diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp | 5571 |
1 files changed, 5571 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp new file mode 100644 index 0000000..5844124 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp @@ -0,0 +1,5571 @@ +//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass munges the code in the input function to better prepare it for +// SelectionDAG-based code generation. This works around limitations in it's +// basic-block-at-a-time approach. It should eventually be removed. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" +#include "llvm/Transforms/Utils/BypassSlowDivision.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "codegenprepare" + +STATISTIC(NumBlocksElim, "Number of blocks eliminated"); +STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); +STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); +STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " + "sunken Cmps"); +STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " + "of sunken Casts"); +STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " + "computations were sunk"); +STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); +STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); +STATISTIC(NumAndsAdded, + "Number of and mask instructions added to form ext loads"); +STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); +STATISTIC(NumRetsDup, "Number of return instructions duplicated"); +STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); +STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); +STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); +STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); + +static cl::opt<bool> DisableBranchOpts( + "disable-cgp-branch-opts", cl::Hidden, cl::init(false), + cl::desc("Disable branch optimizations in CodeGenPrepare")); + +static cl::opt<bool> + DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), + cl::desc("Disable GC optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableSelectToBranch( + "disable-cgp-select2branch", cl::Hidden, cl::init(false), + cl::desc("Disable select to branch conversion.")); + +static cl::opt<bool> AddrSinkUsingGEPs( + "addr-sink-using-gep", cl::Hidden, cl::init(false), + cl::desc("Address sinking in CGP using GEPs.")); + +static cl::opt<bool> EnableAndCmpSinking( + "enable-andcmp-sinking", cl::Hidden, cl::init(true), + cl::desc("Enable sinkinig and/cmp into branches.")); + +static cl::opt<bool> DisableStoreExtract( + "disable-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> StressStoreExtract( + "stress-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableExtLdPromotion( + "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " + "CodeGenPrepare")); + +static cl::opt<bool> StressExtLdPromotion( + "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " + "optimization in CodeGenPrepare")); + +namespace { +typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; +typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; +typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; +class TypePromotionTransaction; + + class CodeGenPrepare : public FunctionPass { + const TargetMachine *TM; + const TargetLowering *TLI; + const TargetTransformInfo *TTI; + const TargetLibraryInfo *TLInfo; + + /// As we scan instructions optimizing them, this is the next instruction + /// to optimize. Transforms that can invalidate this should update it. + BasicBlock::iterator CurInstIterator; + + /// Keeps track of non-local addresses that have been sunk into a block. + /// This allows us to avoid inserting duplicate code for blocks with + /// multiple load/stores of the same address. + ValueMap<Value*, Value*> SunkAddrs; + + /// Keeps track of all instructions inserted for the current function. + SetOfInstrs InsertedInsts; + /// Keeps track of the type of the related instruction before their + /// promotion for the current function. + InstrToOrigTy PromotedInsts; + + /// True if CFG is modified in any way. + bool ModifiedDT; + + /// True if optimizing for size. + bool OptSize; + + /// DataLayout for the Function being processed. + const DataLayout *DL; + + public: + static char ID; // Pass identification, replacement for typeid + explicit CodeGenPrepare(const TargetMachine *TM = nullptr) + : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { + initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); + } + bool runOnFunction(Function &F) override; + + const char *getPassName() const override { return "CodeGen Prepare"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + } + + private: + bool eliminateFallThrough(Function &F); + bool eliminateMostlyEmptyBlocks(Function &F); + bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; + void eliminateMostlyEmptyBlock(BasicBlock *BB); + bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); + bool optimizeInst(Instruction *I, bool& ModifiedDT); + bool optimizeMemoryInst(Instruction *I, Value *Addr, + Type *AccessTy, unsigned AS); + bool optimizeInlineAsmInst(CallInst *CS); + bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); + bool moveExtToFormExtLoad(Instruction *&I); + bool optimizeExtUses(Instruction *I); + bool optimizeLoadExt(LoadInst *I); + bool optimizeSelectInst(SelectInst *SI); + bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); + bool optimizeSwitchInst(SwitchInst *CI); + bool optimizeExtractElementInst(Instruction *Inst); + bool dupRetToEnableTailCallOpts(BasicBlock *BB); + bool placeDbgValues(Function &F); + bool sinkAndCmp(Function &F); + bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, + Instruction *&Inst, + const SmallVectorImpl<Instruction *> &Exts, + unsigned CreatedInstCost); + bool splitBranchCondition(Function &F); + bool simplifyOffsetableRelocate(Instruction &I); + void stripInvariantGroupMetadata(Instruction &I); + }; +} + +char CodeGenPrepare::ID = 0; +INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", + "Optimize for code generation", false, false) + +FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { + return new CodeGenPrepare(TM); +} + +bool CodeGenPrepare::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + DL = &F.getParent()->getDataLayout(); + + bool EverMadeChange = false; + // Clear per function information. + InsertedInsts.clear(); + PromotedInsts.clear(); + + ModifiedDT = false; + if (TM) + TLI = TM->getSubtargetImpl(F)->getTargetLowering(); + TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + OptSize = F.optForSize(); + + /// This optimization identifies DIV instructions that can be + /// profitably bypassed and carried out with a shorter, faster divide. + if (!OptSize && TLI && TLI->isSlowDivBypassed()) { + const DenseMap<unsigned int, unsigned int> &BypassWidths = + TLI->getBypassSlowDivWidths(); + for (Function::iterator I = F.begin(); I != F.end(); I++) + EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); + } + + // Eliminate blocks that contain only PHI nodes and an + // unconditional branch. + EverMadeChange |= eliminateMostlyEmptyBlocks(F); + + // llvm.dbg.value is far away from the value then iSel may not be able + // handle it properly. iSel will drop llvm.dbg.value if it can not + // find a node corresponding to the value. + EverMadeChange |= placeDbgValues(F); + + // If there is a mask, compare against zero, and branch that can be combined + // into a single target instruction, push the mask and compare into branch + // users. Do this before OptimizeBlock -> OptimizeInst -> + // OptimizeCmpExpression, which perturbs the pattern being searched for. + if (!DisableBranchOpts) { + EverMadeChange |= sinkAndCmp(F); + EverMadeChange |= splitBranchCondition(F); + } + + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + for (Function::iterator I = F.begin(); I != F.end(); ) { + BasicBlock *BB = &*I++; + bool ModifiedDTOnIteration = false; + MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); + + // Restart BB iteration if the dominator tree of the Function was changed + if (ModifiedDTOnIteration) + break; + } + EverMadeChange |= MadeChange; + } + + SunkAddrs.clear(); + + if (!DisableBranchOpts) { + MadeChange = false; + SmallPtrSet<BasicBlock*, 8> WorkList; + for (BasicBlock &BB : F) { + SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); + MadeChange |= ConstantFoldTerminator(&BB, true); + if (!MadeChange) continue; + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + if (pred_begin(*II) == pred_end(*II)) + WorkList.insert(*II); + } + + // Delete the dead blocks and any of their dead successors. + MadeChange |= !WorkList.empty(); + while (!WorkList.empty()) { + BasicBlock *BB = *WorkList.begin(); + WorkList.erase(BB); + SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); + + DeleteDeadBlock(BB); + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + if (pred_begin(*II) == pred_end(*II)) + WorkList.insert(*II); + } + + // Merge pairs of basic blocks with unconditional branches, connected by + // a single edge. + if (EverMadeChange || MadeChange) + MadeChange |= eliminateFallThrough(F); + + EverMadeChange |= MadeChange; + } + + if (!DisableGCOpts) { + SmallVector<Instruction *, 2> Statepoints; + for (BasicBlock &BB : F) + for (Instruction &I : BB) + if (isStatepoint(I)) + Statepoints.push_back(&I); + for (auto &I : Statepoints) + EverMadeChange |= simplifyOffsetableRelocate(*I); + } + + return EverMadeChange; +} + +/// Merge basic blocks which are connected by a single edge, where one of the +/// basic blocks has a single successor pointing to the other basic block, +/// which has a single predecessor. +bool CodeGenPrepare::eliminateFallThrough(Function &F) { + bool Changed = false; + // Scan all of the blocks in the function, except for the entry block. + for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { + BasicBlock *BB = &*I++; + // If the destination block has a single pred, then this is a trivial + // edge, just collapse it. + BasicBlock *SinglePred = BB->getSinglePredecessor(); + + // Don't merge if BB's address is taken. + if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; + + BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); + if (Term && !Term->isConditional()) { + Changed = true; + DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); + // Remember if SinglePred was the entry block of the function. + // If so, we will need to move BB back to the entry position. + bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); + MergeBasicBlockIntoOnlyPred(BB, nullptr); + + if (isEntry && BB != &BB->getParent()->getEntryBlock()) + BB->moveBefore(&BB->getParent()->getEntryBlock()); + + // We have erased a block. Update the iterator. + I = BB->getIterator(); + } + } + return Changed; +} + +/// Eliminate blocks that contain only PHI nodes, debug info directives, and an +/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split +/// edges in ways that are non-optimal for isel. Start by eliminating these +/// blocks so we can split them the way we want them. +bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { + bool MadeChange = false; + // Note that this intentionally skips the entry block. + for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { + BasicBlock *BB = &*I++; + + // If this block doesn't end with an uncond branch, ignore it. + BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isUnconditional()) + continue; + + // If the instruction before the branch (skipping debug info) isn't a phi + // node, then other stuff is happening here. + BasicBlock::iterator BBI = BI->getIterator(); + if (BBI != BB->begin()) { + --BBI; + while (isa<DbgInfoIntrinsic>(BBI)) { + if (BBI == BB->begin()) + break; + --BBI; + } + if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) + continue; + } + + // Do not break infinite loops. + BasicBlock *DestBB = BI->getSuccessor(0); + if (DestBB == BB) + continue; + + if (!canMergeBlocks(BB, DestBB)) + continue; + + eliminateMostlyEmptyBlock(BB); + MadeChange = true; + } + return MadeChange; +} + +/// Return true if we can merge BB into DestBB if there is a single +/// unconditional branch between them, and BB contains no other non-phi +/// instructions. +bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, + const BasicBlock *DestBB) const { + // We only want to eliminate blocks whose phi nodes are used by phi nodes in + // the successor. If there are more complex condition (e.g. preheaders), + // don't mess around with them. + BasicBlock::const_iterator BBI = BB->begin(); + while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { + for (const User *U : PN->users()) { + const Instruction *UI = cast<Instruction>(U); + if (UI->getParent() != DestBB || !isa<PHINode>(UI)) + return false; + // If User is inside DestBB block and it is a PHINode then check + // incoming value. If incoming value is not from BB then this is + // a complex condition (e.g. preheaders) we want to avoid here. + if (UI->getParent() == DestBB) { + if (const PHINode *UPN = dyn_cast<PHINode>(UI)) + for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { + Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); + if (Insn && Insn->getParent() == BB && + Insn->getParent() != UPN->getIncomingBlock(I)) + return false; + } + } + } + } + + // If BB and DestBB contain any common predecessors, then the phi nodes in BB + // and DestBB may have conflicting incoming values for the block. If so, we + // can't merge the block. + const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); + if (!DestBBPN) return true; // no conflict. + + // Collect the preds of BB. + SmallPtrSet<const BasicBlock*, 16> BBPreds; + if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + // It is faster to get preds from a PHI than with pred_iterator. + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + BBPreds.insert(BBPN->getIncomingBlock(i)); + } else { + BBPreds.insert(pred_begin(BB), pred_end(BB)); + } + + // Walk the preds of DestBB. + for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = DestBBPN->getIncomingBlock(i); + if (BBPreds.count(Pred)) { // Common predecessor? + BBI = DestBB->begin(); + while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { + const Value *V1 = PN->getIncomingValueForBlock(Pred); + const Value *V2 = PN->getIncomingValueForBlock(BB); + + // If V2 is a phi node in BB, look up what the mapped value will be. + if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) + if (V2PN->getParent() == BB) + V2 = V2PN->getIncomingValueForBlock(Pred); + + // If there is a conflict, bail out. + if (V1 != V2) return false; + } + } + } + + return true; +} + + +/// Eliminate a basic block that has only phi's and an unconditional branch in +/// it. +void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { + BranchInst *BI = cast<BranchInst>(BB->getTerminator()); + BasicBlock *DestBB = BI->getSuccessor(0); + + DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); + + // If the destination block has a single pred, then this is a trivial edge, + // just collapse it. + if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { + if (SinglePred != DestBB) { + // Remember if SinglePred was the entry block of the function. If so, we + // will need to move BB back to the entry position. + bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); + MergeBasicBlockIntoOnlyPred(DestBB, nullptr); + + if (isEntry && BB != &BB->getParent()->getEntryBlock()) + BB->moveBefore(&BB->getParent()->getEntryBlock()); + + DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); + return; + } + } + + // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB + // to handle the new incoming edges it is about to have. + PHINode *PN; + for (BasicBlock::iterator BBI = DestBB->begin(); + (PN = dyn_cast<PHINode>(BBI)); ++BBI) { + // Remove the incoming value for BB, and remember it. + Value *InVal = PN->removeIncomingValue(BB, false); + + // Two options: either the InVal is a phi node defined in BB or it is some + // value that dominates BB. + PHINode *InValPhi = dyn_cast<PHINode>(InVal); + if (InValPhi && InValPhi->getParent() == BB) { + // Add all of the input values of the input PHI as inputs of this phi. + for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) + PN->addIncoming(InValPhi->getIncomingValue(i), + InValPhi->getIncomingBlock(i)); + } else { + // Otherwise, add one instance of the dominating value for each edge that + // we will be adding. + if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); + } else { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + PN->addIncoming(InVal, *PI); + } + } + } + + // The PHIs are now updated, change everything that refers to BB to use + // DestBB and remove BB. + BB->replaceAllUsesWith(DestBB); + BB->eraseFromParent(); + ++NumBlocksElim; + + DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); +} + +// Computes a map of base pointer relocation instructions to corresponding +// derived pointer relocation instructions given a vector of all relocate calls +static void computeBaseDerivedRelocateMap( + const SmallVectorImpl<User *> &AllRelocateCalls, + DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & + RelocateInstMap) { + // Collect information in two maps: one primarily for locating the base object + // while filling the second map; the second map is the final structure holding + // a mapping between Base and corresponding Derived relocate calls + DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; + for (auto &U : AllRelocateCalls) { + GCRelocateOperands ThisRelocate(U); + IntrinsicInst *I = cast<IntrinsicInst>(U); + auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), + ThisRelocate.getDerivedPtrIndex()); + RelocateIdxMap.insert(std::make_pair(K, I)); + } + for (auto &Item : RelocateIdxMap) { + std::pair<unsigned, unsigned> Key = Item.first; + if (Key.first == Key.second) + // Base relocation: nothing to insert + continue; + + IntrinsicInst *I = Item.second; + auto BaseKey = std::make_pair(Key.first, Key.first); + + // We're iterating over RelocateIdxMap so we cannot modify it. + auto MaybeBase = RelocateIdxMap.find(BaseKey); + if (MaybeBase == RelocateIdxMap.end()) + // TODO: We might want to insert a new base object relocate and gep off + // that, if there are enough derived object relocates. + continue; + + RelocateInstMap[MaybeBase->second].push_back(I); + } +} + +// Accepts a GEP and extracts the operands into a vector provided they're all +// small integer constants +static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, + SmallVectorImpl<Value *> &OffsetV) { + for (unsigned i = 1; i < GEP->getNumOperands(); i++) { + // Only accept small constant integer operands + auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!Op || Op->getZExtValue() > 20) + return false; + } + + for (unsigned i = 1; i < GEP->getNumOperands(); i++) + OffsetV.push_back(GEP->getOperand(i)); + return true; +} + +// Takes a RelocatedBase (base pointer relocation instruction) and Targets to +// replace, computes a replacement, and affects it. +static bool +simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, + const SmallVectorImpl<IntrinsicInst *> &Targets) { + bool MadeChange = false; + for (auto &ToReplace : Targets) { + GCRelocateOperands MasterRelocate(RelocatedBase); + GCRelocateOperands ThisRelocate(ToReplace); + + assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && + "Not relocating a derived object of the original base object"); + if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { + // A duplicate relocate call. TODO: coalesce duplicates. + continue; + } + + if (RelocatedBase->getParent() != ToReplace->getParent()) { + // Base and derived relocates are in different basic blocks. + // In this case transform is only valid when base dominates derived + // relocate. However it would be too expensive to check dominance + // for each such relocate, so we skip the whole transformation. + continue; + } + + Value *Base = ThisRelocate.getBasePtr(); + auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); + if (!Derived || Derived->getPointerOperand() != Base) + continue; + + SmallVector<Value *, 2> OffsetV; + if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) + continue; + + // Create a Builder and replace the target callsite with a gep + assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); + + // Insert after RelocatedBase + IRBuilder<> Builder(RelocatedBase->getNextNode()); + Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); + + // If gc_relocate does not match the actual type, cast it to the right type. + // In theory, there must be a bitcast after gc_relocate if the type does not + // match, and we should reuse it to get the derived pointer. But it could be + // cases like this: + // bb1: + // ... + // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // bb2: + // ... + // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // merge: + // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] + // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* + // + // In this case, we can not find the bitcast any more. So we insert a new bitcast + // no matter there is already one or not. In this way, we can handle all cases, and + // the extra bitcast should be optimized away in later passes. + Value *ActualRelocatedBase = RelocatedBase; + if (RelocatedBase->getType() != Base->getType()) { + ActualRelocatedBase = + Builder.CreateBitCast(RelocatedBase, Base->getType()); + } + Value *Replacement = Builder.CreateGEP( + Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); + Replacement->takeName(ToReplace); + // If the newly generated derived pointer's type does not match the original derived + // pointer's type, cast the new derived pointer to match it. Same reasoning as above. + Value *ActualReplacement = Replacement; + if (Replacement->getType() != ToReplace->getType()) { + ActualReplacement = + Builder.CreateBitCast(Replacement, ToReplace->getType()); + } + ToReplace->replaceAllUsesWith(ActualReplacement); + ToReplace->eraseFromParent(); + + MadeChange = true; + } + return MadeChange; +} + +// Turns this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = relocate(%tok, i32 4, i32 4) +// %ptr' = relocate(%tok, i32 4, i32 5) +// %val = load %ptr' +// +// into this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = gc.relocate(%tok, i32 4, i32 4) +// %ptr' = gep %base' + 15 +// %val = load %ptr' +bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { + bool MadeChange = false; + SmallVector<User *, 2> AllRelocateCalls; + + for (auto *U : I.users()) + if (isGCRelocate(dyn_cast<Instruction>(U))) + // Collect all the relocate calls associated with a statepoint + AllRelocateCalls.push_back(U); + + // We need atleast one base pointer relocation + one derived pointer + // relocation to mangle + if (AllRelocateCalls.size() < 2) + return false; + + // RelocateInstMap is a mapping from the base relocate instruction to the + // corresponding derived relocate instructions + DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; + computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); + if (RelocateInstMap.empty()) + return false; + + for (auto &Item : RelocateInstMap) + // Item.first is the RelocatedBase to offset against + // Item.second is the vector of Targets to replace + MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); + return MadeChange; +} + +/// SinkCast - Sink the specified cast instruction into its user blocks +static bool SinkCast(CastInst *CI) { + BasicBlock *DefBB = CI->getParent(); + + /// InsertedCasts - Only insert a cast in each block once. + DenseMap<BasicBlock*, CastInst*> InsertedCasts; + + bool MadeChange = false; + for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this cast is used in. For PHI's this is the + // appropriate predecessor block. + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) { + UserBB = PN->getIncomingBlock(TheUse); + } + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // If the block selected to receive the cast is an EH pad that does not + // allow non-PHI instructions before the terminator, we can't sink the + // cast. + if (UserBB->getTerminator()->isEHPad()) + continue; + + // If this user is in the same block as the cast, don't change the cast. + if (UserBB == DefBB) continue; + + // If we have already inserted a cast into this block, use it. + CastInst *&InsertedCast = InsertedCasts[UserBB]; + + if (!InsertedCast) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), + CI->getType(), "", &*InsertPt); + } + + // Replace a use of the cast with a use of the new cast. + TheUse = InsertedCast; + MadeChange = true; + ++NumCastUses; + } + + // If we removed all uses, nuke the cast. + if (CI->use_empty()) { + CI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// If the specified cast instruction is a noop copy (e.g. it's casting from +/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to +/// reduce the number of virtual registers that must be created and coalesced. +/// +/// Return true if any changes are made. +/// +static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, + const DataLayout &DL) { + // If this is a noop copy, + EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(DL, CI->getType()); + + // This is an fp<->int conversion? + if (SrcVT.isInteger() != DstVT.isInteger()) + return false; + + // If this is an extension, it will be a zero or sign extension, which + // isn't a noop. + if (SrcVT.bitsLT(DstVT)) return false; + + // If these values will be promoted, find out what they will be promoted + // to. This helps us consider truncates on PPC as noop copies when they + // are. + if (TLI.getTypeAction(CI->getContext(), SrcVT) == + TargetLowering::TypePromoteInteger) + SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); + if (TLI.getTypeAction(CI->getContext(), DstVT) == + TargetLowering::TypePromoteInteger) + DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); + + // If, after promotion, these are the same types, this is a noop copy. + if (SrcVT != DstVT) + return false; + + return SinkCast(CI); +} + +/// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if +/// possible. +/// +/// Return true if any changes were made. +static bool CombineUAddWithOverflow(CmpInst *CI) { + Value *A, *B; + Instruction *AddI; + if (!match(CI, + m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) + return false; + + Type *Ty = AddI->getType(); + if (!isa<IntegerType>(Ty)) + return false; + + // We don't want to move around uses of condition values this late, so we we + // check if it is legal to create the call to the intrinsic in the basic + // block containing the icmp: + + if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) + return false; + +#ifndef NDEBUG + // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption + // for now: + if (AddI->hasOneUse()) + assert(*AddI->user_begin() == CI && "expected!"); +#endif + + Module *M = CI->getModule(); + Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); + + auto *InsertPt = AddI->hasOneUse() ? CI : AddI; + + auto *UAddWithOverflow = + CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); + auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); + auto *Overflow = + ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); + + CI->replaceAllUsesWith(Overflow); + AddI->replaceAllUsesWith(UAdd); + CI->eraseFromParent(); + AddI->eraseFromParent(); + return true; +} + +/// Sink the given CmpInst into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. This is a clear win except on +/// targets with multiple condition code registers (PowerPC), where it might +/// lose; some adjustment may be wanted there. +/// +/// Return true if any changes are made. +static bool SinkCmpExpression(CmpInst *CI) { + BasicBlock *DefBB = CI->getParent(); + + /// Only insert a cmp in each block once. + DenseMap<BasicBlock*, CmpInst*> InsertedCmps; + + bool MadeChange = false; + for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + // Figure out which BB this cmp is used in. + BasicBlock *UserBB = User->getParent(); + + // If this user is in the same block as the cmp, don't change the cmp. + if (UserBB == DefBB) continue; + + // If we have already inserted a cmp into this block, use it. + CmpInst *&InsertedCmp = InsertedCmps[UserBB]; + + if (!InsertedCmp) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCmp = + CmpInst::Create(CI->getOpcode(), CI->getPredicate(), + CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); + } + + // Replace a use of the cmp with a use of the new cmp. + TheUse = InsertedCmp; + MadeChange = true; + ++NumCmpUses; + } + + // If we removed all uses, nuke the cmp. + if (CI->use_empty()) { + CI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +static bool OptimizeCmpExpression(CmpInst *CI) { + if (SinkCmpExpression(CI)) + return true; + + if (CombineUAddWithOverflow(CI)) + return true; + + return false; +} + +/// Check if the candidates could be combined with a shift instruction, which +/// includes: +/// 1. Truncate instruction +/// 2. And instruction and the imm is a mask of the low bits: +/// imm & (imm+1) == 0 +static bool isExtractBitsCandidateUse(Instruction *User) { + if (!isa<TruncInst>(User)) { + if (User->getOpcode() != Instruction::And || + !isa<ConstantInt>(User->getOperand(1))) + return false; + + const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); + + if ((Cimm & (Cimm + 1)).getBoolValue()) + return false; + } + return true; +} + +/// Sink both shift and truncate instruction to the use of truncate's BB. +static bool +SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, + DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, + const TargetLowering &TLI, const DataLayout &DL) { + BasicBlock *UserBB = User->getParent(); + DenseMap<BasicBlock *, CastInst *> InsertedTruncs; + TruncInst *TruncI = dyn_cast<TruncInst>(User); + bool MadeChange = false; + + for (Value::user_iterator TruncUI = TruncI->user_begin(), + TruncE = TruncI->user_end(); + TruncUI != TruncE;) { + + Use &TruncTheUse = TruncUI.getUse(); + Instruction *TruncUser = cast<Instruction>(*TruncUI); + // Preincrement use iterator so we don't invalidate it. + + ++TruncUI; + + int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); + if (!ISDOpcode) + continue; + + // If the use is actually a legal node, there will not be an + // implicit truncate. + // FIXME: always querying the result type is just an + // approximation; some nodes' legality is determined by the + // operand or other means. There's no good way to find out though. + if (TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) + continue; + + // Don't bother for PHI nodes. + if (isa<PHINode>(TruncUser)) + continue; + + BasicBlock *TruncUserBB = TruncUser->getParent(); + + if (UserBB == TruncUserBB) + continue; + + BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; + CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; + + if (!InsertedShift && !InsertedTrunc) { + BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); + assert(InsertPt != TruncUserBB->end()); + // Sink the shift + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + + // Sink the trunc + BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); + TruncInsertPt++; + assert(TruncInsertPt != TruncUserBB->end()); + + InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, + TruncI->getType(), "", &*TruncInsertPt); + + MadeChange = true; + + TruncTheUse = InsertedTrunc; + } + } + return MadeChange; +} + +/// Sink the shift *right* instruction into user blocks if the uses could +/// potentially be combined with this shift instruction and generate BitExtract +/// instruction. It will only be applied if the architecture supports BitExtract +/// instruction. Here is an example: +/// BB1: +/// %x.extract.shift = lshr i64 %arg1, 32 +/// BB2: +/// %x.extract.trunc = trunc i64 %x.extract.shift to i16 +/// ==> +/// +/// BB2: +/// %x.extract.shift.1 = lshr i64 %arg1, 32 +/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 +/// +/// CodeGen will recoginze the pattern in BB2 and generate BitExtract +/// instruction. +/// Return true if any changes are made. +static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, + const TargetLowering &TLI, + const DataLayout &DL) { + BasicBlock *DefBB = ShiftI->getParent(); + + /// Only insert instructions in each block once. + DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; + + bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); + + bool MadeChange = false; + for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); + UI != E;) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + if (!isExtractBitsCandidateUse(User)) + continue; + + BasicBlock *UserBB = User->getParent(); + + if (UserBB == DefBB) { + // If the shift and truncate instruction are in the same BB. The use of + // the truncate(TruncUse) may still introduce another truncate if not + // legal. In this case, we would like to sink both shift and truncate + // instruction to the BB of TruncUse. + // for example: + // BB1: + // i64 shift.result = lshr i64 opnd, imm + // trunc.result = trunc shift.result to i16 + // + // BB2: + // ----> We will have an implicit truncate here if the architecture does + // not have i16 compare. + // cmp i16 trunc.result, opnd2 + // + if (isa<TruncInst>(User) && shiftIsLegal + // If the type of the truncate is legal, no trucate will be + // introduced in other basic blocks. + && + (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) + MadeChange = + SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); + + continue; + } + // If we have already inserted a shift into this block, use it. + BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; + + if (!InsertedShift) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + + MadeChange = true; + } + + // Replace a use of the shift with a use of the new shift. + TheUse = InsertedShift; + } + + // If we removed all uses, nuke the shift. + if (ShiftI->use_empty()) + ShiftI->eraseFromParent(); + + return MadeChange; +} + +// Translate a masked load intrinsic like +// <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, +// <16 x i1> %mask, <16 x i32> %passthru) +// to a chain of basic blocks, with loading element one-by-one if +// the appropriate mask bit is set +// +// %1 = bitcast i8* %addr to i32* +// %2 = extractelement <16 x i1> %mask, i32 0 +// %3 = icmp eq i1 %2, true +// br i1 %3, label %cond.load, label %else +// +//cond.load: ; preds = %0 +// %4 = getelementptr i32* %1, i32 0 +// %5 = load i32* %4 +// %6 = insertelement <16 x i32> undef, i32 %5, i32 0 +// br label %else +// +//else: ; preds = %0, %cond.load +// %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] +// %7 = extractelement <16 x i1> %mask, i32 1 +// %8 = icmp eq i1 %7, true +// br i1 %8, label %cond.load1, label %else2 +// +//cond.load1: ; preds = %else +// %9 = getelementptr i32* %1, i32 1 +// %10 = load i32* %9 +// %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 +// br label %else2 +// +//else2: ; preds = %else, %cond.load1 +// %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] +// %12 = extractelement <16 x i1> %mask, i32 2 +// %13 = icmp eq i1 %12, true +// br i1 %13, label %cond.load4, label %else5 +// +static void ScalarizeMaskedLoad(CallInst *CI) { + Value *Ptr = CI->getArgOperand(0); + Value *Alignment = CI->getArgOperand(1); + Value *Mask = CI->getArgOperand(2); + Value *Src0 = CI->getArgOperand(3); + + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + VectorType *VecType = dyn_cast<VectorType>(CI->getType()); + assert(VecType && "Unexpected return type of masked load intrinsic"); + + Type *EltTy = CI->getType()->getVectorElementType(); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + BasicBlock *CondBlock = nullptr; + BasicBlock *PrevIfBlock = CI->getParent(); + + Builder.SetInsertPoint(InsertPt); + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + // Short-cut if the mask is all-true. + bool IsAllOnesMask = isa<Constant>(Mask) && + cast<Constant>(Mask)->isAllOnesValue(); + + if (IsAllOnesMask) { + Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + // Adjust alignment for the scalar instruction. + AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); + // Bitcast %addr fron i8* to EltTy* + Type *NewPtrType = + EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); + Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); + unsigned VectorWidth = VecType->getNumElements(); + + Value *UndefVal = UndefValue::get(VecType); + + // The result vector + Value *VResult = UndefVal; + + if (isa<ConstantVector>(Mask)) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); + VResult = Builder.CreateInsertElement(VResult, Load, + Builder.getInt32(Idx)); + } + Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + PHINode *Phi = nullptr; + Value *PrevPhi = UndefVal; + + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + + // Fill the "else" block, created in the previous iteration + // + // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] + // %mask_1 = extractelement <16 x i1> %mask, i32 Idx + // %to_load = icmp eq i1 %mask_1, true + // br i1 %to_load, label %cond.load, label %else + // + if (Idx > 0) { + Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + PrevPhi = Phi; + VResult = Phi; + } + + Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); + Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1)); + + // Create "cond" block + // + // %EltAddr = getelementptr i32* %1, i32 0 + // %Elt = load i32* %EltAddr + // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx + // + CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); + Builder.SetInsertPoint(InsertPt); + + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); + VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = + CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + PrevIfBlock = IfBlock; + IfBlock = NewIfBlock; + } + + Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); +} + +// Translate a masked store intrinsic, like +// void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, +// <16 x i1> %mask) +// to a chain of basic blocks, that stores element one-by-one if +// the appropriate mask bit is set +// +// %1 = bitcast i8* %addr to i32* +// %2 = extractelement <16 x i1> %mask, i32 0 +// %3 = icmp eq i1 %2, true +// br i1 %3, label %cond.store, label %else +// +// cond.store: ; preds = %0 +// %4 = extractelement <16 x i32> %val, i32 0 +// %5 = getelementptr i32* %1, i32 0 +// store i32 %4, i32* %5 +// br label %else +// +// else: ; preds = %0, %cond.store +// %6 = extractelement <16 x i1> %mask, i32 1 +// %7 = icmp eq i1 %6, true +// br i1 %7, label %cond.store1, label %else2 +// +// cond.store1: ; preds = %else +// %8 = extractelement <16 x i32> %val, i32 1 +// %9 = getelementptr i32* %1, i32 1 +// store i32 %8, i32* %9 +// br label %else2 +// . . . +static void ScalarizeMaskedStore(CallInst *CI) { + Value *Src = CI->getArgOperand(0); + Value *Ptr = CI->getArgOperand(1); + Value *Alignment = CI->getArgOperand(2); + Value *Mask = CI->getArgOperand(3); + + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + VectorType *VecType = dyn_cast<VectorType>(Src->getType()); + assert(VecType && "Unexpected data type in masked store intrinsic"); + + Type *EltTy = VecType->getElementType(); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + Builder.SetInsertPoint(InsertPt); + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + // Short-cut if the mask is all-true. + bool IsAllOnesMask = isa<Constant>(Mask) && + cast<Constant>(Mask)->isAllOnesValue(); + + if (IsAllOnesMask) { + Builder.CreateAlignedStore(Src, Ptr, AlignVal); + CI->eraseFromParent(); + return; + } + + // Adjust alignment for the scalar instruction. + AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); + // Bitcast %addr fron i8* to EltTy* + Type *NewPtrType = + EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); + Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); + unsigned VectorWidth = VecType->getNumElements(); + + if (isa<ConstantVector>(Mask)) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + Builder.CreateAlignedStore(OneElt, Gep, AlignVal); + } + CI->eraseFromParent(); + return; + } + + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + + // Fill the "else" block, created in the previous iteration + // + // %mask_1 = extractelement <16 x i1> %mask, i32 Idx + // %to_store = icmp eq i1 %mask_1, true + // br i1 %to_store, label %cond.store, label %else + // + Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); + Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1)); + + // Create "cond" block + // + // %OneElt = extractelement <16 x i32> %Src, i32 Idx + // %EltAddr = getelementptr i32* %1, i32 0 + // %store i32 %OneElt, i32* %EltAddr + // + BasicBlock *CondBlock = + IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); + Builder.SetInsertPoint(InsertPt); + + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); + Value *Gep = + Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); + Builder.CreateAlignedStore(OneElt, Gep, AlignVal); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = + CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + IfBlock = NewIfBlock; + } + CI->eraseFromParent(); +} + +// Translate a masked gather intrinsic like +// <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, +// <16 x i1> %Mask, <16 x i32> %Src) +// to a chain of basic blocks, with loading element one-by-one if +// the appropriate mask bit is set +// +// % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind +// % Mask0 = extractelement <16 x i1> %Mask, i32 0 +// % ToLoad0 = icmp eq i1 % Mask0, true +// br i1 % ToLoad0, label %cond.load, label %else +// +// cond.load: +// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 +// % Load0 = load i32, i32* % Ptr0, align 4 +// % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 +// br label %else +// +// else: +// %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] +// % Mask1 = extractelement <16 x i1> %Mask, i32 1 +// % ToLoad1 = icmp eq i1 % Mask1, true +// br i1 % ToLoad1, label %cond.load1, label %else2 +// +// cond.load1: +// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 +// % Load1 = load i32, i32* % Ptr1, align 4 +// % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 +// br label %else2 +// . . . +// % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src +// ret <16 x i32> %Result +static void ScalarizeMaskedGather(CallInst *CI) { + Value *Ptrs = CI->getArgOperand(0); + Value *Alignment = CI->getArgOperand(1); + Value *Mask = CI->getArgOperand(2); + Value *Src0 = CI->getArgOperand(3); + + VectorType *VecType = dyn_cast<VectorType>(CI->getType()); + + assert(VecType && "Unexpected return type of masked load intrinsic"); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + BasicBlock *CondBlock = nullptr; + BasicBlock *PrevIfBlock = CI->getParent(); + Builder.SetInsertPoint(InsertPt); + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + Value *UndefVal = UndefValue::get(VecType); + + // The result vector + Value *VResult = UndefVal; + unsigned VectorWidth = VecType->getNumElements(); + + // Shorten the way if the mask is a vector of constants. + bool IsConstMask = isa<ConstantVector>(Mask); + + if (IsConstMask) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, + "Load" + Twine(Idx)); + VResult = Builder.CreateInsertElement(VResult, Load, + Builder.getInt32(Idx), + "Res" + Twine(Idx)); + } + Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); + return; + } + + PHINode *Phi = nullptr; + Value *PrevPhi = UndefVal; + + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + + // Fill the "else" block, created in the previous iteration + // + // %Mask1 = extractelement <16 x i1> %Mask, i32 1 + // %ToLoad1 = icmp eq i1 %Mask1, true + // br i1 %ToLoad1, label %cond.load, label %else + // + if (Idx > 0) { + Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + PrevPhi = Phi; + VResult = Phi; + } + + Value *Predicate = Builder.CreateExtractElement(Mask, + Builder.getInt32(Idx), + "Mask" + Twine(Idx)); + Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1), + "ToLoad" + Twine(Idx)); + + // Create "cond" block + // + // %EltAddr = getelementptr i32* %1, i32 0 + // %Elt = load i32* %EltAddr + // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx + // + CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); + Builder.SetInsertPoint(InsertPt); + + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, + "Load" + Twine(Idx)); + VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), + "Res" + Twine(Idx)); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + PrevIfBlock = IfBlock; + IfBlock = NewIfBlock; + } + + Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); + Phi->addIncoming(VResult, CondBlock); + Phi->addIncoming(PrevPhi, PrevIfBlock); + Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); + CI->replaceAllUsesWith(NewI); + CI->eraseFromParent(); +} + +// Translate a masked scatter intrinsic, like +// void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, +// <16 x i1> %Mask) +// to a chain of basic blocks, that stores element one-by-one if +// the appropriate mask bit is set. +// +// % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind +// % Mask0 = extractelement <16 x i1> % Mask, i32 0 +// % ToStore0 = icmp eq i1 % Mask0, true +// br i1 %ToStore0, label %cond.store, label %else +// +// cond.store: +// % Elt0 = extractelement <16 x i32> %Src, i32 0 +// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 +// store i32 %Elt0, i32* % Ptr0, align 4 +// br label %else +// +// else: +// % Mask1 = extractelement <16 x i1> % Mask, i32 1 +// % ToStore1 = icmp eq i1 % Mask1, true +// br i1 % ToStore1, label %cond.store1, label %else2 +// +// cond.store1: +// % Elt1 = extractelement <16 x i32> %Src, i32 1 +// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 +// store i32 % Elt1, i32* % Ptr1, align 4 +// br label %else2 +// . . . +static void ScalarizeMaskedScatter(CallInst *CI) { + Value *Src = CI->getArgOperand(0); + Value *Ptrs = CI->getArgOperand(1); + Value *Alignment = CI->getArgOperand(2); + Value *Mask = CI->getArgOperand(3); + + assert(isa<VectorType>(Src->getType()) && + "Unexpected data type in masked scatter intrinsic"); + assert(isa<VectorType>(Ptrs->getType()) && + isa<PointerType>(Ptrs->getType()->getVectorElementType()) && + "Vector of pointers is expected in masked scatter intrinsic"); + + IRBuilder<> Builder(CI->getContext()); + Instruction *InsertPt = CI; + BasicBlock *IfBlock = CI->getParent(); + Builder.SetInsertPoint(InsertPt); + Builder.SetCurrentDebugLocation(CI->getDebugLoc()); + + unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); + unsigned VectorWidth = Src->getType()->getVectorNumElements(); + + // Shorten the way if the mask is a vector of constants. + bool IsConstMask = isa<ConstantVector>(Mask); + + if (IsConstMask) { + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) + continue; + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), + "Elt" + Twine(Idx)); + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); + } + CI->eraseFromParent(); + return; + } + for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { + // Fill the "else" block, created in the previous iteration + // + // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx + // % ToStore = icmp eq i1 % Mask1, true + // br i1 % ToStore, label %cond.store, label %else + // + Value *Predicate = Builder.CreateExtractElement(Mask, + Builder.getInt32(Idx), + "Mask" + Twine(Idx)); + Value *Cmp = + Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, + ConstantInt::get(Predicate->getType(), 1), + "ToStore" + Twine(Idx)); + + // Create "cond" block + // + // % Elt1 = extractelement <16 x i32> %Src, i32 1 + // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 + // %store i32 % Elt1, i32* % Ptr1 + // + BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); + Builder.SetInsertPoint(InsertPt); + + Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), + "Elt" + Twine(Idx)); + Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), + "Ptr" + Twine(Idx)); + Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); + + // Create "else" block, fill it in the next iteration + BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); + Builder.SetInsertPoint(InsertPt); + Instruction *OldBr = IfBlock->getTerminator(); + BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); + OldBr->eraseFromParent(); + IfBlock = NewIfBlock; + } + CI->eraseFromParent(); +} + +/// If counting leading or trailing zeros is an expensive operation and a zero +/// input is defined, add a check for zero to avoid calling the intrinsic. +/// +/// We want to transform: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) +/// +/// into: +/// entry: +/// %cmpz = icmp eq i64 %A, 0 +/// br i1 %cmpz, label %cond.end, label %cond.false +/// cond.false: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) +/// br label %cond.end +/// cond.end: +/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] +/// +/// If the transform is performed, return true and set ModifiedDT to true. +static bool despeculateCountZeros(IntrinsicInst *CountZeros, + const TargetLowering *TLI, + const DataLayout *DL, + bool &ModifiedDT) { + if (!TLI || !DL) + return false; + + // If a zero input is undefined, it doesn't make sense to despeculate that. + if (match(CountZeros->getOperand(1), m_One())) + return false; + + // If it's cheap to speculate, there's nothing to do. + auto IntrinsicID = CountZeros->getIntrinsicID(); + if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || + (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) + return false; + + // Only handle legal scalar cases. Anything else requires too much work. + Type *Ty = CountZeros->getType(); + unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); + if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) + return false; + + // The intrinsic will be sunk behind a compare against zero and branch. + BasicBlock *StartBlock = CountZeros->getParent(); + BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); + + // Create another block after the count zero intrinsic. A PHI will be added + // in this block to select the result of the intrinsic or the bit-width + // constant if the input to the intrinsic is zero. + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); + BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); + + // Set up a builder to create a compare, conditional branch, and PHI. + IRBuilder<> Builder(CountZeros->getContext()); + Builder.SetInsertPoint(StartBlock->getTerminator()); + Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); + + // Replace the unconditional branch that was created by the first split with + // a compare against zero and a conditional branch. + Value *Zero = Constant::getNullValue(Ty); + Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); + Builder.CreateCondBr(Cmp, EndBlock, CallBlock); + StartBlock->getTerminator()->eraseFromParent(); + + // Create a PHI in the end block to select either the output of the intrinsic + // or the bit width of the operand. + Builder.SetInsertPoint(&EndBlock->front()); + PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); + CountZeros->replaceAllUsesWith(PN); + Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); + PN->addIncoming(BitWidth, StartBlock); + PN->addIncoming(CountZeros, CallBlock); + + // We are explicitly handling the zero case, so we can set the intrinsic's + // undefined zero argument to 'true'. This will also prevent reprocessing the + // intrinsic; we only despeculate when a zero input is defined. + CountZeros->setArgOperand(1, Builder.getTrue()); + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { + BasicBlock *BB = CI->getParent(); + + // Lower inline assembly if we can. + // If we found an inline asm expession, and if the target knows how to + // lower it to normal LLVM code, do so now. + if (TLI && isa<InlineAsm>(CI->getCalledValue())) { + if (TLI->ExpandInlineAsm(CI)) { + // Avoid invalidating the iterator. + CurInstIterator = BB->begin(); + // Avoid processing instructions out of order, which could cause + // reuse before a value is defined. + SunkAddrs.clear(); + return true; + } + // Sink address computing for memory operands into the block. + if (optimizeInlineAsmInst(CI)) + return true; + } + + // Align the pointer arguments to this call if the target thinks it's a good + // idea + unsigned MinSize, PrefAlign; + if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { + for (auto &Arg : CI->arg_operands()) { + // We want to align both objects whose address is used directly and + // objects whose address is used in casts and GEPs, though it only makes + // sense for GEPs if the offset is a multiple of the desired alignment and + // if size - offset meets the size threshold. + if (!Arg->getType()->isPointerTy()) + continue; + APInt Offset(DL->getPointerSizeInBits( + cast<PointerType>(Arg->getType())->getAddressSpace()), + 0); + Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); + uint64_t Offset2 = Offset.getLimitedValue(); + if ((Offset2 & (PrefAlign-1)) != 0) + continue; + AllocaInst *AI; + if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && + DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) + AI->setAlignment(PrefAlign); + // Global variables can only be aligned if they are defined in this + // object (i.e. they are uniquely initialized in this object), and + // over-aligning global variables that have an explicit section is + // forbidden. + GlobalVariable *GV; + if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && + !GV->hasSection() && GV->getAlignment() < PrefAlign && + DL->getTypeAllocSize(GV->getType()->getElementType()) >= + MinSize + Offset2) + GV->setAlignment(PrefAlign); + } + // If this is a memcpy (or similar) then we may be able to improve the + // alignment + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { + unsigned Align = getKnownAlignment(MI->getDest(), *DL); + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) + Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); + if (Align > MI->getAlignment()) + MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); + } + } + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + if (II) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::objectsize: { + // Lower all uses of llvm.objectsize.* + bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); + Type *ReturnTy = CI->getType(); + Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); + + // Substituting this can cause recursive simplifications, which can + // invalidate our iterator. Use a WeakVH to hold onto it in case this + // happens. + WeakVH IterHandle(&*CurInstIterator); + + replaceAndRecursivelySimplify(CI, RetVal, + TLInfo, nullptr); + + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + return true; + } + case Intrinsic::masked_load: { + // Scalarize unsupported vector masked load + if (!TTI->isLegalMaskedLoad(CI->getType())) { + ScalarizeMaskedLoad(CI); + ModifiedDT = true; + return true; + } + return false; + } + case Intrinsic::masked_store: { + if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { + ScalarizeMaskedStore(CI); + ModifiedDT = true; + return true; + } + return false; + } + case Intrinsic::masked_gather: { + if (!TTI->isLegalMaskedGather(CI->getType())) { + ScalarizeMaskedGather(CI); + ModifiedDT = true; + return true; + } + return false; + } + case Intrinsic::masked_scatter: { + if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { + ScalarizeMaskedScatter(CI); + ModifiedDT = true; + return true; + } + return false; + } + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: { + ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); + if (!ExtVal || !ExtVal->hasOneUse() || + ExtVal->getParent() == CI->getParent()) + return false; + // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. + ExtVal->moveBefore(CI); + // Mark this instruction as "inserted by CGP", so that other + // optimizations don't touch it. + InsertedInsts.insert(ExtVal); + return true; + } + case Intrinsic::invariant_group_barrier: + II->replaceAllUsesWith(II->getArgOperand(0)); + II->eraseFromParent(); + return true; + + case Intrinsic::cttz: + case Intrinsic::ctlz: + // If counting zeros is expensive, try to avoid it. + return despeculateCountZeros(II, TLI, DL, ModifiedDT); + } + + if (TLI) { + // Unknown address space. + // TODO: Target hook to pick which address space the intrinsic cares + // about? + unsigned AddrSpace = ~0u; + SmallVector<Value*, 2> PtrOps; + Type *AccessTy; + if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) + while (!PtrOps.empty()) + if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) + return true; + } + } + + // From here on out we're working with named functions. + if (!CI->getCalledFunction()) return false; + + // Lower all default uses of _chk calls. This is very similar + // to what InstCombineCalls does, but here we are only lowering calls + // to fortified library functions (e.g. __memcpy_chk) that have the default + // "don't know" as the objectsize. Anything else should be left alone. + FortifiedLibCallSimplifier Simplifier(TLInfo, true); + if (Value *V = Simplifier.optimizeCall(CI)) { + CI->replaceAllUsesWith(V); + CI->eraseFromParent(); + return true; + } + return false; +} + +/// Look for opportunities to duplicate return instructions to the predecessor +/// to enable tail call optimizations. The case it is currently looking for is: +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// br label %return +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// br label %return +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// br label %return +/// return: +/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] +/// ret i32 %retval +/// @endcode +/// +/// => +/// +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// ret i32 %tmp0 +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// ret i32 %tmp1 +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// ret i32 %tmp2 +/// @endcode +bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { + if (!TLI) + return false; + + ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); + if (!RI) + return false; + + PHINode *PN = nullptr; + BitCastInst *BCI = nullptr; + Value *V = RI->getReturnValue(); + if (V) { + BCI = dyn_cast<BitCastInst>(V); + if (BCI) + V = BCI->getOperand(0); + + PN = dyn_cast<PHINode>(V); + if (!PN) + return false; + } + + if (PN && PN->getParent() != BB) + return false; + + // It's not safe to eliminate the sign / zero extension of the return value. + // See llvm::isInTailCallPosition(). + const Function *F = BB->getParent(); + AttributeSet CallerAttrs = F->getAttributes(); + if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) + return false; + + // Make sure there are no instructions between the PHI and return, or that the + // return is the first instruction in the block. + if (PN) { + BasicBlock::iterator BI = BB->begin(); + do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); + if (&*BI == BCI) + // Also skip over the bitcast. + ++BI; + if (&*BI != RI) + return false; + } else { + BasicBlock::iterator BI = BB->begin(); + while (isa<DbgInfoIntrinsic>(BI)) ++BI; + if (&*BI != RI) + return false; + } + + /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail + /// call. + SmallVector<CallInst*, 4> TailCalls; + if (PN) { + for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { + CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); + // Make sure the phi value is indeed produced by the tail call. + if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && + TLI->mayBeEmittedAsTailCall(CI)) + TailCalls.push_back(CI); + } + } else { + SmallPtrSet<BasicBlock*, 4> VisitedBBs; + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (!VisitedBBs.insert(*PI).second) + continue; + + BasicBlock::InstListType &InstList = (*PI)->getInstList(); + BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); + BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); + do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); + if (RI == RE) + continue; + + CallInst *CI = dyn_cast<CallInst>(&*RI); + if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) + TailCalls.push_back(CI); + } + } + + bool Changed = false; + for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { + CallInst *CI = TailCalls[i]; + CallSite CS(CI); + + // Conservatively require the attributes of the call to match those of the + // return. Ignore noalias because it doesn't affect the call sequence. + AttributeSet CalleeAttrs = CS.getAttributes(); + if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). + removeAttribute(Attribute::NoAlias) != + AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). + removeAttribute(Attribute::NoAlias)) + continue; + + // Make sure the call instruction is followed by an unconditional branch to + // the return block. + BasicBlock *CallBB = CI->getParent(); + BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); + if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) + continue; + + // Duplicate the return into CallBB. + (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); + ModifiedDT = Changed = true; + ++NumRetsDup; + } + + // If we eliminated all predecessors of the block, delete the block now. + if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) + BB->eraseFromParent(); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// Memory Optimization +//===----------------------------------------------------------------------===// + +namespace { + +/// This is an extended version of TargetLowering::AddrMode +/// which holds actual Value*'s for register values. +struct ExtAddrMode : public TargetLowering::AddrMode { + Value *BaseReg; + Value *ScaledReg; + ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} + void print(raw_ostream &OS) const; + void dump() const; + + bool operator==(const ExtAddrMode& O) const { + return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && + (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && + (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); + } +}; + +#ifndef NDEBUG +static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { + AM.print(OS); + return OS; +} +#endif + +void ExtAddrMode::print(raw_ostream &OS) const { + bool NeedPlus = false; + OS << "["; + if (BaseGV) { + OS << (NeedPlus ? " + " : "") + << "GV:"; + BaseGV->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + + if (BaseOffs) { + OS << (NeedPlus ? " + " : "") + << BaseOffs; + NeedPlus = true; + } + + if (BaseReg) { + OS << (NeedPlus ? " + " : "") + << "Base:"; + BaseReg->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + if (Scale) { + OS << (NeedPlus ? " + " : "") + << Scale << "*"; + ScaledReg->printAsOperand(OS, /*PrintType=*/false); + } + + OS << ']'; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ExtAddrMode::dump() const { + print(dbgs()); + dbgs() << '\n'; +} +#endif + +/// \brief This class provides transaction based operation on the IR. +/// Every change made through this class is recorded in the internal state and +/// can be undone (rollback) until commit is called. +class TypePromotionTransaction { + + /// \brief This represents the common interface of the individual transaction. + /// Each class implements the logic for doing one specific modification on + /// the IR via the TypePromotionTransaction. + class TypePromotionAction { + protected: + /// The Instruction modified. + Instruction *Inst; + + public: + /// \brief Constructor of the action. + /// The constructor performs the related action on the IR. + TypePromotionAction(Instruction *Inst) : Inst(Inst) {} + + virtual ~TypePromotionAction() {} + + /// \brief Undo the modification done by this action. + /// When this method is called, the IR must be in the same state as it was + /// before this action was applied. + /// \pre Undoing the action works if and only if the IR is in the exact same + /// state as it was directly after this action was applied. + virtual void undo() = 0; + + /// \brief Advocate every change made by this action. + /// When the results on the IR of the action are to be kept, it is important + /// to call this function, otherwise hidden information may be kept forever. + virtual void commit() { + // Nothing to be done, this action is not doing anything. + } + }; + + /// \brief Utility to remember the position of an instruction. + class InsertionHandler { + /// Position of an instruction. + /// Either an instruction: + /// - Is the first in a basic block: BB is used. + /// - Has a previous instructon: PrevInst is used. + union { + Instruction *PrevInst; + BasicBlock *BB; + } Point; + /// Remember whether or not the instruction had a previous instruction. + bool HasPrevInstruction; + + public: + /// \brief Record the position of \p Inst. + InsertionHandler(Instruction *Inst) { + BasicBlock::iterator It = Inst->getIterator(); + HasPrevInstruction = (It != (Inst->getParent()->begin())); + if (HasPrevInstruction) + Point.PrevInst = &*--It; + else + Point.BB = Inst->getParent(); + } + + /// \brief Insert \p Inst at the recorded position. + void insert(Instruction *Inst) { + if (HasPrevInstruction) { + if (Inst->getParent()) + Inst->removeFromParent(); + Inst->insertAfter(Point.PrevInst); + } else { + Instruction *Position = &*Point.BB->getFirstInsertionPt(); + if (Inst->getParent()) + Inst->moveBefore(Position); + else + Inst->insertBefore(Position); + } + } + }; + + /// \brief Move an instruction before another. + class InstructionMoveBefore : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Position; + + public: + /// \brief Move \p Inst before \p Before. + InstructionMoveBefore(Instruction *Inst, Instruction *Before) + : TypePromotionAction(Inst), Position(Inst) { + DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); + Inst->moveBefore(Before); + } + + /// \brief Move the instruction back to its original position. + void undo() override { + DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); + Position.insert(Inst); + } + }; + + /// \brief Set the operand of an instruction with a new value. + class OperandSetter : public TypePromotionAction { + /// Original operand of the instruction. + Value *Origin; + /// Index of the modified instruction. + unsigned Idx; + + public: + /// \brief Set \p Idx operand of \p Inst with \p NewVal. + OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) + : TypePromotionAction(Inst), Idx(Idx) { + DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" + << "for:" << *Inst << "\n" + << "with:" << *NewVal << "\n"); + Origin = Inst->getOperand(Idx); + Inst->setOperand(Idx, NewVal); + } + + /// \brief Restore the original value of the instruction. + void undo() override { + DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" + << "for: " << *Inst << "\n" + << "with: " << *Origin << "\n"); + Inst->setOperand(Idx, Origin); + } + }; + + /// \brief Hide the operands of an instruction. + /// Do as if this instruction was not using any of its operands. + class OperandsHider : public TypePromotionAction { + /// The list of original operands. + SmallVector<Value *, 4> OriginalValues; + + public: + /// \brief Remove \p Inst from the uses of the operands of \p Inst. + OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { + DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); + unsigned NumOpnds = Inst->getNumOperands(); + OriginalValues.reserve(NumOpnds); + for (unsigned It = 0; It < NumOpnds; ++It) { + // Save the current operand. + Value *Val = Inst->getOperand(It); + OriginalValues.push_back(Val); + // Set a dummy one. + // We could use OperandSetter here, but that would imply an overhead + // that we are not willing to pay. + Inst->setOperand(It, UndefValue::get(Val->getType())); + } + } + + /// \brief Restore the original list of uses. + void undo() override { + DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); + for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) + Inst->setOperand(It, OriginalValues[It]); + } + }; + + /// \brief Build a truncate instruction. + class TruncBuilder : public TypePromotionAction { + Value *Val; + public: + /// \brief Build a truncate instruction of \p Opnd producing a \p Ty + /// result. + /// trunc Opnd to Ty. + TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { + IRBuilder<> Builder(Opnd); + Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); + DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); + } + + /// \brief Get the built value. + Value *getBuiltValue() { return Val; } + + /// \brief Remove the built instruction. + void undo() override { + DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// \brief Build a sign extension instruction. + class SExtBuilder : public TypePromotionAction { + Value *Val; + public: + /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty + /// result. + /// sext Opnd to Ty. + SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Val = Builder.CreateSExt(Opnd, Ty, "promoted"); + DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); + } + + /// \brief Get the built value. + Value *getBuiltValue() { return Val; } + + /// \brief Remove the built instruction. + void undo() override { + DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// \brief Build a zero extension instruction. + class ZExtBuilder : public TypePromotionAction { + Value *Val; + public: + /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty + /// result. + /// zext Opnd to Ty. + ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Val = Builder.CreateZExt(Opnd, Ty, "promoted"); + DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); + } + + /// \brief Get the built value. + Value *getBuiltValue() { return Val; } + + /// \brief Remove the built instruction. + void undo() override { + DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// \brief Mutate an instruction to another type. + class TypeMutator : public TypePromotionAction { + /// Record the original type. + Type *OrigTy; + + public: + /// \brief Mutate the type of \p Inst into \p NewTy. + TypeMutator(Instruction *Inst, Type *NewTy) + : TypePromotionAction(Inst), OrigTy(Inst->getType()) { + DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy + << "\n"); + Inst->mutateType(NewTy); + } + + /// \brief Mutate the instruction back to its original type. + void undo() override { + DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy + << "\n"); + Inst->mutateType(OrigTy); + } + }; + + /// \brief Replace the uses of an instruction by another instruction. + class UsesReplacer : public TypePromotionAction { + /// Helper structure to keep track of the replaced uses. + struct InstructionAndIdx { + /// The instruction using the instruction. + Instruction *Inst; + /// The index where this instruction is used for Inst. + unsigned Idx; + InstructionAndIdx(Instruction *Inst, unsigned Idx) + : Inst(Inst), Idx(Idx) {} + }; + + /// Keep track of the original uses (pair Instruction, Index). + SmallVector<InstructionAndIdx, 4> OriginalUses; + typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; + + public: + /// \brief Replace all the use of \p Inst by \p New. + UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { + DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New + << "\n"); + // Record the original uses. + for (Use &U : Inst->uses()) { + Instruction *UserI = cast<Instruction>(U.getUser()); + OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); + } + // Now, we can replace the uses. + Inst->replaceAllUsesWith(New); + } + + /// \brief Reassign the original uses of Inst to Inst. + void undo() override { + DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); + for (use_iterator UseIt = OriginalUses.begin(), + EndIt = OriginalUses.end(); + UseIt != EndIt; ++UseIt) { + UseIt->Inst->setOperand(UseIt->Idx, Inst); + } + } + }; + + /// \brief Remove an instruction from the IR. + class InstructionRemover : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Inserter; + /// Helper structure to hide all the link to the instruction. In other + /// words, this helps to do as if the instruction was removed. + OperandsHider Hider; + /// Keep track of the uses replaced, if any. + UsesReplacer *Replacer; + + public: + /// \brief Remove all reference of \p Inst and optinally replace all its + /// uses with New. + /// \pre If !Inst->use_empty(), then New != nullptr + InstructionRemover(Instruction *Inst, Value *New = nullptr) + : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), + Replacer(nullptr) { + if (New) + Replacer = new UsesReplacer(Inst, New); + DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); + Inst->removeFromParent(); + } + + ~InstructionRemover() override { delete Replacer; } + + /// \brief Really remove the instruction. + void commit() override { delete Inst; } + + /// \brief Resurrect the instruction and reassign it to the proper uses if + /// new value was provided when build this action. + void undo() override { + DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); + Inserter.insert(Inst); + if (Replacer) + Replacer->undo(); + Hider.undo(); + } + }; + +public: + /// Restoration point. + /// The restoration point is a pointer to an action instead of an iterator + /// because the iterator may be invalidated but not the pointer. + typedef const TypePromotionAction *ConstRestorationPt; + /// Advocate every changes made in that transaction. + void commit(); + /// Undo all the changes made after the given point. + void rollback(ConstRestorationPt Point); + /// Get the current restoration point. + ConstRestorationPt getRestorationPoint() const; + + /// \name API for IR modification with state keeping to support rollback. + /// @{ + /// Same as Instruction::setOperand. + void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); + /// Same as Instruction::eraseFromParent. + void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); + /// Same as Value::replaceAllUsesWith. + void replaceAllUsesWith(Instruction *Inst, Value *New); + /// Same as Value::mutateType. + void mutateType(Instruction *Inst, Type *NewTy); + /// Same as IRBuilder::createTrunc. + Value *createTrunc(Instruction *Opnd, Type *Ty); + /// Same as IRBuilder::createSExt. + Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); + /// Same as IRBuilder::createZExt. + Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); + /// Same as Instruction::moveBefore. + void moveBefore(Instruction *Inst, Instruction *Before); + /// @} + +private: + /// The ordered list of actions made so far. + SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; + typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; +}; + +void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, + Value *NewVal) { + Actions.push_back( + make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); +} + +void TypePromotionTransaction::eraseInstruction(Instruction *Inst, + Value *NewVal) { + Actions.push_back( + make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); +} + +void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, + Value *New) { + Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); +} + +void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { + Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); +} + +Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, + Type *Ty) { + std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createSExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createZExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +void TypePromotionTransaction::moveBefore(Instruction *Inst, + Instruction *Before) { + Actions.push_back( + make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); +} + +TypePromotionTransaction::ConstRestorationPt +TypePromotionTransaction::getRestorationPoint() const { + return !Actions.empty() ? Actions.back().get() : nullptr; +} + +void TypePromotionTransaction::commit() { + for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; + ++It) + (*It)->commit(); + Actions.clear(); +} + +void TypePromotionTransaction::rollback( + TypePromotionTransaction::ConstRestorationPt Point) { + while (!Actions.empty() && Point != Actions.back().get()) { + std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); + Curr->undo(); + } +} + +/// \brief A helper class for matching addressing modes. +/// +/// This encapsulates the logic for matching the target-legal addressing modes. +class AddressingModeMatcher { + SmallVectorImpl<Instruction*> &AddrModeInsts; + const TargetMachine &TM; + const TargetLowering &TLI; + const DataLayout &DL; + + /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and + /// the memory instruction that we're computing this address for. + Type *AccessTy; + unsigned AddrSpace; + Instruction *MemoryInst; + + /// This is the addressing mode that we're building up. This is + /// part of the return value of this addressing mode matching stuff. + ExtAddrMode &AddrMode; + + /// The instructions inserted by other CodeGenPrepare optimizations. + const SetOfInstrs &InsertedInsts; + /// A map from the instructions to their type before promotion. + InstrToOrigTy &PromotedInsts; + /// The ongoing transaction where every action should be registered. + TypePromotionTransaction &TPT; + + /// This is set to true when we should not do profitability checks. + /// When true, IsProfitableToFoldIntoAddressingMode always returns true. + bool IgnoreProfitability; + + AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, + const TargetMachine &TM, Type *AT, unsigned AS, + Instruction *MI, ExtAddrMode &AM, + const SetOfInstrs &InsertedInsts, + InstrToOrigTy &PromotedInsts, + TypePromotionTransaction &TPT) + : AddrModeInsts(AMI), TM(TM), + TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) + ->getTargetLowering()), + DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), + MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), + PromotedInsts(PromotedInsts), TPT(TPT) { + IgnoreProfitability = false; + } +public: + + /// Find the maximal addressing mode that a load/store of V can fold, + /// give an access type of AccessTy. This returns a list of involved + /// instructions in AddrModeInsts. + /// \p InsertedInsts The instructions inserted by other CodeGenPrepare + /// optimizations. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p The ongoing transaction where every action should be registered. + static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, + Instruction *MemoryInst, + SmallVectorImpl<Instruction*> &AddrModeInsts, + const TargetMachine &TM, + const SetOfInstrs &InsertedInsts, + InstrToOrigTy &PromotedInsts, + TypePromotionTransaction &TPT) { + ExtAddrMode Result; + + bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, + MemoryInst, Result, InsertedInsts, + PromotedInsts, TPT).matchAddr(V, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + return Result; + } +private: + bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); + bool matchAddr(Value *V, unsigned Depth); + bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, + bool *MovedAway = nullptr); + bool isProfitableToFoldIntoAddressingMode(Instruction *I, + ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter); + bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); + bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, + Value *PromotedOperand) const; +}; + +/// Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, + unsigned Depth) { + // If Scale is 1, then this is the same as adding ScaleReg to the addressing + // mode. Just process that directly. + if (Scale == 1) + return matchAddr(ScaleReg, Depth); + + // If the scale is 0, it takes nothing to add this. + if (Scale == 0) + return true; + + // If we already have a scale of this value, we can add to it, otherwise, we + // need an available scale field. + if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) + return false; + + ExtAddrMode TestAddrMode = AddrMode; + + // Add scale to turn X*4+X*3 -> X*7. This could also do things like + // [A+B + A*7] -> [B+A*8]. + TestAddrMode.Scale += Scale; + TestAddrMode.ScaledReg = ScaleReg; + + // If the new address isn't legal, bail out. + if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) + return false; + + // It was legal, so commit it. + AddrMode = TestAddrMode; + + // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now + // to see if ScaleReg is actually X+C. If so, we can turn this into adding + // X*Scale + C*Scale to addr mode. + ConstantInt *CI = nullptr; Value *AddLHS = nullptr; + if (isa<Instruction>(ScaleReg) && // not a constant expr. + match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { + TestAddrMode.ScaledReg = AddLHS; + TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; + + // If this addressing mode is legal, commit it and remember that we folded + // this instruction. + if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { + AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); + AddrMode = TestAddrMode; + return true; + } + } + + // Otherwise, not (x+c)*scale, just return what we have. + return true; +} + +/// This is a little filter, which returns true if an addressing computation +/// involving I might be folded into a load/store accessing it. +/// This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + // Don't touch identity bitcasts. + if (I->getType() == I->getOperand(0)->getType()) + return false; + return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return true; + case Instruction::IntToPtr: + // We know the input is intptr_t, so this is foldable. + return true; + case Instruction::Add: + return true; + case Instruction::Mul: + case Instruction::Shl: + // Can only handle X*C and X << C. + return isa<ConstantInt>(I->getOperand(1)); + case Instruction::GetElementPtr: + return true; + default: + return false; + } +} + +/// \brief Check whether or not \p Val is a legal instruction for \p TLI. +/// \note \p Val is assumed to be the product of some type promotion. +/// Therefore if \p Val has an undefined state in \p TLI, this is assumed +/// to be legal, as the non-promoted value would have had the same state. +static bool isPromotedInstructionLegal(const TargetLowering &TLI, + const DataLayout &DL, Value *Val) { + Instruction *PromotedInst = dyn_cast<Instruction>(Val); + if (!PromotedInst) + return false; + int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); + // If the ISDOpcode is undefined, it was undefined before the promotion. + if (!ISDOpcode) + return true; + // Otherwise, check if the promoted instruction is legal or not. + return TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); +} + +/// \brief Hepler class to perform type promotion. +class TypePromotionHelper { + /// \brief Utility function to check whether or not a sign or zero extension + /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by + /// either using the operands of \p Inst or promoting \p Inst. + /// The type of the extension is defined by \p IsSExt. + /// In other words, check if: + /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. + /// #1 Promotion applies: + /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). + /// #2 Operand reuses: + /// ext opnd1 to ConsideredExtType. + /// \p PromotedInsts maps the instructions to their type before promotion. + static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, bool IsSExt); + + /// \brief Utility function to determine if \p OpIdx should be promoted when + /// promoting \p Inst. + static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { + return !(isa<SelectInst>(Inst) && OpIdx == 0); + } + + /// \brief Utility function to promote the operand of \p Ext when this + /// operand is a promotable trunc or sext or zext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForTruncAndAnyExt( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); + + /// \brief Utility function to promote the operand of \p Ext when this + /// operand is promotable and is not a supported trunc or sext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all the instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForOther(Instruction *Ext, + TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI, bool IsSExt); + + /// \see promoteOperandForOther. + static Value *signExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, true); + } + + /// \see promoteOperandForOther. + static Value *zeroExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, false); + } + +public: + /// Type for the utility function that promotes the operand of Ext. + typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI); + /// \brief Given a sign/zero extend instruction \p Ext, return the approriate + /// action to promote the operand of \p Ext instead of using Ext. + /// \return NULL if no promotable action is possible with the current + /// sign extension. + /// \p InsertedInsts keeps track of all the instructions inserted by the + /// other CodeGenPrepare optimizations. This information is important + /// because we do not want to promote these instructions as CodeGenPrepare + /// will reinsert them later. Thus creating an infinite loop: create/remove. + /// \p PromotedInsts maps the instructions to their type before promotion. + static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, + const InstrToOrigTy &PromotedInsts); +}; + +bool TypePromotionHelper::canGetThrough(const Instruction *Inst, + Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, + bool IsSExt) { + // The promotion helper does not know how to deal with vector types yet. + // To be able to fix that, we would need to fix the places where we + // statically extend, e.g., constants and such. + if (Inst->getType()->isVectorTy()) + return false; + + // We can always get through zext. + if (isa<ZExtInst>(Inst)) + return true; + + // sext(sext) is ok too. + if (IsSExt && isa<SExtInst>(Inst)) + return true; + + // We can get through binary operator, if it is legal. In other words, the + // binary operator must have a nuw or nsw flag. + const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); + if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && + ((!IsSExt && BinOp->hasNoUnsignedWrap()) || + (IsSExt && BinOp->hasNoSignedWrap()))) + return true; + + // Check if we can do the following simplification. + // ext(trunc(opnd)) --> ext(opnd) + if (!isa<TruncInst>(Inst)) + return false; + + Value *OpndVal = Inst->getOperand(0); + // Check if we can use this operand in the extension. + // If the type is larger than the result type of the extension, we cannot. + if (!OpndVal->getType()->isIntegerTy() || + OpndVal->getType()->getIntegerBitWidth() > + ConsideredExtType->getIntegerBitWidth()) + return false; + + // If the operand of the truncate is not an instruction, we will not have + // any information on the dropped bits. + // (Actually we could for constant but it is not worth the extra logic). + Instruction *Opnd = dyn_cast<Instruction>(OpndVal); + if (!Opnd) + return false; + + // Check if