenPrepare::PlaceDbgValues(Function &F) { Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { + // If VI is a phi in a block with an EHPad terminator, we can't insert + // after it. + if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) + continue; DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); DVI->removeFromParent(); if (isa<PHINode>(VI)) - DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); + DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); else DVI->insertAfter(VI); MadeChange = true; @@ -4548,7 +5281,7 @@ bool CodeGenPrepare::sinkAndCmp(Function &F) { return false; bool MadeChange = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { - BasicBlock *BB = I++; + BasicBlock *BB = &*I++; // Does this BB end with the following? // %andVal = and %val, #single-bit-set @@ -4671,6 +5404,10 @@ bool CodeGenPrepare::splitBranchCondition(Function &F) { if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) continue; + auto *Br1 = cast<BranchInst>(BB.getTerminator()); + if (Br1->getMetadata(LLVMContext::MD_unpredictable)) + continue; + unsigned Opc; Value *Cond1, *Cond2; if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), @@ -4697,7 +5434,6 @@ bool CodeGenPrepare::splitBranchCondition(Function &F) { // Update original basic block by using the first condition directly by the // branch instruction and removing the no longer needed and/or instruction. - auto *Br1 = cast<BranchInst>(BB.getTerminator()); Br1->setCondition(Cond1); LogicOp->eraseFromParent(); @@ -4828,3 +5564,8 @@ bool CodeGenPrepare::splitBranchCondition(Function &F) { } return MadeChange; } + +void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { + if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) + I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); +} |