diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp new file mode 100644 index 0000000..012ff8a --- /dev/null +++ b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp @@ -0,0 +1,466 @@ +//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file provides the implementation of a basic TargetTransformInfo pass +/// predicated on the target abstractions present in the target independent +/// code generator. It uses these (primarily TargetLowering) to model as much +/// of the TTI query interface as possible. It is included by most targets so +/// that they can specialize only a small subset of the query space. +/// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "basictti" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Target/TargetLowering.h" +#include <utility> + +using namespace llvm; + +namespace { + +class BasicTTI : public ImmutablePass, public TargetTransformInfo { + const TargetLoweringBase *TLI; + + /// Estimate the overhead of scalarizing an instruction. Insert and Extract + /// are set if the result needs to be inserted and/or extracted from vectors. + unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; + +public: + BasicTTI() : ImmutablePass(ID), TLI(0) { + llvm_unreachable("This pass cannot be directly constructed"); + } + + BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) { + initializeBasicTTIPass(*PassRegistry::getPassRegistry()); + } + + virtual void initializePass() { + pushTTIStack(this); + } + + virtual void finalizePass() { + popTTIStack(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + TargetTransformInfo::getAnalysisUsage(AU); + } + + /// Pass identification. + static char ID; + + /// Provide necessary pointer adjustments for the two base classes. + virtual void *getAdjustedAnalysisPointer(const void *ID) { + if (ID == &TargetTransformInfo::ID) + return (TargetTransformInfo*)this; + return this; + } + + /// \name Scalar TTI Implementations + /// @{ + + virtual bool isLegalAddImmediate(int64_t imm) const; + virtual bool isLegalICmpImmediate(int64_t imm) const; + virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, + int64_t BaseOffset, bool HasBaseReg, + int64_t Scale) const; + virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; + virtual bool isTypeLegal(Type *Ty) const; + virtual unsigned getJumpBufAlignment() const; + virtual unsigned getJumpBufSize() const; + virtual bool shouldBuildLookupTables() const; + + /// @} + + /// \name Vector TTI Implementations + /// @{ + + virtual unsigned getNumberOfRegisters(bool Vector) const; + virtual unsigned getMaximumUnrollFactor() const; + virtual unsigned getRegisterBitWidth(bool Vector) const; + virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind, + OperandValueKind) const; + virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, + int Index, Type *SubTp) const; + virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, + Type *Src) const; + virtual unsigned getCFInstrCost(unsigned Opcode) const; + virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const; + virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const; + virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, + unsigned Alignment, + unsigned AddressSpace) const; + virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, + ArrayRef<Type*> Tys) const; + virtual unsigned getNumberOfParts(Type *Tp) const; + virtual unsigned getAddressComputationCost(Type *Ty) const; + + /// @} +}; + +} + +INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", + "Target independent code generator's TTI", true, true, false) +char BasicTTI::ID = 0; + +ImmutablePass * +llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) { + return new BasicTTI(TLI); +} + + +bool BasicTTI::isLegalAddImmediate(int64_t imm) const { + return TLI->isLegalAddImmediate(imm); +} + +bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { + return TLI->isLegalICmpImmediate(imm); +} + +bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, + int64_t BaseOffset, bool HasBaseReg, + int64_t Scale) const { + TargetLoweringBase::AddrMode AM; + AM.BaseGV = BaseGV; + AM.BaseOffs = BaseOffset; + AM.HasBaseReg = HasBaseReg; + AM.Scale = Scale; + return TLI->isLegalAddressingMode(AM, Ty); +} + +bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { + return TLI->isTruncateFree(Ty1, Ty2); +} + +bool BasicTTI::isTypeLegal(Type *Ty) const { + EVT T = TLI->getValueType(Ty); + return TLI->isTypeLegal(T); +} + +unsigned BasicTTI::getJumpBufAlignment() const { + return TLI->getJumpBufAlignment(); +} + +unsigned BasicTTI::getJumpBufSize() const { + return TLI->getJumpBufSize(); +} + +bool BasicTTI::shouldBuildLookupTables() const { + return TLI->supportJumpTables() && + (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || + TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); +} + +//===----------------------------------------------------------------------===// +// +// Calls used by the vectorizers. +// +//===----------------------------------------------------------------------===// + +unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, + bool Extract) const { + assert (Ty->isVectorTy() && "Can only scalarize vectors"); + unsigned Cost = 0; + + for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { + if (Insert) + Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); + if (Extract) + Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); + } + + return Cost; +} + +unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { + return 1; +} + +unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { + return 32; +} + +unsigned BasicTTI::getMaximumUnrollFactor() const { + return 1; +} + +unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind, + OperandValueKind) const { + // Check if any of the operands are vector operands. + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); + + if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { + // The operation is legal. Assume it costs 1. + // If the type is split to multiple registers, assume that thre is some + // overhead to this. + // TODO: Once we have extract/insert subvector cost we need to use them. + if (LT.first > 1) + return LT.first * 2; + return LT.first * 1; + } + + if (!TLI->isOperationExpand(ISD, LT.second)) { + // If the operation is custom lowered then assume + // thare the code is twice as expensive. + return LT.first * 2; + } + + // Else, assume that we need to scalarize this op. + if (Ty->isVectorTy()) { + unsigned Num = Ty->getVectorNumElements(); + unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); + // return