summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp647
1 files changed, 647 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
new file mode 100644
index 0000000..72da806
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
@@ -0,0 +1,647 @@
+//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides the implementation of a basic TargetTransformInfo pass
+/// predicated on the target abstractions present in the target independent
+/// code generator. It uses these (primarily TargetLowering) to model as much
+/// of the TTI query interface as possible. It is included by most targets so
+/// that they can specialize only a small subset of the query space.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <utility>
+using namespace llvm;
+
+static cl::opt<unsigned>
+PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
+ cl::desc("Threshold for partial unrolling"), cl::Hidden);
+
+#define DEBUG_TYPE "basictti"
+
+namespace {
+
+class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
+ const TargetMachine *TM;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+ /// Estimate the cost overhead of SK_Alternate shuffle.
+ unsigned getAltShuffleOverhead(Type *Ty) const;
+
+ const TargetLoweringBase *getTLI() const {
+ return TM->getSubtargetImpl()->getTargetLowering();
+ }
+
+public:
+ BasicTTI() : ImmutablePass(ID), TM(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
+ initializeBasicTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override {
+ pushTTIStack(this);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo*)this;
+ return this;
+ }
+
+ bool hasBranchDivergence() const override;
+
+ /// \name Scalar TTI Implementations
+ /// @{
+
+ bool isLegalAddImmediate(int64_t imm) const override;
+ bool isLegalICmpImmediate(int64_t imm) const override;
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) const override;
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) const override;
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTypeLegal(Type *Ty) const override;
+ unsigned getJumpBufAlignment() const override;
+ unsigned getJumpBufSize() const override;
+ bool shouldBuildLookupTables() const override;
+ bool haveFastSqrt(Type *Ty) const override;
+ void getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const override;
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getNumberOfRegisters(bool Vector) const override;
+ unsigned getMaxInterleaveFactor() const override;
+ unsigned getRegisterBitWidth(bool Vector) const override;
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
+ OperandValueKind, OperandValueProperties,
+ OperandValueProperties) const override;
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) const override;
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const override;
+ unsigned getCFInstrCost(unsigned Opcode) const override;
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const override;
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const override;
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
+ unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
+ ArrayRef<Type*> Tys) const override;
+ unsigned getNumberOfParts(Type *Tp) const override;
+ unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
+ unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwise) const override;
+
+ /// @}
+};
+
+}
+
+INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
+ "Target independent code generator's TTI", true, true, false)
+char BasicTTI::ID = 0;
+
+ImmutablePass *
+llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
+ return new BasicTTI(TM);
+}
+
+bool BasicTTI::hasBranchDivergence() const { return false; }
+
+bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
+ return getTLI()->isLegalAddImmediate(imm);
+}
+
+bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
+ return getTLI()->isLegalICmpImmediate(imm);
+}
+
+bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) const {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->isLegalAddressingMode(AM, Ty);
+}
+
+int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) const {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->getScalingFactorCost(AM, Ty);
+}
+
+bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ return getTLI()->isTruncateFree(Ty1, Ty2);
+}
+
+bool BasicTTI::isTypeLegal(Type *Ty) const {
+ EVT T = getTLI()->getValueType(Ty);
+ return getTLI()->isTypeLegal(T);
+}
+
+unsigned BasicTTI::getJumpBufAlignment() const {
+ return getTLI()->getJumpBufAlignment();
+}
+
+unsigned BasicTTI::getJumpBufSize() const {
+ return getTLI()->getJumpBufSize();
+}
+
+bool BasicTTI::shouldBuildLookupTables() const {
+ const TargetLoweringBase *TLI = getTLI();
+ return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
+}
+
+bool BasicTTI::haveFastSqrt(Type *Ty) const {
+ const TargetLoweringBase *TLI = getTLI();
+ EVT VT = TLI->getValueType(Ty);
+ return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
+}
+
+void BasicTTI::getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const {
+ // This unrolling functionality is target independent, but to provide some
+ // motivation for its intended use, for x86:
+
+ // According to the Intel 64 and IA-32 Architectures Optimization Reference
+ // Manual, Intel Core models and later have a loop stream detector
+ // (and associated uop queue) that can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have no more than 4 (8 for Nehalem and later) branches
+ // taken, and none of them may be calls.