the source of the type is narrow enough. + // I.e., check that trunc just drops extended bits of the same kind of + // the extension. + // #1 get the type of the operand and check the kind of the extended bits. + const Type *OpndType; + InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); + if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) + OpndType = It->second.getPointer(); + else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) + OpndType = Opnd->getOperand(0)->getType(); + else + return false; + + // #2 check that the truncate just drops extended bits. + return Inst->getType()->getIntegerBitWidth() >= + OpndType->getIntegerBitWidth(); +} + +TypePromotionHelper::Action TypePromotionHelper::getAction( + Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { + assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && + "Unexpected instruction type"); + Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); + Type *ExtTy = Ext->getType(); + bool IsSExt = isa<SExtInst>(Ext); + // If the operand of the extension is not an instruction, we cannot + // get through. + // If it, check we can get through. + if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) + return nullptr; + + // Do not promote if the operand has been added by codegenprepare. + // Otherwise, it means we are undoing an optimization that is likely to be + // redone, thus causing potential infinite loop. + if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) + return nullptr; + + // SExt or Trunc instructions. + // Return the related handler. + if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || + isa<ZExtInst>(ExtOpnd)) + return promoteOperandForTruncAndAnyExt; + + // Regular instruction. + // Abort early if we will have to insert non-free instructions. + if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) + return nullptr; + return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; +} + +Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( + llvm::Instruction *SExt, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + // By construction, the operand of SExt is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); + Value *ExtVal = SExt; + bool HasMergedNonFreeExt = false; + if (isa<ZExtInst>(SExtOpnd)) { + // Replace s|zext(zext(opnd)) + // => zext(opnd). + HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); + Value *ZExt = + TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); + TPT.replaceAllUsesWith(SExt, ZExt); + TPT.eraseInstruction(SExt); + ExtVal = ZExt; + } else { + // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) + // => z|sext(opnd). + TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); + } + CreatedInstsCost = 0; + + // Remove dead code. + if (SExtOpnd->use_empty()) + TPT.eraseInstruction(SExtOpnd); + + // Check if the extension is still needed. + Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); + if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { + if (ExtInst) { + if (Exts) + Exts->push_back(ExtInst); + CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; + } + return ExtVal; + } + + // At this point we have: ext ty opnd to ty. + // Reassign the uses of ExtInst to the opnd and remove ExtInst. + Value *NextVal = ExtInst->getOperand(0); + TPT.eraseInstruction(ExtInst, NextVal); + return NextVal; +} + +Value *TypePromotionHelper::promoteOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, + bool IsSExt) { + // By construction, the operand of Ext is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); + CreatedInstsCost = 0; + if (!ExtOpnd->hasOneUse()) { + // ExtOpnd will be promoted. + // All its uses, but Ext, will need to use a truncated value of the + // promoted version. + // Create the truncate now. + Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); + if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { + ITrunc->removeFromParent(); + // Insert it just after the definition. + ITrunc->insertAfter(ExtOpnd); + if (Truncs) + Truncs->push_back(ITrunc); + } + + TPT.replaceAllUsesWith(ExtOpnd, Trunc); + // Restore the operand of Ext (which has been replaced by the previous call + // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. + TPT.setOperand(Ext, 0, ExtOpnd); + } + + // Get through the Instruction: + // 1. Update its type. + // 2. Replace the uses of Ext by Inst. + // 3. Extend each operand that needs to be extended. + + // Remember the original type of the instruction before promotion. + // This is useful to know that the high bits are sign extended bits. + PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( + ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); + // Step #1. + TPT.mutateType(ExtOpnd, Ext->getType()); + // Step #2. + TPT.replaceAllUsesWith(Ext, ExtOpnd); + // Step #3. + Instruction *ExtForOpnd = Ext; + + DEBUG(dbgs() << "Propagate Ext to operands\n"); + for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; + ++OpIdx) { + DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); + if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || + !shouldExtOperand(ExtOpnd, OpIdx)) { + DEBUG(dbgs() << "No need to propagate\n"); + continue; + } + // Check if we can statically extend the operand. + Value *Opnd = ExtOpnd->getOperand(OpIdx); + if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { + DEBUG(dbgs() << "Statically extend\n"); + unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); + APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) + : Cst->getValue().zext(BitWidth); + TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); + continue; + } + // UndefValue are typed, so we have to statically sign extend them. + if (isa<UndefValue>(Opnd)) { + DEBUG(dbgs() << "Statically extend\n"); + TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); + continue; + } + + // Otherwise we have to explicity sign extend the operand. + // Check if Ext was reused to extend an operand. + if (!ExtForOpnd) { + // If yes, create a new one. + DEBUG(dbgs() << "More operands to ext\n"); + Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) + : TPT.createZExt(Ext, Opnd, Ext->getType()); + if (!isa<Instruction>(ValForExtOpnd)) { + TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); + continue; + } + ExtForOpnd = cast<Instruction>(ValForExtOpnd); + } + if (Exts) + Exts->push_back(ExtForOpnd); + TPT.setOperand(ExtForOpnd, 0, Opnd); + + // Move the sign extension before the insertion point. + TPT.moveBefore(ExtForOpnd, ExtOpnd); + TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); + CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); + // If more sext are required, new instructions will have to be created. + ExtForOpnd = nullptr; + } + if (ExtForOpnd == Ext) { + DEBUG(dbgs() << "Extension is useless now\n"); + TPT.eraseInstruction(Ext); + } + return ExtOpnd; +} + +/// Check whether or not promoting an instruction to a wider type is profitable. +/// \p NewCost gives the cost of extension instructions created by the +/// promotion. +/// \p OldCost gives the cost of extension instructions before the promotion +/// plus the number of instructions that have been +/// matched in the addressing mode the promotion. +/// \p PromotedOperand is the value that has been promoted. +/// \return True if the promotion is profitable, false otherwise. +bool AddressingModeMatcher::isPromotionProfitable( + unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { + DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); + // The cost of the new extensions is greater than the cost of the + // old extension plus what we folded. + // This is not profitable. + if (NewCost > OldCost) + return false; + if (NewCost < OldCost) + return true; + // The promotion is neutral but it may help folding the sign extension in + // loads for instance. + // Check that we did not create an illegal instruction. + return isPromotedInstructionLegal(TLI, DL, PromotedOperand); +} + +/// Given an instruction or constant expr, see if we can fold the operation +/// into the addressing mode. If so, update the addressing mode and return +/// true, otherwise return false without modifying AddrMode. +/// If \p MovedAway is not NULL, it contains the information of whether or +/// not AddrInst has to be folded into the addressing mode on success. +/// If \p MovedAway == true, \p AddrInst will not be part of the addressing +/// because it has been moved away. +/// Thus AddrInst must not be added in the matched instructions. +/// This state can happen when AddrInst is a sext, since it may be moved away. +/// Therefore, AddrInst may not be valid when MovedAway is true and it must +/// not be referenced anymore. +bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, + unsigned Depth, + bool *MovedAway) { + // Avoid exponential behavior on extremely deep expression trees. + if (Depth >= 5) return false; + + // By default, all matched instructions stay in place. + if (MovedAway) + *MovedAway = false; + + switch (Opcode) { + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return matchAddr(AddrInst->getOperand(0), Depth); + case Instruction::IntToPtr: { + auto AS = AddrInst->getType()->getPointerAddressSpace(); + auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); + // This inttoptr is a no-op if the integer type is pointer sized. + if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::BitCast: + // BitCast is always a noop, and we can handle it as long as it is + // int->int or pointer->pointer (we don't want int<->fp or something). + if ((AddrInst->getOperand(0)->getType()->isPointerTy() || + AddrInst->getOperand(0)->getType()->isIntegerTy()) && + // Don't touch identity bitcasts. These were probably put here by LSR, + // and we don't want to mess around with them. Assume it knows what it + // is doing. + AddrInst->getOperand(0)->getType() != AddrInst->getType()) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + case Instruction::AddrSpaceCast: { + unsigned SrcAS + = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); + unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); + if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::Add: { + // Check to see if we can merge in the RHS then the LHS. If so, we win. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + // Start a transaction at this point. + // The LHS may match but not the RHS. + // Therefore, we need a higher level restoration point to undo partially + // matched operation. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + + if (matchAddr(AddrInst->getOperand(1), Depth+1) && + matchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + + // Restore the old addr mode info. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + + // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. + if (matchAddr(AddrInst->getOperand(0), Depth+1) && + matchAddr(AddrInst->getOperand(1), Depth+1)) + return true; + + // Otherwise we definitely can't merge the ADD in. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + break; + } + //case Instruction::Or: + // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. + //break; + case Instruction::Mul: + case Instruction::Shl: { + // Can only handle X*C and X << C. + ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); + if (!RHS) + return false; + int64_t Scale = RHS->getSExtValue(); + if (Opcode == Instruction::Shl) + Scale = 1LL << Scale; + + return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); + } + case Instruction::GetElementPtr: { + // Scan the GEP. We check it if it contains constant offsets and at most + // one variable offset. + int VariableOperand = -1; + unsigned VariableScale = 0; + + int64_t ConstantOffset = 0; + gep_type_iterator GTI = gep_type_begin(AddrInst); + for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { + if (StructType *STy = dyn_cast<StructType>(*GTI)) { + const StructLayout *SL = DL.getStructLayout(STy); + unsigned Idx = + cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); + ConstantOffset += SL->getElementOffset(Idx); + } else { + uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { + ConstantOffset += CI->getSExtValue()*TypeSize; + } else if (TypeSize) { // Scales of zero don't do anything. + // We only allow one variable index at the moment. + if (VariableOperand != -1) + return false; + + // Remember the variable index. + VariableOperand = i; + VariableScale = TypeSize; + } + } + } + + // A common case is for the GEP to only do a constant offset. In this case, + // just add it to the disp field and check validity. + if (VariableOperand == -1) { + AddrMode.BaseOffs += ConstantOffset; + if (ConstantOffset == 0 || + TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { + // Check to see if we can fold the base pointer in too. + if (matchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + } + AddrMode.BaseOffs -= ConstantOffset; + return false; + } + + // Save the valid addressing mode in case we can't match. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // See if the scale and offset amount is valid for this target. + AddrMode.BaseOffs += ConstantOffset; + + // Match the base operand of the GEP. + if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { + // If it couldn't be matched, just stuff the value in a register. + if (AddrMode.HasBaseReg) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + } + + // Match the remaining variable portion of the GEP. + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, + Depth)) { + // If it couldn't be matched, try stuffing the base into a register + // instead of matching it, and retrying the match of the scale. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + if (AddrMode.HasBaseReg) + return false; + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + AddrMode.BaseOffs += ConstantOffset; + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), + VariableScale, Depth)) { + // If even that didn't work, bail. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + } + + return true; + } + case Instruction::SExt: + case Instruction::ZExt: { + Instruction *Ext = dyn_cast<Instruction>(AddrInst); + if (!Ext) + return false; + + // Try to move this ext out of the way of the addressing mode. + // Ask for a method for doing so. + TypePromotionHelper::Action TPH = + TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); + if (!TPH) + return false; + + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + unsigned CreatedInstsCost = 0; + unsigned ExtCost = !TLI.isExtFree(Ext); + Value *PromotedOperand = + TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); + // SExt has been moved away. + // Thus either it will be rematched later in the recursive calls or it is + // gone. Anyway, we must not fold it into the addressing mode at this point. + // E.g., + // op = add opnd, 1 + // idx = ext op + // addr = gep base, idx + // is now: + // promotedOpnd = ext opnd <- no match here + // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) + // addr = gep base, op <- match + if (MovedAway) + *MovedAway = true; + + assert(PromotedOperand && + "TypePromotionHelper should have filtered out those cases"); + + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + if (!matchAddr(PromotedOperand, Depth) || + // The total of the new cost is equal to the cost of the created + // instructions. + // The total of the old cost is equal to the cost of the extension plus + // what we have saved in the addressing mode. + !isPromotionProfitable(CreatedInstsCost, + ExtCost + (AddrModeInsts.size() - OldSize), + PromotedOperand)) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); + TPT.rollback(LastKnownGood); + return false; + } + return true; + } + } + return false; +} + +/// If we can, try to add the value of 'Addr' into the current addressing mode. +/// If Addr can't be added to AddrMode this returns false and leaves AddrMode +/// unmodified. This assumes that Addr is either a pointer type or intptr_t +/// for the target. +/// +bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { + // Start a transaction at this point that we will rollback if the matching + // fails. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { + // Fold in immediates if legal for the target. + AddrMode.BaseOffs += CI->getSExtValue(); + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseOffs -= CI->getSExtValue(); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { + // If this is a global variable, try to fold it into the addressing mode. + if (!AddrMode.BaseGV) { + AddrMode.BaseGV = GV; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseGV = nullptr; + } + } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // Check to see if it is possible to fold this operation. + bool MovedAway = false; + if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { + // This instruction may have been moved away. If so, there is nothing + // to check here. + if (MovedAway) + return true; + // Okay, it's possible to fold this. Check to see if it is actually + // *profitable* to do so. We use a simple cost model to avoid increasing + // register pressure too much. + if (I->hasOneUse() || + isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { + AddrModeInsts.push_back(I); + return true; + } + + // It isn't profitable to do this, roll back. + //cerr << "NOT FOLDING: " << *I; + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + } + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { + if (matchOperationAddr(CE, CE->getOpcode(), Depth)) + return true; + TPT.rollback(LastKnownGood); + } else if (isa<ConstantPointerNull>(Addr)) { + // Null pointer gets folded without affecting the addressing mode. + return true; + } + + // Worse case, the target should support [reg] addressing modes. :) + if (!AddrMode.HasBaseReg) { + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = Addr; + // Still check for legality in case the target supports [imm] but not [i+r]. + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.HasBaseReg = false; + AddrMode.BaseReg = nullptr; + } + + // If the base register is already taken, see if we can do [r+r]. + if (AddrMode.Scale == 0) { + AddrMode.Scale = 1; + AddrMode.ScaledReg = Addr; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.Scale = 0; + AddrMode.ScaledReg = nullptr; + } + // Couldn't match. + TPT.rollback(LastKnownGood); + return false; +} + +/// Check to see if all uses of OpVal by the specified inline asm call are due +/// to memory operands. If so, return true, otherwise return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, + const TargetMachine &TM) { + const Function *F = CI->getParent()->getParent(); + const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); + const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, + ImmutableCallSite(CI)); + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + // If this asm operand is our Value*, and if it isn't an indirect memory + // operand, we can't fold it! + if (OpInfo.CallOperandVal == OpVal && + (OpInfo.ConstraintType != TargetLowering::C_Memory || + !OpInfo.isIndirect)) + return false; + } + + return true; +} + +/// Recursively walk all the uses of I until we find a memory use. +/// If we find an obviously non-foldable instruction, return true. +/// Add the ultimately found memory instructions to MemoryUses. +static bool FindAllMemoryUses( + Instruction *I, + SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, + SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { + // If we already considered this instruction, we're done. + if (!ConsideredInsts.insert(I).second) + return false; + + // If this is an obviously unfoldable instruction, bail out. + if (!MightBeFoldableInst(I)) + return true; + + // Loop over all the uses, recursively processing them. + for (Use &U : I->uses()) { + Instruction *UserI = cast<Instruction>(U.getUser()); + + if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { + MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo == 0) return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(SI, opNo)); + continue; + } + + if (CallInst *CI = dyn_cast<CallInst>(UserI)) { + InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); + if (!IA) return true; + + // If this is a memory operand, we're cool, otherwise bail out. + if (!IsOperandAMemoryOperand(CI, IA, I, TM)) + return true; + continue; + } + + if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) + return true; + } + + return false; +} + +/// Return true if Val is already known to be live at the use site that we're +/// folding it into. If so, there is no cost to include it in the addressing +/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the +/// instruction already. +bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, + Value *KnownLive2) { + // If Val is either of the known-live values, we know it is live! + if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) + return true; + + // All values other than instructions and arguments (e.g. constants) are live. + if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; + + // If Val is a constant sized alloca in the entry block, it is live, this is + // true because it is just a reference to the stack/frame pointer, which is + // live for the whole function. + if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) + if (AI->isStaticAlloca()) + return true; + + // Check to see if this value is already used in the memory instruction's + // block. If so, it's already live into the block at the very least, so we + // can reasonably fold it. + return Val->isUsedInBasicBlock(MemoryInst->getParent()); +} + +/// It is possible for the addressing mode of the machine to fold the specified +/// instruction into a load or store that ultimately uses it. +/// However, the specified instruction has multiple uses. +/// Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: +/// +/// X = ... +/// Y = X+1 +/// use(Y) -> nonload/store +/// Z = Y+1 +/// load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line. If we don't fold Y into load Z, we use one +/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case. This would make Y die earlier. +bool AddressingModeMatcher:: +isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter) { + if (IgnoreProfitability) return true; + + // AMBefore is the addressing mode before this instruction was folded into it, + // and AMAfter is the addressing mode after the instruction was folded. Get + // the set of registers referenced by AMAfter and subtract out those + // referenced by AMBefore: this is the set of values which folding in this + // address extends the lifetime of. + // + // Note that there are only two potential values being referenced here, + // BaseReg and ScaleReg (global addresses are always available, as are any + // folded immediates). + Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; + + // If the BaseReg or ScaledReg was referenced by the previous addrmode, their + // lifetime wasn't extended by adding this instruction. + if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + BaseReg = nullptr; + if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + ScaledReg = nullptr; + + // If folding this instruction (and it's subexprs) didn't extend any live + // ranges, we're ok with it. + if (!BaseReg && !ScaledReg) + return true; + + // If all uses of this instruction are ultimately load/store/inlineasm's, + // check to see if their addressing modes will include this instruction. If + // so, we can fold it into all uses, so it doesn't matter if it has multiple + // uses. + SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; + SmallPtrSet<Instruction*, 16> ConsideredInsts; + if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) + return false; // Has a non-memory, non-foldable use! + + // Now that we know that all uses of this instruction are part of a chain of + // computation involving only operations that could theoretically be folded + // into a memory use, loop over each of these uses and see if they could + // *actually* fold the instruction. + SmallVector<Instruction*, 32> MatchedAddrModeInsts; + for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { + Instruction *User = MemoryUses[i].first; + unsigned OpNo = MemoryUses[i].second; + + // Get the access type of this use. If the use isn't a pointer, we don't + // know what it accesses. + Value *Address = User->getOperand(OpNo); + PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); + if (!AddrTy) + return false; + Type *AddressAccessTy = AddrTy->getElementType(); + unsigned AS = AddrTy->getAddressSpace(); + + // Do a match against the root of this address, ignoring profitability. This + // will tell us if the addressing mode for the memory operation will + // *actually* cover the shared instruction. + ExtAddrMode Result; + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, + MemoryInst, Result, InsertedInsts, + PromotedInsts, TPT); + Matcher.IgnoreProfitability = true; + bool Success = Matcher.matchAddr(Address, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + + // The match was to check the profitability, the changes made are not + // part of the original matcher. Therefore, they should be dropped + // otherwise the original matcher will not present the right state. + TPT.rollback(LastKnownGood); + + // If the match didn't cover I, then it won't be shared by it. + if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), + I) == MatchedAddrModeInsts.end()) + return false; + + MatchedAddrModeInsts.clear(); + } + + return true; +} + +} // end anonymous namespace + +/// Return true if the specified values are defined in a +/// different basic block than BB. +static bool IsNonLocalValue(Value *V, BasicBlock *BB) { + if (Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() != BB; + return false; +} + +/// Load and Store Instructions often have addressing modes that can do +/// significant amounts of computation. As such, instruction selection will try +/// to get the load or store to do as much computation as possible for the +/// program. The problem is that isel can only see within a single block. As +/// such, we sink as much legal addressing mode work into the block as possible. +/// +/// This method is used to optimize both load/store and inline asms with memory +/// operands. +bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + Type *AccessTy, unsigned AddrSpace) { + Value *Repl = Addr; + + // Try to collapse single-value PHI nodes. This is necessary to undo + // unprofitable PRE transformations. + SmallVector<Value*, 8> worklist; + SmallPtrSet<Value*, 16> Visited; + worklist.push_back(Addr); + + // Use a worklist to iteratively look through PHI nodes, and ensure that + // the addressing mode obtained from the non-PHI roots of the graph + // are equivalent. + Value *Consensus = nullptr; + unsigned NumUsesConsensus = 0; + bool IsNumUsesConsensusValid = false; + SmallVector<Instruction*, 16> AddrModeInsts; + ExtAddrMode AddrMode; + TypePromotionTransaction TPT; + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + while (!worklist.empty()) { + Value *V = worklist.back(); + worklist.pop_back(); + + // Break use-def graph loops. + if (!Visited.insert(V).second) { + Consensus = nullptr; + break; + } + + // For a PHI node, push all of its incoming values. + if (PHINode *P = dyn_cast<PHINode>(V)) { + for (Value *IncValue : P->incoming_values()) + worklist.push_back(IncValue); + continue; + } + + // For non-PHIs, determine the addressing mode being computed. + SmallVector<Instruction*, 16> NewAddrModeInsts; + ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( + V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, + InsertedInsts, PromotedInsts, TPT); + + // This check is broken into two cases with very similar code to avoid using + // getNumUses() as much as possible. Some values have a lot of uses, so + // calling getNumUses() unconditionally caused a significant compile-time + // regression. + if (!Consensus) { + Consensus = V; + AddrMode = NewAddrMode; + AddrModeInsts = NewAddrModeInsts; + continue; + } else if (NewAddrMode == AddrMode) { + if (!IsNumUsesConsensusValid) { + NumUsesConsensus = Consensus->getNumUses(); + IsNumUsesConsensusValid = true; + } + + // Ensure that the obtained addressing mode is equivalent to that obtained + // for all other roots of the PHI traversal. Also, when choosing one + // such root as representative, select the one with the most uses in order + // to keep the cost modeling heuristics in AddressingModeMatcher + // applicable. + unsigned NumUses = V->getNumUses(); + if (NumUses > NumUsesConsensus) { + Consensus = V; + NumUsesConsensus = NumUses; + AddrModeInsts = NewAddrModeInsts; + } + continue; + } + + Consensus = nullptr; + break; + } + + // If the addressing mode couldn't be determined, or if multiple different + // ones were determined, bail out now. + if (!Consensus) { + TPT.rollback(LastKnownGood); + return false; + } + TPT.commit(); + + // Check to see if any of the instructions supersumed by this addr mode are + // non-local to I's BB. + bool AnyNonLocal = false; + for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { + if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { + AnyNonLocal = true; + break; + } + } + + // If all the instructions matched are already in this BB, don't do anything. + if (!AnyNonLocal) { + DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); + return false; + } + + // Insert this computation right after this user. Since our caller is + // scanning from the top of the BB to the bottom, reuse of the expr are + // guaranteed to happen later. + IRBuilder<> Builder(MemoryInst); + + // Now that we determined the addressing expression we want to use and know + // that we have to sink it into this block. Check to see if we have already + // done this for some other load/store instr in this block. If so, reuse the + // computation. + Value *&SunkAddr = SunkAddrs[Addr]; + if (SunkAddr) { + DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " + << *MemoryInst << "\n"); + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); + } else if (AddrSinkUsingGEPs || + (!AddrSinkUsingGEPs.getNumOccurrences() && TM && + TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) + ->useAA())) { + // By default, we use the GEP-based method when AA is used later. This + // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. + DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " + << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *ResultPtr = nullptr, *ResultIndex = nullptr; + + // First, find the pointer. + if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { + ResultPtr = AddrMode.BaseReg; + AddrMode.BaseReg = nullptr; + } + + if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { + // We can't add more than one pointer together, nor can we scale a + // pointer (both of which seem meaningless). + if (ResultPtr || AddrMode.Scale != 1) + return false; + + ResultPtr = AddrMode.ScaledReg; + AddrMode.Scale = 0; + } + + if (AddrMode.BaseGV) { + if (ResultPtr) + return false; + + ResultPtr = AddrMode.BaseGV; + } + + // If the real base value actually came from an inttoptr, then the matcher + // will look through it and provide only the integer value. In that case, + // use it here. + if (!ResultPtr && AddrMode.BaseReg) { + ResultPtr = + Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); + AddrMode.BaseReg = nullptr; + } else if (!ResultPtr && AddrMode.Scale == 1) { + ResultPtr = + Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); + AddrMode.Scale = 0; + } + + if (!ResultPtr && + !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { + SunkAddr = Constant::getNullValue(Addr->getType()); + } else if (!ResultPtr) { + return false; + } else { + Type *I8PtrTy = + Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); + Type *I8Ty = Builder.getInt8Ty(); + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + + ResultIndex = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth()) { + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } else { + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); + if (I && (ResultIndex != AddrMode.BaseReg)) + I->eraseFromParent(); + return false; + } + + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (ResultIndex) + ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); + else + ResultIndex = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (ResultIndex) { + // We need to add this separately from the scale above to help with + // SDAG consecutive load/store merging. + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); + ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + ResultIndex = V; + } + + if (!ResultIndex) { + SunkAddr = ResultPtr; + } else { + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); + SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); + } + } else { + DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " + << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *Result = nullptr; + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType()->isPointerTy()) + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + Result = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else if (V->getType()->isPointerTy()) { + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth()) { + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } else { + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + Instruction *I = dyn_cast_or_null<Instruction>(Result); + if (I && (Result != AddrMode.BaseReg)) + I->eraseFromParent(); + return false; + } + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the BaseGV if present. + if (AddrMode.BaseGV) { + Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + if (!Result) + SunkAddr = Constant::getNullValue(Addr->getType()); + else + SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); + } + + MemoryInst->replaceUsesOfWith(Repl, SunkAddr); + + // If we have no uses, recursively delete the value and all dead instructions + // using it. + if (Repl->use_empty()) { + // This can cause recursive deletion, which can invalidate our iterator. + // Use a WeakVH to hold onto it in case this happens. + WeakVH IterHandle(&*CurInstIterator); + BasicBlock *BB = CurInstIterator->getParent(); + + RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); + + if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + } + ++NumMemoryInsts; + return true; +} + +/// If there are any memory operands, use OptimizeMemoryInst to sink their +/// address computing into the block when possible / profitable. +bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { + bool MadeChange = false; + + const TargetRegisterInfo *TRI = + TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI->ParseConstraints(*DL, TRI, CS); + unsigned ArgNo = 0; + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + OpInfo.isIndirect) { + Value *OpVal = CS->getArgOperand(ArgNo++); + MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); + } else if (OpInfo.Type == InlineAsm::isInput) + ArgNo++; + } + + return MadeChange; +} + +/// \brief Check if all the uses of \p Inst are equivalent (or free) zero or +/// sign extensions. +static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { + assert(!Inst->use_empty() && "Input must have at least one use"); + const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); + bool IsSExt = isa<SExtInst>(FirstUser); + Type *ExtTy = FirstUser->getType(); + for (const User *U : Inst->users()) { + const Instruction *UI = cast<Instruction>(U); + if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) + return false; + Type *CurTy = UI->getType(); + // Same input and output types: Same instruction after CSE. + if (CurTy == ExtTy) + continue; + + // If IsSExt is true, we are in this situation: + // a = Inst + // b = sext ty1 a to ty2 + // c = sext ty1 a to ty3 + // Assuming ty2 is shorter than ty3, this could be turned into: + // a = Inst + // b = sext ty1 a to ty2 + // c = sext ty2 b to ty3 + // However, the last sext is not free. + if (IsSExt) + return false; + + // This is a ZExt, maybe this is free to extend from one type to another. + // In that case, we would not account for a different use. + Type *NarrowTy; + Type *LargeTy; + if (ExtTy->getScalarType()->getIntegerBitWidth() > + CurTy->getScalarType()->getIntegerBitWidth()) { + NarrowTy = CurTy; + LargeTy = ExtTy; + } else { + NarrowTy = ExtTy; + LargeTy = CurTy; + } + + if (!TLI.isZExtFree(NarrowTy, LargeTy)) + return false; + } + // All uses are the same or can be derived from one another for free. + return true; +} + +/// \brief Try to form ExtLd by promoting \p Exts until they reach a +/// load instruction. +/// If an ext(load) can be formed, it is returned via \p LI for the load +/// and \p Inst for the extension. +/// Otherwise LI == nullptr and Inst == nullptr. +/// When some promotion happened, \p TPT contains the proper state to +/// revert them. +/// +/// \return true when promoting was necessary to expose the ext(load) +/// opportunity, false otherwise. +/// +/// Example: +/// \code +/// %ld = load i32* %addr +/// %add = add nuw i32 %ld, 4 +/// %zext = zext i32 %add to i64 +/// \endcode +/// => +/// \code +/// %ld = load i32* %addr +/// %zext = zext i32 %ld to i64 +/// %add = add nuw i64 %zext, 4 +/// \encode +/// Thanks to the promotion, we can match zext(load i32*) to i64. +bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, + LoadInst *&LI, Instruction *&Inst, + const SmallVectorImpl<Instruction *> &Exts, + unsigned CreatedInstsCost = 0) { + // Iterate over all the extensions to see if one form an ext(load). + for (auto I : Exts) { + // Check if we directly have ext(load). + if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { + Inst = I; + // No promotion happened here. + return false; + } + // Check whether or not we want to do any promotion. + if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) + continue; + // Get the action to perform the promotion. + TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( + I, InsertedInsts, *TLI, PromotedInsts); + // Check if we can promote. + if (!TPH) + continue; + // Save the current state. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 4> NewExts; + unsigned NewCreatedInstsCost = 0; + unsigned ExtCost = !TLI->isExtFree(I); + // Promote. + Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, + &NewExts, nullptr, *TLI); + assert(PromotedVal && + "TypePromotionHelper should have filtered out those cases"); + + // We would be able to merge only one extension in a load. + // Therefore, if we have more than 1 new extension we heuristically + // cut this search path, because it means we degrade the code quality. + // With exactly 2, the transformation is neutral, because we will merge + // one extension but leave one. However, we optimistically keep going, + // because the new extension may be removed too. + long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; + TotalCreatedInstsCost -= ExtCost; + if (!StressExtLdPromotion && + (TotalCreatedInstsCost > 1 || + !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { + // The promotion is not profitable, rollback to the previous state. + TPT.rollback(LastKnownGood); + continue; + } + // The promotion is profitable. + // Check if it exposes an ext(load). + (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); + if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || + // If we have created a new extension, i.e., now we have two + // extensions. We must make sure one of them is merged with + // the load, otherwise we may degrade the code quality. + (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) + // Promotion happened. + return true; + // If this does not help to expose an ext(load) then, rollback. + TPT.rollback(LastKnownGood); + } + // None of the extension can form an ext(load). + LI = nullptr; + Inst = nullptr; + return false; +} + +/// Move a zext or sext fed by a load into the same basic block as the load, +/// unless conditions are unfavorable. This allows SelectionDAG to fold the +/// extend into the load. +/// \p I[in/out] the extension may be modified during the process if some +/// promotions apply. +/// +bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { + // Try to promote a chain of computation if it allows to form + // an extended load. + TypePromotionTransaction TPT; + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 1> Exts; + Exts.push_back(I); + // Look for a load being extended. + LoadInst *LI = nullptr; + Instruction *OldExt = I; + bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); + if (!LI || !I) { + assert(!HasPromoted && !LI && "If we did not match any load instruction " + "the code must remain the same"); + I = OldExt; + return false; + } + + // If they're already in the same block, there's nothing to do. + // Make the cheap checks first if we did not promote. + // If we promoted, we need to check if it is indeed profitable. + if (!HasPromoted && LI->getParent() == I->getParent()) + return false; + + EVT VT = TLI->getValueType(*DL, I->getType()); + EVT LoadVT = TLI->getValueType(*DL, LI->getType()); + + // If the load has other users and the truncate is not free, this probably + // isn't worthwhile. + if (!LI->hasOneUse() && TLI && + (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && + !TLI->isTruncateFree(I->getType(), LI->getType())) { + I = OldExt; + TPT.rollback(LastKnownGood); + return false; + } + + // Check whether the target supports casts folded into loads. + unsigned LType; + if (isa<ZExtInst>(I)) + LType = ISD::ZEXTLOAD; + else { + assert(isa<SExtInst>(I) && "Unexpected ext type!"); + LType = ISD::SEXTLOAD; + } + if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { + I = OldExt; + TPT.rollback(LastKnownGood); + return false; + } + + // Move the extend into the same block as the load, so that SelectionDAG + // can fold it. + TPT.commit(); + I->removeFromParent(); + I->insertAfter(LI); + ++NumExtsMoved; + return true; +} + +bool CodeGenPrepare::optimizeExtUses(Instruction *I) { + BasicBlock *DefBB = I->getParent(); + + // If the result of a {s|z}ext and its source are both live out, rewrite all + // other uses of the source with result of extension. + Value *Src = I->getOperand(0); + if (Src->hasOneUse()) + return false; + + // Only do this xform if truncating is free. + if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) + return false; + + // Only safe to perform the optimization if the source is also defined in + // this block. + if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) + return false; + + bool DefIsLiveOut = false; + for (User *U : I->users()) { + Instruction *UI = cast<Instruction>(U); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + DefIsLiveOut = true; + break; + } + if (!DefIsLiveOut) + return false; + + // Make sure none of the uses are PHI nodes. + for (User *U : Src->users()) { + Instruction *UI = cast<Instruction>(U); + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + // Be conservative. We don't want this xform to end up introducing + // reloads just before load / store instructions. + if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) + return false; + } + + // InsertedTruncs - Only insert one trunc in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedTruncs; + + bool MadeChange = false; + for (Use &U : Src->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + + // Both src and def are live in this block. Rewrite the use. + Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; + + if (!InsertedTrunc) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); + InsertedInsts.insert(InsertedTrunc); + } + + // Replace a use of the {s|z}ext source with a use of the result. + U = InsertedTrunc; + ++NumExtUses; + MadeChange = true; + } + + return MadeChange; +} + +// Find loads whose uses only use some of the loaded value's bits. Add an "and" +// just after the load if the target can fold this into one extload instruction, +// with the hope of eliminating some of the other later "and" instructions using +// the loaded value. "and"s that are made trivially redundant by the insertion +// of the new "and" are removed by this function, while others (e.g. those whose +// path from the load goes through a phi) are left for isel to potentially +// remove. +// +// For example: +// +// b0: +// x = load i32 +// ... +// b1: +// y = and x, 0xff +// z = use y +// +// becomes: +// +// b0: +// x = load i32 +// x' = and x, 0xff +// ... +// b1: +// z = use x' +// +// whereas: +// +// b0: +// x1 = load i32 +// ... +// b1: +// x2 = load i32 +// ... +// b2: +// x = phi x1, x2 +// y = and x, 0xff +// +// becomes (after a call to optimizeLoadExt for each load): +// +// b0: +// x1 = load i32 +// x1' = and x1, 0xff +// ... +// b1: +// x2 = load i32 +// x2' = and x2, 0xff +// ... +// b2: +// x = phi x1', x2' +// y = and x, 0xff +// + +bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { + + if (!Load->isSimple() || + !