+ // - The loop can have no more than 18 (28 for Nehalem and later) uops.
+
+ // According to the Software Optimization Guide for AMD Family 15h Processors,
+ // models 30h-4fh (Steamroller and later) have a loop predictor and loop
+ // buffer which can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have fewer than 16 branches
+ // - The loop must have less than 40 uops in all executed loop branches
+
+ // The number of taken branches in a loop is hard to estimate here, and
+ // benchmarking has revealed that it is better not to be conservative when
+ // estimating the branch count. As a result, we'll ignore the branch limits
+ // until someone finds a case where it matters in practice.
+
+ unsigned MaxOps;
+ const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>(F);
+ if (PartialUnrollingThreshold.getNumOccurrences() > 0)
+ MaxOps = PartialUnrollingThreshold;
+ else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
+ MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
+ else
+ return;
+
+ // Scan the loop: don't unroll loops with calls.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+
+ for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
+ if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
+ ImmutableCallSite CS(J);
+ if (const Function *F = CS.getCalledFunction()) {
+ if (!TopTTI->isLoweredToCall(F))
+ continue;
+ }
+
+ return;
+ }
+ }
+
+ // Enable runtime and partial unrolling up to the specified size.
+ UP.Partial = UP.Runtime = true;
+ UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Calls used by the vectorizers.
+//
+//===----------------------------------------------------------------------===//
+
+unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
+ bool Extract) const {
+ assert (Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+}
+
+unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
+ return 1;
+}
+
+unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
+ return 32;
+}
+
+unsigned BasicTTI::getMaxInterleaveFactor() const {
+ return 1;
+}
+
+unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind, OperandValueKind,
+ OperandValueProperties,
+ OperandValueProperties) const {
+ // Check if any of the operands are vector operands.
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
+ // Assume that floating point arithmetic operations cost twice as much as
+ // integer operations.
+ unsigned OpCost = (IsFloat ? 2 : 1);
+
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1.
+ // If the type is split to multiple registers, assume that there is some
+ // overhead to this.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ if (LT.first > 1)
+ return LT.first * 2 * OpCost;
+ return LT.first * 1 * OpCost;
+ }
+
+ if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered then assume
+ // thare the code is twice as expensive.
+ return LT.first * 2 * OpCost;
+ }
+
+ // Else, assume that we need to scalarize this op.
+ if (Ty->isVectorTy()) {
+ unsigned Num = Ty->getVectorNumElements();
+ unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
+ // return the cost of multiple scalar invocation plus the cost of inserting
+ // and extracting the values.
+ return getScalarizationOverhead(Ty, true, true) + Num * Cost;
+ }
+
+ // We don't know anything about this scalar instruction.
+ return OpCost;
+}
+
+unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
+ assert(Ty->isVectorTy() && "Can only shuffle vectors");
+ unsigned Cost = 0;
+ // Shuffle cost is equal to the cost of extracting element from its argument
+ // plus the cost of inserting them onto the result vector.
+
+ // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
+ // 0 of first vector, index 1 of second vector,index 2 of first vector and
+ // finally index 3 of second vector and insert them at index <0,1,2,3> of
+ // result vector.
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+ return Cost;
+}
+
+unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) const {
+ if (Kind == SK_Alternate) {
+ return getAltShuffleOverhead(Tp);
+ }
+ return 1;
+}
+
+unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const {
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
+ std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
+
+ // Check for NOOP conversions.
+ if (SrcLT.first == DstLT.first &&
+ SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+ // Bitcast between types that are legalized to the same type are free.