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) + return false; + + // Skip loads we've already transformed or have no reason to transform. + if (Load->hasOneUse()) { + User *LoadUser = *Load->user_begin(); + if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && + !dyn_cast<PHINode>(LoadUser)) + return false; + } + + // Look at all uses of Load, looking through phis, to determine how many bits + // of the loaded value are needed. + SmallVector<Instruction *, 8> WorkList; + SmallPtrSet<Instruction *, 16> Visited; + SmallVector<Instruction *, 8> AndsToMaybeRemove; + for (auto *U : Load->users()) + WorkList.push_back(cast<Instruction>(U)); + + EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); + unsigned BitWidth = LoadResultVT.getSizeInBits(); + APInt DemandBits(BitWidth, 0); + APInt WidestAndBits(BitWidth, 0); + + while (!WorkList.empty()) { + Instruction *I = WorkList.back(); + WorkList.pop_back(); + + // Break use-def graph loops. + if (!Visited.insert(I).second) + continue; + + // For a PHI node, push all of its users. + if (auto *Phi = dyn_cast<PHINode>(I)) { + for (auto *U : Phi->users()) + WorkList.push_back(cast<Instruction>(U)); + continue; + } + + switch (I->getOpcode()) { + case llvm::Instruction::And: { + auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!AndC) + return false; + APInt AndBits = AndC->getValue(); + DemandBits |= AndBits; + // Keep track of the widest and mask we see. + if (AndBits.ugt(WidestAndBits)) + WidestAndBits = AndBits; + if (AndBits == WidestAndBits && I->getOperand(0) == Load) + AndsToMaybeRemove.push_back(I); + break; + } + + case llvm::Instruction::Shl: { + auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!ShlC) + return false; + uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); + auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); + DemandBits |= ShlDemandBits; + break; + } + + case llvm::Instruction::Trunc: { + EVT TruncVT = TLI->getValueType(*DL, I->getType()); + unsigned TruncBitWidth = TruncVT.getSizeInBits(); + auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); + DemandBits |= TruncBits; + break; + } + + default: + return false; + } + } + + uint32_t ActiveBits = DemandBits.getActiveBits(); + // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the + // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, + // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but + // (and (load x) 1) is not matched as a single instruction, rather as a LDR + // followed by an AND. + // TODO: Look into removing this restriction by fixing backends to either + // return false for isLoadExtLegal for i1 or have them select this pattern to + // a single instruction. + // + // Also avoid hoisting if we didn't see any ands with the exact DemandBits + // mask, since these are the only ands that will be removed by isel. + if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || + WidestAndBits != DemandBits) + return false; + + LLVMContext &Ctx = Load->getType()->getContext(); + Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); + EVT TruncVT = TLI->getValueType(*DL, TruncTy); + + // Reject cases that won't be matched as extloads. + if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || + !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) + return false; + + IRBuilder<> Builder(Load->getNextNode()); + auto *NewAnd = dyn_cast<Instruction>( + Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); + + // Replace all uses of load with new and (except for the use of load in the + // new and itself). + Load->replaceAllUsesWith(NewAnd); + NewAnd->setOperand(0, Load); + + // Remove any and instructions that are now redundant. + for (auto *And : AndsToMaybeRemove) + // Check that the and mask is the same as the one we decided to put on the + // new and. + if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { + And->replaceAllUsesWith(NewAnd); + if (&*CurInstIterator == And) + CurInstIterator = std::next(And->getIterator()); + And->eraseFromParent(); + ++NumAndUses; + } + + ++NumAndsAdded; + return true; +} + +/// Check if V (an operand of a select instruction) is an expensive instruction +/// that is only used once. +static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { + auto *I = dyn_cast<Instruction>(V); + // If it's safe to speculatively execute, then it should not have side + // effects; therefore, it's safe to sink and possibly *not* execute. + return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && + TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; +} + +/// Returns true if a SelectInst should be turned into an explicit branch. +static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, + SelectInst *SI) { + // FIXME: This should use the same heuristics as IfConversion to determine + // whether a select is better represented as a branch. This requires that + // branch probability metadata is preserved for the select, which is not the + // case currently. + + CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); + + // If a branch is predictable, an out-of-order CPU can avoid blocking on its + // comparison condition. If the compare has more than one use, there's + // probably another cmov or setcc around, so it's not worth emitting a branch. + if (!Cmp || !Cmp->hasOneUse()) + return false; + + Value *CmpOp0 = Cmp->getOperand(0); + Value *CmpOp1 = Cmp->getOperand(1); + + // Emit "cmov on compare with a memory operand" as a branch to avoid stalls + // on a load from memory. But if the load is used more than once, do not + // change the select to a branch because the load is probably needed + // regardless of whether the branch is taken or not. + if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || + (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) + return true; + + // If either operand of the select is expensive and only needed on one side + // of the select, we should form a branch. + if (sinkSelectOperand(TTI, SI->getTrueValue()) || + sinkSelectOperand(TTI, SI->getFalseValue())) + return true; + + return false; +} + + +/// If we have a SelectInst that will likely profit from branch prediction, +/// turn it into a branch. +bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { + bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); + + // Can we convert the 'select' to CF ? + if (DisableSelectToBranch || OptSize || !TLI || VectorCond) + return false; + + TargetLowering::SelectSupportKind SelectKind; + if (VectorCond) + SelectKind = TargetLowering::VectorMaskSelect; + else if (SI->getType()->isVectorTy()) + SelectKind = TargetLowering::ScalarCondVectorVal; + else + SelectKind = TargetLowering::ScalarValSelect; + + // Do we have efficient codegen support for this kind of 'selects' ? + if (TLI->isSelectSupported(SelectKind)) { + // We have efficient codegen support for the select instruction. + // Check if it is profitable to keep this 'select'. + if (!TLI->isPredictableSelectExpensive() || + !isFormingBranchFromSelectProfitable(TTI, SI)) + return false; + } + + ModifiedDT = true; + + // Transform a sequence like this: + // start: + // %cmp = cmp uge i32 %a, %b + // %sel = select i1 %cmp, i32 %c, i32 %d + // + // Into: + // start: + // %cmp = cmp uge i32 %a, %b + // br i1 %cmp, label %select.true, label %select.false + // select.true: + // br label %select.end + // select.false: + // br label %select.end + // select.end: + // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] + // + // In addition, we may sink instructions that produce %c or %d from + // the entry block into the destination(s) of the new branch. + // If the true or false blocks do not contain a sunken instruction, that + // block and its branch may be optimized away. In that case, one side of the + // first branch will point directly to select.end, and the corresponding PHI + // predecessor block will be the start block. + + // First, we split the block containing the select into 2 blocks. + BasicBlock *StartBlock = SI->getParent(); + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); + BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); + + // Delete the unconditional branch that was just created by the split. + StartBlock->getTerminator()->eraseFromParent(); + + // These are the new basic blocks for the conditional branch. + // At least one will become an actual new basic block. + BasicBlock *TrueBlock = nullptr; + BasicBlock *FalseBlock = nullptr; + + // Sink expensive instructions into the conditional blocks to avoid executing + // them speculatively. + if (sinkSelectOperand(TTI, SI->getTrueValue())) { + TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", + EndBlock->getParent(), EndBlock); + auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); + auto *TrueInst = cast<Instruction>(SI->getTrueValue()); + TrueInst->moveBefore(TrueBranch); + } + if (sinkSelectOperand(TTI, SI->getFalseValue())) { + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", + EndBlock->getParent(), EndBlock); + auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + auto *FalseInst = cast<Instruction>(SI->getFalseValue()); + FalseInst->moveBefore(FalseBranch); + } + + // If there was nothing to sink, then arbitrarily choose the 'false' side + // for a new input value to the PHI. + if (TrueBlock == FalseBlock) { + assert(TrueBlock == nullptr && + "Unexpected basic block transform while optimizing select"); + + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", + EndBlock->getParent(), EndBlock); + BranchInst::Create(EndBlock, FalseBlock); + } + + // Insert the real conditional branch based on the original condition. + // If we did not create a new block for one of the 'true' or 'false' paths + // of the condition, it means that side of the branch goes to the end block + // directly and the path originates from the start block from the point of + // view of the new PHI. + if (TrueBlock == nullptr) { + BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); + TrueBlock = StartBlock; + } else if (FalseBlock == nullptr) { + BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); + FalseBlock = StartBlock; + } else { + BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); + } + + // The select itself is replaced with a PHI Node. + PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); + PN->takeName(SI); + PN->addIncoming(SI->getTrueValue(), TrueBlock); + PN->addIncoming(SI->getFalseValue(), FalseBlock); + + SI->replaceAllUsesWith(PN); + SI->eraseFromParent(); + + // Instruct OptimizeBlock to skip to the next block. + CurInstIterator = StartBlock->end(); + ++NumSelectsExpanded; + return true; +} + +static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { + SmallVector<int, 16> Mask(SVI->getShuffleMask()); + int SplatElem = -1; + for (unsigned i = 0; i < Mask.size(); ++i) { + if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) + return false; + SplatElem = Mask[i]; + } + + return true; +} + +/// Some targets have expensive vector shifts if the lanes aren't all the same +/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases +/// it's often worth sinking a shufflevector splat down to its use so that +/// codegen can spot all lanes are identical. +bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { + BasicBlock *DefBB = SVI->getParent(); + + // Only do this xform if variable vector shifts are particularly expensive. + if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) + return false; + + // We only expect better codegen by sinking a shuffle if we can recognise a + // constant splat. + if (!isBroadcastShuffle(SVI)) + return false; + + // InsertedShuffles - Only insert a shuffle in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedShuffles; + + bool MadeChange = false; + for (User *U : SVI->users()) { + Instruction *UI = cast<Instruction>(U); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + + // For now only apply this when the splat is used by a shift instruction. + if (!UI->isShift()) continue; + + // Everything checks out, sink the shuffle if the user's block doesn't + // already have a copy. + Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; + + if (!InsertedShuffle) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedShuffle = + new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), + SVI->getOperand(2), "", &*InsertPt); + } + + UI->replaceUsesOfWith(SVI, InsertedShuffle); + MadeChange = true; + } + + // If we removed all uses, nuke the shuffle. + if (SVI->use_empty()) { + SVI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { + if (!TLI || !DL) + return false; + + Value *Cond = SI->getCondition(); + Type *OldType = Cond->getType(); + LLVMContext &Context = Cond->getContext(); + MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); + unsigned RegWidth = RegType.getSizeInBits(); + + if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) + return false; + + // If the register width is greater than the type width, expand the condition + // of the switch instruction and each case constant to the width of the + // register. By widening the type of the switch condition, subsequent + // comparisons (for case comparisons) will not need to be extended to the + // preferred register width, so we will potentially eliminate N-1 extends, + // where N is the number of cases in the switch. + auto *NewType = Type::getIntNTy(Context, RegWidth); + + // Zero-extend the switch condition and case constants unless the switch + // condition is a function argument that is already being sign-extended. + // In that case, we can avoid an unnecessary mask/extension by sign-extending + // everything instead. + Instruction::CastOps ExtType = Instruction::ZExt; + if (auto *Arg = dyn_cast<Argument>(Cond)) + if (Arg->hasSExtAttr()) + ExtType = Instruction::SExt; + + auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); + ExtInst->insertBefore(SI); + SI->setCondition(ExtInst); + for (SwitchInst::CaseIt Case : SI->cases()) { + APInt NarrowConst = Case.getCaseValue()->getValue(); + APInt WideConst = (ExtType == Instruction::ZExt) ? + NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); + Case.setValue(ConstantInt::get(Context, WideConst)); + } + + return true; +} + +namespace { +/// \brief Helper class to promote a scalar operation to a vector one. +/// This class is used to move downward extractelement transition. +/// E.g., +/// a = vector_op <2 x i32> +/// b = extractelement <2 x i32> a, i32 0 +/// c = scalar_op b +/// store c +/// +/// => +/// a = vector_op <2 x i32> +/// c = vector_op a (equivalent to scalar_op on the related lane) +/// * d = extractelement <2 x i32> c, i32 0 +/// * store d +/// Assuming both extractelement and store can be combine, we get rid of the +/// transition. +class VectorPromoteHelper { + /// DataLayout associated with the current module. + const DataLayout &DL; + + /// Used to perform some checks on the legality of vector operations. + const TargetLowering &TLI; + + /// Used to estimated the cost of the promoted chain. + const TargetTransformInfo &TTI; + + /// The transition being moved downwards. + Instruction *Transition; + /// The sequence of instructions to be promoted. + SmallVector<Instruction *, 4> InstsToBePromoted; + /// Cost of combining a store and an extract. + unsigned StoreExtractCombineCost; + /// Instruction that will be combined with the transition. + Instruction *CombineInst; + + /// \brief The instruction that represents the current end of the transition. + /// Since we are faking the promotion until we reach the end of the chain + /// of computation, we need a way to get the current end of the transition. + Instruction *getEndOfTransition() const { + if (InstsToBePromoted.empty()) + return Transition; + return InstsToBePromoted.back(); + } + + /// \brief Return the index of the original value in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, + /// c, is at index 0. + unsigned getTransitionOriginalValueIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 0; + } + + /// \brief Return the index of the index in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 0" the index + /// is at index 1. + unsigned getTransitionIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 1; + } + + /// \brief Get the type of the transition. + /// This is the type of the original value. + /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the + /// transition is <2 x i32>. + Type *getTransitionType() const { + return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); + } + + /// \brief Promote \p ToBePromoted by moving \p Def downward through. + /// I.e., we have the following sequence: + /// Def = Transition <ty1> a to <ty2> + /// b = ToBePromoted <ty2> Def, ... + /// => + /// b = ToBePromoted <ty1> a, ... + /// Def = Transition <ty1> ToBePromoted to <ty2> + void promoteImpl(Instruction *ToBePromoted); + + /// \brief Check whether or not it is profitable to promote all the + /// instructions enqueued to be promoted. + bool isProfitableToPromote() { + Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); + unsigned Index = isa<ConstantInt>(ValIdx) + ? cast<ConstantInt>(ValIdx)->getZExtValue() + : -1; + Type *PromotedType = getTransitionType(); + + StoreInst *ST = cast<StoreInst>(CombineInst); + unsigned AS = ST->getPointerAddressSpace(); + unsigned Align = ST->getAlignment(); + // Check if this store is supported. + if (!TLI.allowsMisalignedMemoryAccesses( + TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, + Align)) { + // If this is not supported, there is no way we can combine + // the extract with the store. + return false; + } + + // The scalar chain of computation has to pay for the transition + // scalar to vector. + // The vector chain has to account for the combining cost. + uint64_t ScalarCost = + TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); + uint64_t VectorCost = StoreExtractCombineCost; + for (const auto &Inst : InstsToBePromoted) { + // Compute the cost. + // By construction, all instructions being promoted are arithmetic ones. + // Moreover, one argument is a constant that can be viewed as a splat + // constant. + Value *Arg0 = Inst->getOperand(0); + bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || + isa<ConstantFP>(Arg0); + TargetTransformInfo::OperandValueKind Arg0OVK = + IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Arg1OVK = + !