+ if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
+ return 0;
+ }
+
+ if (Opcode == Instruction::Trunc &&
+ TLI->isTruncateFree(SrcLT.second, DstLT.second))
+ return 0;
+
+ if (Opcode == Instruction::ZExt &&
+ TLI->isZExtFree(SrcLT.second, DstLT.second))
+ return 0;
+
+ // If the cast is marked as legal (or promote) then assume low cost.
+ if (SrcLT.first == DstLT.first &&
+ TLI->isOperationLegalOrPromote(ISD, DstLT.second))
+ return 1;
+
+ // Handle scalar conversions.
+ if (!Src->isVectorTy() && !Dst->isVectorTy()) {
+
+ // Scalar bitcasts are usually free.
+ if (Opcode == Instruction::BitCast)
+ return 0;
+
+ // Just check the op cost. If the operation is legal then assume it costs 1.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return 1;
+
+ // Assume that illegal scalar instruction are expensive.
+ return 4;
+ }
+
+ // Check vector-to-vector casts.
+ if (Dst->isVectorTy() && Src->isVectorTy()) {
+
+ // If the cast is between same-sized registers, then the check is simple.
+ if (SrcLT.first == DstLT.first &&
+ SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+ // Assume that Zext is done using AND.
+ if (Opcode == Instruction::ZExt)
+ return 1;
+
+ // Assume that sext is done using SHL and SRA.
+ if (Opcode == Instruction::SExt)
+ return 2;
+
+ // Just check the op cost. If the operation is legal then assume it costs
+ // 1 and multiply by the type-legalization overhead.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return SrcLT.first * 1;
+ }
+
+ // If we are converting vectors and the operation is illegal, or
+ // if the vectors are legalized to different types, estimate the
+ // scalarization costs.
+ unsigned Num = Dst->getVectorNumElements();
+ unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
+ Src->getScalarType());
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ return getScalarizationOverhead(Dst, true, true) + Num * Cost;
+ }
+
+ // We already handled vector-to-vector and scalar-to-scalar conversions. This
+ // is where we handle bitcast between vectors and scalars. We need to assume
+ // that the conversion is scalarized in one way or another.
+ if (Opcode == Instruction::BitCast)
+ // Illegal bitcasts are done by storing and loading from a stack slot.
+ return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
+ (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
+
+ llvm_unreachable("Unhandled cast");
+ }
+
+unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
+ // Branches are assumed to be predicted.
+ return 0;
+}
+
+unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Selects on vectors are actually vector selects.
+ if (ISD == ISD::SELECT) {
+ assert(CondTy && "CondTy must exist");
+ if (CondTy->isVectorTy())
+ ISD = ISD::VSELECT;
+ }
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+
+ if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
+ !TLI->isOperationExpand(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1. Multiply
+ // by the type-legalization overhead.
+ return LT.first * 1;
+ }
+
+ // Otherwise, assume that the cast is scalarized.
+ if (ValTy->isVectorTy()) {
+ unsigned Num = ValTy->getVectorNumElements();
+ if (CondTy)
+ CondTy = CondTy->getScalarType();
+ unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
+ CondTy);
+
+ // Return the cost of multiple scalar invocation plus the cost of inserting
+ // and extracting the values.
+ return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
+ }
+
+ // Unknown scalar opcode.
+ return 1;
+}
+
+unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType());
+
+ return LT.first;
+}
+
+unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) const {
+ assert(!Src->isVoidTy() && "Invalid type");
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
+
+ // Assuming that all loads of legal types cost 1.
+ unsigned Cost = LT.first;
+
+ if (Src->isVectorTy() &&
+ Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
+ // This is a vector load that legalizes to a larger type than the vector
+ // itself. Unless the corresponding extending load or truncating store is
+ // legal, then this will scalarize.
+ TargetLowering::LegalizeAction LA = TargetLowering::Expand;
+ EVT MemVT = getTLI()->getValueType(Src, true);
+ if (MemVT.isSimple() && MemVT != MVT::Other) {
+ if (Opcode == Instruction::Store)
+ LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
+ else
+ LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
+ }
+
+ if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
+ // This is a vector load/store for some illegal type that is scalarized.
+ // We must account for the cost of building or decomposing the vector.
+ Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
+ Opcode == Instruction::Store);
+ }
+ }
+
+ return Cost;
+}
+
+unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> Tys) const {
+ unsigned ISD = 0;
+ switch (IID) {
+ default: {
+ // Assume that we need to scalarize this intrinsic.
+ unsigned ScalarizationCost = 0;
+ unsigned ScalarCalls = 1;
+ if (RetTy->isVectorTy()) {
+ ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
+ ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+ }
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+ if (Tys[i]->isVectorTy()) {
+ ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
+ ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+ }
+ }
+
+ return ScalarCalls + ScalarizationCost;
+ }
+ // Look for intrinsics that can be lowered directly or turned into a scalar
+ // intrinsic call.
+ case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
+ case Intrinsic::sin: ISD = ISD::FSIN; break;
+ case Intrinsic::cos: ISD = ISD::FCOS; break;
+ case Intrinsic::exp: ISD = ISD::FEXP; break;
+ case Intrinsic::exp2: ISD = ISD::FEXP2; break;
+ case Intrinsic::log: ISD = ISD::FLOG; break;
+ case Intrinsic::log10: ISD = ISD::FLOG10; break;
+ case Intrinsic::log2: ISD = ISD::FLOG2; break;
+ case Intrinsic::fabs: ISD = ISD::FABS; break;
+ case Intrinsic::minnum: ISD = ISD::FMINNUM; break;
+ case Intrinsic::maxnum: ISD = ISD::FMAXNUM; break;
+ case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
+ case Intrinsic::floor: ISD = ISD::FFLOOR; break;
+ case Intrinsic::ceil: ISD = ISD::FCEIL; break;
+ case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
+ case Intrinsic::nearbyint:
+ ISD = ISD::FNEARBYINT; break;
+ case Intrinsic::rint: ISD = ISD::FRINT; break;
+ case Intrinsic::round: ISD = ISD::FROUND; break;
+ case Intrinsic::pow: ISD = ISD::FPOW; break;
+ case Intrinsic::fma: ISD = ISD::FMA; break;
+ case Intrinsic::fmuladd: ISD = ISD::FMA; break;
+ // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ return 0;
+ }
+
+ const TargetLoweringBase *TLI = getTLI();
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
+
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1.
+ // If the type is split to multiple registers, assume that there is some
+ // overhead to this.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ if (LT.first > 1)
+ return LT.first * 2;
+ return LT.first * 1;
+ }
+
+ if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered then assume
+ // thare the code is twice as expensive.
+ return LT.first * 2;
+ }
+
+ // If we can't lower fmuladd into an FMA estimate the cost as a floating
+ // point mul followed by an add.
+ if (IID == Intrinsic::fmuladd)
+ return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
+ TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
+
+ // Else, assume that we need to scalarize this intrinsic. For math builtins
+ // this will emit a costly libcall, adding call overhead and spills. Make it
+ // very expensive.
+ if (RetTy->isVectorTy()) {
+ unsigned Num = RetTy->getVectorNumElements();
+ unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
+ Tys);
+ return 10 * Cost * Num;
+ }
+
+ // This is going to be turned into a library call, make it expensive.
+ return 10;
+}
+
+unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
+ return LT.first;
+}
+
+unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ return 0;
+}
+
+unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwise) const {
+ assert(Ty->isVectorTy() && "Expect a vector type");
+ unsigned NumVecElts = Ty->getVectorNumElements();
+ unsigned NumReduxLevels = Log2_32(NumVecElts);
+ unsigned ArithCost = NumReduxLevels *
+ TopTTI->getArithmeticInstrCost(Opcode, Ty);
+ // Assume the pairwise shuffles add a cost.
+ unsigned ShuffleCost =
+ NumReduxLevels * (IsPairwise + 1) *
+ TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
+ return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
+}
OpenPOWER on IntegriCloud