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + ScalarCost += TTI.getArithmeticInstrCost( + Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); + VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, + Arg0OVK, Arg1OVK); + } + DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " + << ScalarCost << "\nVector: " << VectorCost << '\n'); + return ScalarCost > VectorCost; + } + + /// \brief Generate a constant vector with \p Val with the same + /// number of elements as the transition. + /// \p UseSplat defines whether or not \p Val should be replicated + /// across the whole vector. + /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, + /// otherwise we generate a vector with as many undef as possible: + /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only + /// used at the index of the extract. + Value *getConstantVector(Constant *Val, bool UseSplat) const { + unsigned ExtractIdx = UINT_MAX; + if (!UseSplat) { + // If we cannot determine where the constant must be, we have to + // use a splat constant. + Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); + if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) + ExtractIdx = CstVal->getSExtValue(); + else + UseSplat = true; + } + + unsigned End = getTransitionType()->getVectorNumElements(); + if (UseSplat) + return ConstantVector::getSplat(End, Val); + + SmallVector<Constant *, 4> ConstVec; + UndefValue *UndefVal = UndefValue::get(Val->getType()); + for (unsigned Idx = 0; Idx != End; ++Idx) { + if (Idx == ExtractIdx) + ConstVec.push_back(Val); + else + ConstVec.push_back(UndefVal); + } + return ConstantVector::get(ConstVec); + } + + /// \brief Check if promoting to a vector type an operand at \p OperandIdx + /// in \p Use can trigger undefined behavior. + static bool canCauseUndefinedBehavior(const Instruction *Use, + unsigned OperandIdx) { + // This is not safe to introduce undef when the operand is on + // the right hand side of a division-like instruction. + if (OperandIdx != 1) + return false; + switch (Use->getOpcode()) { + default: + return false; + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + return true; + case Instruction::FDiv: + case Instruction::FRem: + return !Use->hasNoNaNs(); + } + llvm_unreachable(nullptr); + } + +public: + VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, + const TargetTransformInfo &TTI, Instruction *Transition, + unsigned CombineCost) + : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), + StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { + assert(Transition && "Do not know how to promote null"); + } + + /// \brief Check if we can promote \p ToBePromoted to \p Type. + bool canPromote(const Instruction *ToBePromoted) const { + // We could support CastInst too. + return isa<BinaryOperator>(ToBePromoted); + } + + /// \brief Check if it is profitable to promote \p ToBePromoted + /// by moving downward the transition through. + bool shouldPromote(const Instruction *ToBePromoted) const { + // Promote only if all the operands can be statically expanded. + // Indeed, we do not want to introduce any new kind of transitions. + for (const Use &U : ToBePromoted->operands()) { + const Value *Val = U.get(); + if (Val == getEndOfTransition()) { + // If the use is a division and the transition is on the rhs, + // we cannot promote the operation, otherwise we may create a + // division by zero. + if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) + return false; + continue; + } + if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && + !isa<ConstantFP>(Val)) + return false; + } + // Check that the resulting operation is legal. + int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); + if (!ISDOpcode) + return false; + return StressStoreExtract || + TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); + } + + /// \brief Check whether or not \p Use can be combined + /// with the transition. + /// I.e., is it possible to do Use(Transition) => AnotherUse? + bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } + + /// \brief Record \p ToBePromoted as part of the chain to be promoted. + void enqueueForPromotion(Instruction *ToBePromoted) { + InstsToBePromoted.push_back(ToBePromoted); + } + + /// \brief Set the instruction that will be combined with the transition. + void recordCombineInstruction(Instruction *ToBeCombined) { + assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); + CombineInst = ToBeCombined; + } + + /// \brief Promote all the instructions enqueued for promotion if it is + /// is profitable. + /// \return True if the promotion happened, false otherwise. + bool promote() { + // Check if there is something to promote. + // Right now, if we do not have anything to combine with, + // we assume the promotion is not profitable. + if (InstsToBePromoted.empty() || !CombineInst) + return false; + + // Check cost. + if (!StressStoreExtract && !isProfitableToPromote()) + return false; + + // Promote. + for (auto &ToBePromoted : InstsToBePromoted) + promoteImpl(ToBePromoted); + InstsToBePromoted.clear(); + return true; + } +}; +} // End of anonymous namespace. + +void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { + // At this point, we know that all the operands of ToBePromoted but Def + // can be statically promoted. + // For Def, we need to use its parameter in ToBePromoted: + // b = ToBePromoted ty1 a + // Def = Transition ty1 b to ty2 + // Move the transition down. + // 1. Replace all uses of the promoted operation by the transition. + // = ... b => = ... Def. + assert(ToBePromoted->getType() == Transition->getType() && + "The type of the result of the transition does not match " + "the final type"); + ToBePromoted->replaceAllUsesWith(Transition); + // 2. Update the type of the uses. + // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. + Type *TransitionTy = getTransitionType(); + ToBePromoted->mutateType(TransitionTy); + // 3. Update all the operands of the promoted operation with promoted + // operands. + // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. + for (Use &U : ToBePromoted->operands()) { + Value *Val = U.get(); + Value *NewVal = nullptr; + if (Val == Transition) + NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); + else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || + isa<ConstantFP>(Val)) { + // Use a splat constant if it is not safe to use undef. + NewVal = getConstantVector( + cast<Constant>(Val), + isa<UndefValue>(Val) || + canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); + } else + llvm_unreachable("Did you modified shouldPromote and forgot to update " + "this?"); + ToBePromoted->setOperand(U.getOperandNo(), NewVal); + } + Transition->removeFromParent(); + Transition->insertAfter(ToBePromoted); + Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); +} + +/// Some targets can do store(extractelement) with one instruction. +/// Try to push the extractelement towards the stores when the target +/// has this feature and this is profitable. +bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { + unsigned CombineCost = UINT_MAX; + if (DisableStoreExtract || !TLI || + (!StressStoreExtract && + !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), + Inst->getOperand(1), CombineCost))) + return false; + + // At this point we know that Inst is a vector to scalar transition. + // Try to move it down the def-use chain, until: + // - We can combine the transition with its single use + // => we got rid of the transition. + // - We escape the current basic block + // => we would need to check that we are moving it at a cheaper place and + // we do not do that for now. + BasicBlock *Parent = Inst->getParent(); + DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); + VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); + // If the transition has more than one use, assume this is not going to be + // beneficial. + while (Inst->hasOneUse()) { + Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); + DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); + + if (ToBePromoted->getParent() != Parent) { + DEBUG(dbgs() << "Instruction to promote is in a different block (" + << ToBePromoted->getParent()->getName() + << ") than the transition (" << Parent->getName() << ").\n"); + return false; + } + + if (VPH.canCombine(ToBePromoted)) { + DEBUG(dbgs() << "Assume " << *Inst << '\n' + << "will be combined with: " << *ToBePromoted << '\n'); + VPH.recordCombineInstruction(ToBePromoted); + bool Changed = VPH.promote(); + NumStoreExtractExposed += Changed; + return Changed; + } + + DEBUG(dbgs() << "Try promoting.\n"); + if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) + return false; + + DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); + + VPH.enqueueForPromotion(ToBePromoted); + Inst = ToBePromoted; + } + return false; +} + +bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { + // Bail out if we inserted the instruction to prevent optimizations from + // stepping on each other's toes. + if (InsertedInsts.count(I)) + return false; + + if (PHINode *P = dyn_cast<PHINode>(I)) { + // It is possible for very late stage optimizations (such as SimplifyCFG) + // to introduce PHI nodes too late to be cleaned up. If we detect such a + // trivial PHI, go ahead and zap it here. + if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { + P->replaceAllUsesWith(V); + P->eraseFromParent(); + ++NumPHIsElim; + return true; + } + return false; + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) { + // If the source of the cast is a constant, then this should have + // already been constant folded. The only reason NOT to constant fold + // it is if something (e.g. LSR) was careful to place the constant + // evaluation in a block other than then one that uses it (e.g. to hoist + // the address of globals out of a loop). If this is the case, we don't + // want to forward-subst the cast. + if (isa<Constant>(CI->getOperand(0))) + return false; + + if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) + return true; + + if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { + /// Sink a zext or sext into its user blocks if the target type doesn't + /// fit in one register + if (TLI && + TLI->getTypeAction(CI->getContext(), + TLI->getValueType(*DL, CI->getType())) == + TargetLowering::TypeExpandInteger) { + return SinkCast(CI); + } else { + bool MadeChange = moveExtToFormExtLoad(I); + return MadeChange | optimizeExtUses(I); + } + } + return false; + } + + if (CmpInst *CI = dyn_cast<CmpInst>(I)) + if (!TLI || !TLI->hasMultipleConditionRegisters()) + return OptimizeCmpExpression(CI); + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + stripInvariantGroupMetadata(*LI); + if (TLI) { + bool Modified = optimizeLoadExt(LI); + unsigned AS = LI->getPointerAddressSpace(); + Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); + return Modified; + } + return false; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + stripInvariantGroupMetadata(*SI); + if (TLI) { + unsigned AS = SI->getPointerAddressSpace(); + return optimizeMemoryInst(I, SI->getOperand(1), + SI->getOperand(0)->getType(), AS); + } + return false; + } + + BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); + + if (BinOp && (BinOp->getOpcode() == Instruction::AShr || + BinOp->getOpcode() == Instruction::LShr)) { + ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); + if (TLI && CI && TLI->hasExtractBitsInsn()) + return OptimizeExtractBits(BinOp, CI, *TLI, *DL); + + return false; + } + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { + if (GEPI->hasAllZeroIndices()) { + /// The GEP operand must be a pointer, so must its result -> BitCast + Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), + GEPI->getName(), GEPI); + GEPI->replaceAllUsesWith(NC); + GEPI->eraseFromParent(); + ++NumGEPsElim; + optimizeInst(NC, ModifiedDT); + return true; + } + return false; + } + + if (CallInst *CI = dyn_cast<CallInst>(I)) + return optimizeCallInst(CI, ModifiedDT); + + if (SelectInst *SI = dyn_cast<SelectInst>(I)) + return optimizeSelectInst(SI); + + if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) + return optimizeShuffleVectorInst(SVI); + + if (auto *Switch = dyn_cast<SwitchInst>(I)) + return optimizeSwitchInst(Switch); + + if (isa<ExtractElementInst>(I)) + return optimizeExtractElementInst(I); + + return false; +} + +// In this pass we look for GEP and cast instructions that are used +// across basic blocks and rewrite them to improve basic-block-at-a-time +// selection. +bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { + SunkAddrs.clear(); + bool MadeChange = false; + + CurInstIterator = BB.begin(); + while (CurInstIterator != BB.end()) { + MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); + if (ModifiedDT) + return true; + } + MadeChange |= dupRetToEnableTailCallOpts(&BB); + + return MadeChange; +} + +// llvm.dbg.value is far away from the value then iSel may not be able +// handle it properly. iSel will drop llvm.dbg.value if it can not +// find a node corresponding to the value. +bool CodeGenPrepare::placeDbgValues(Function &F) { + bool MadeChange = false; + for (BasicBlock &BB : F) { + Instruction *PrevNonDbgInst = nullptr; + for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { + Instruction *Insn = &*BI++; + DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); + // Leave dbg.values that refer to an alloca alone. These + // instrinsics describe the address of a variable (= the alloca) + // being taken. They should not be moved next to the alloca + // (and to the beginning of the scope), but rather stay close to + // where said address is used. + if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { + PrevNonDbgInst = Insn; + continue; + } + + Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); + if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { + // If VI is a phi in a block with an EHPad terminator, we can't insert + // after it. + if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) + continue; + DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); + DVI->removeFromParent(); + if (isa<PHINode>(VI)) + DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); + else + DVI->insertAfter(VI); + MadeChange = true; + ++NumDbgValueMoved; + } + } + } + return MadeChange; +} + +// If there is a sequence that branches based on comparing a single bit +// against zero that can be combined into a single instruction, and the +// target supports folding these into a single instruction, sink the +// mask and compare into the branch uses. Do this before OptimizeBlock -> +// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being +// searched for. +bool CodeGenPrepare::sinkAndCmp(Function &F) { + if (!EnableAndCmpSinking) + return false; + if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) + return false; + bool MadeChange = false; + for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { + BasicBlock *BB = &*I++; + + // Does this BB end with the following? + // %andVal = and %val, #single-bit-set + // %icmpVal = icmp %andResult, 0 + // br i1 %cmpVal label %dest1, label %dest2" + BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); + if (!Brcc || !Brcc->isConditional()) + continue; + ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); + if (!Cmp || Cmp->getParent() != BB) + continue; + ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); + if (!Zero || !Zero->isZero()) + continue; + Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); + if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) + continue; + ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); + if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) + continue; + DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); + + // Push the "and; icmp" for any users that are conditional branches. + // Since there can only be one branch use per BB, we don't need to keep + // track of which BBs we insert into. + for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); + UI != E; ) { + Use &TheUse = *UI; + // Find brcc use. + BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); + ++UI; + if (!BrccUser || !BrccUser->isConditional()) + continue; + BasicBlock *UserBB = BrccUser->getParent(); + if (UserBB == BB) continue; + DEBUG(dbgs() << "found Brcc use\n"); + + // Sink the "and; icmp" to use. + MadeChange = true; + BinaryOperator *NewAnd = + BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", + BrccUser); + CmpInst *NewCmp = + CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, + "", BrccUser); + TheUse = NewCmp; + ++NumAndCmpsMoved; + DEBUG(BrccUser->getParent()->dump()); + } + } + return MadeChange; +} + +/// \brief Retrieve the probabilities of a conditional branch. Returns true on +/// success, or returns false if no or invalid metadata was found. +static bool extractBranchMetadata(BranchInst *BI, + uint64_t &ProbTrue, uint64_t &ProbFalse) { + assert(BI->isConditional() && + "Looking for probabilities on unconditional branch?"); + auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); + if (!ProfileData || ProfileData->getNumOperands() != 3) + return false; + + const auto *CITrue = + mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); + const auto *CIFalse = + mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); + if (!CITrue || !CIFalse) + return false; + + ProbTrue = CITrue->getValue().getZExtValue(); + ProbFalse = CIFalse->getValue().getZExtValue(); + + return true; +} + +/// \brief Scale down both weights to fit into uint32_t. +static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { + uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; + uint32_t Scale = (NewMax / UINT32_MAX) + 1; + NewTrue = NewTrue / Scale; + NewFalse = NewFalse / Scale; +} + +/// \brief Some targets prefer to split a conditional branch like: +/// \code +/// %0 = icmp ne i32 %a, 0 +/// %1 = icmp ne i32 %b, 0 +/// %or.cond = or i1 %0, %1 +/// br i1 %or.cond, label %TrueBB, label %FalseBB +/// \endcode +/// into multiple branch instructions like: +/// \code +/// bb1: +/// %0 = icmp ne i32 %a, 0 +/// br i1 %0, label %TrueBB, label %bb2 +/// bb2: +/// %1 = icmp ne i32 %b, 0 +/// br i1 %1, label %TrueBB, label %FalseBB +/// \endcode +/// This usually allows instruction selection to do even further optimizations +/// and combine the compare with the branch instruction. Currently this is +/// applied for targets which have "cheap" jump instructions. +/// +/// FIXME: Remove the (equivalent?) implementation in SelectionDAG. +/// +bool CodeGenPrepare::splitBranchCondition(Function &F) { + if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) + return false; + + bool MadeChange = false; + for (auto &BB : F) { + // Does this BB end with the following? + // %cond1 = icmp|fcmp|binary instruction ... + // %cond2 = icmp|fcmp|binary instruction ... + // %cond.or = or|and i1 %cond1, cond2 + // br i1 %cond.or label %dest1, label %dest2" + BinaryOperator *LogicOp; + BasicBlock *TBB, *FBB; + if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) + continue; + + auto *Br1 = cast<BranchInst>(BB.getTerminator()); + if (Br1->getMetadata(LLVMContext::MD_unpredictable)) + continue; + + unsigned Opc; + Value *Cond1, *Cond2; + if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), + m_OneUse(m_Value(Cond2))))) + Opc = Instruction::And; + else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), + m_OneUse(m_Value(Cond2))))) + Opc = Instruction::Or; + else + continue; + + if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || + !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) + continue; + + DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); + + // Create a new BB. + auto *InsertBefore = std::next(Function::iterator(BB)) + .getNodePtrUnchecked(); + auto TmpBB = BasicBlock::Create(BB.getContext(), + BB.getName() + ".cond.split", + BB.getParent(), InsertBefore); + + // Update original basic block by using the first condition directly by the + // branch instruction and removing the no longer needed and/or instruction. + Br1->setCondition(Cond1); + LogicOp->eraseFromParent(); + + // Depending on the conditon we have to either replace the true or the false + // successor of the original branch instruction. + if (Opc == Instruction::And) + Br1->setSuccessor(0, TmpBB); + else + Br1->setSuccessor(1, TmpBB); + + // Fill in the new basic block. + auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); + if (auto *I = dyn_cast<Instruction>(Cond2)) { + I->removeFromParent(); + I->insertBefore(Br2); + } + + // Update PHI nodes in both successors. The original BB needs to be + // replaced in one succesor's PHI nodes, because the branch comes now from + // the newly generated BB (NewBB). In the other successor we need to add one + // incoming edge to the PHI nodes, because both branch instructions target + // now the same successor. Depending on the original branch condition + // (and/or) we have to swap the successors (TrueDest, FalseDest), so that + // we perfrom the correct update for the PHI nodes. + // This doesn't change the successor order of the just created branch + // instruction (or any other instruction). + if (Opc == Instruction::Or) + std::swap(TBB, FBB); + + // Replace the old BB with the new BB. + for (auto &I : *TBB) { + PHINode *PN = dyn_cast<PHINode>(&I); + if (!PN) + break; + int i; + while ((i = PN->getBasicBlockIndex(&BB)) >= 0) + PN->setIncomingBlock(i, TmpBB); + } + + // Add another incoming edge form the new BB. + for (auto &I : *FBB) { + PHINode *PN = dyn_cast<PHINode>(&I); + if (!PN) + break; + auto *Val = PN->getIncomingValueForBlock(&BB); + PN->addIncoming(Val, TmpBB); + } + + // Update the branch weights (from SelectionDAGBuilder:: + // FindMergedConditions). + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // BB1: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // We have flexibility in setting Prob for BB1 and Prob for NewBB. + // The requirement is that + // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) + // = TrueProb for orignal BB. + // Assuming the orignal weights are A and B, one choice is to set BB1's + // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice + // assumes that + // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. + // Another choice is to assume TrueProb for BB1 equals to TrueProb for + // TmpBB, but the math is more complicated. + uint64_t TrueWeight, FalseWeight; + if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = TrueWeight; + uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = TrueWeight; + NewFalseWeight = 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } else { + // Codegen X & Y as: + // BB1: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // We have flexibility in setting Prob for BB1 and Prob for TmpBB. + // The requirement is that + // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) + // = FalseProb for orignal BB. + // Assuming the orignal weights are A and B, one choice is to set BB1's + // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice + // assumes that + // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. + uint64_t TrueWeight, FalseWeight; + if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; + uint64_t NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = 2 * TrueWeight; + NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } + + // Note: No point in getting fancy here, since the DT info is never + // available to CodeGenPrepare. + ModifiedDT = true; + + MadeChange = true; + + DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); + TmpBB->dump()); + } + return MadeChange; +} + +void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { + if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) + I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); +} |