the cost of multiple scalar invocation plus the cost of inserting + // and extracting the values. + return getScalarizationOverhead(Ty, true, true) + Num * Cost; + } + + // We don't know anything about this scalar instruction. + return 1; +} + +unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) const { + return 1; +} + +unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, + Type *Src) const { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); + std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); + + // Check for NOOP conversions. + if (SrcLT.first == DstLT.first && + SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { + + // Bitcast between types that are legalized to the same type are free. + if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) + return 0; + } + + if (Opcode == Instruction::Trunc && + TLI->isTruncateFree(SrcLT.second, DstLT.second)) + return 0; + + if (Opcode == Instruction::ZExt && + TLI->isZExtFree(SrcLT.second, DstLT.second)) + return 0; + + // If the cast is marked as legal (or promote) then assume low cost. + if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) + return 1; + + // Handle scalar conversions. + if (!Src->isVectorTy() && !Dst->isVectorTy()) { + + // Scalar bitcasts are usually free. + if (Opcode == Instruction::BitCast) + return 0; + + // Just check the op cost. If the operation is legal then assume it costs 1. + if (!TLI->isOperationExpand(ISD, DstLT.second)) + return 1; + + // Assume that illegal scalar instruction are expensive. + return 4; + } + + // Check vector-to-vector casts. + if (Dst->isVectorTy() && Src->isVectorTy()) { + + // If the cast is between same-sized registers, then the check is simple. + if (SrcLT.first == DstLT.first && + SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { + + // Assume that Zext is done using AND. + if (Opcode == Instruction::ZExt) + return 1; + + // Assume that sext is done using SHL and SRA. + if (Opcode == Instruction::SExt) + return 2; + + // Just check the op cost. If the operation is legal then assume it costs + // 1 and multiply by the type-legalization overhead. + if (!TLI->isOperationExpand(ISD, DstLT.second)) + return SrcLT.first * 1; + } + + // If we are converting vectors and the operation is illegal, or + // if the vectors are legalized to different types, estimate the + // scalarization costs. + unsigned Num = Dst->getVectorNumElements(); + unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), + Src->getScalarType()); + + // Return the cost of multiple scalar invocation plus the cost of + // inserting and extracting the values. + return getScalarizationOverhead(Dst, true, true) + Num * Cost; + } + + // We already handled vector-to-vector and scalar-to-scalar conversions. This + // is where we handle bitcast between vectors and scalars. We need to assume + // that the conversion is scalarized in one way or another. + if (Opcode == Instruction::BitCast) + // Illegal bitcasts are done by storing and loading from a stack slot. + return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + + (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); + + llvm_unreachable("Unhandled cast"); + } + +unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { + // Branches are assumed to be predicted. + return 0; +} + +unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + // Selects on vectors are actually vector selects. + if (ISD == ISD::SELECT) { + assert(CondTy && "CondTy must exist"); + if (CondTy->isVectorTy()) + ISD = ISD::VSELECT; + } + + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); + + if (!TLI->isOperationExpand(ISD, LT.second)) { + // The operation is legal. Assume it costs 1. Multiply + // by the type-legalization overhead. + return LT.first * 1; + } + + // Otherwise, assume that the cast is scalarized. + if (ValTy->isVectorTy()) { + unsigned Num = ValTy->getVectorNumElements(); + if (CondTy) + CondTy = CondTy->getScalarType(); + unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), + CondTy); + + // Return the cost of multiple scalar invocation plus the cost of inserting + // and extracting the values. + return getScalarizationOverhead(ValTy, true, false) + Num * Cost; + } + + // Unknown scalar opcode. + return 1; +} + +unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const { + return 1; +} + +unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, + unsigned Alignment, + unsigned AddressSpace) const { + assert(!Src->isVoidTy() && "Invalid type"); + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); + + // Assume that all loads of legal types cost 1. + return LT.first; +} + +unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, + ArrayRef<Type *> Tys) const { + unsigned ISD = 0; + switch (IID) { + default: { + // Assume that we need to scalarize this intrinsic. + unsigned ScalarizationCost = 0; + unsigned ScalarCalls = 1; + if (RetTy->isVectorTy()) { + ScalarizationCost = getScalarizationOverhead(RetTy, true, false); + ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); + } + for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { + if (Tys[i]->isVectorTy()) { + ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); + ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); + } + } + + return ScalarCalls + ScalarizationCost; + } + // Look for intrinsics that can be lowered directly or turned into a scalar + // intrinsic call. + case Intrinsic::sqrt: ISD = ISD::FSQRT; break; + case Intrinsic::sin: ISD = ISD::FSIN; break; + case Intrinsic::cos: ISD = ISD::FCOS; break; + case Intrinsic::exp: ISD = ISD::FEXP; break; + case Intrinsic::exp2: ISD = ISD::FEXP2; break; + case Intrinsic::log: ISD = ISD::FLOG; break; + case Intrinsic::log10: ISD = ISD::FLOG10; break; + case Intrinsic::log2: ISD = ISD::FLOG2; break; + case Intrinsic::fabs: ISD = ISD::FABS; break; + case Intrinsic::floor: ISD = ISD::FFLOOR; break; + case Intrinsic::ceil: ISD = ISD::FCEIL; break; + case Intrinsic::trunc: ISD = ISD::FTRUNC; break; + case Intrinsic::rint: ISD = ISD::FRINT; break; + case Intrinsic::pow: ISD = ISD::FPOW; break; + case Intrinsic::fma: ISD = ISD::FMA; break; + case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? + } + + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); + + if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { + // The operation is legal. Assume it costs 1. + // If the type is split to multiple registers, assume that thre is some + // overhead to this. + // TODO: Once we have extract/insert subvector cost we need to use them. + if (LT.first > 1) + return LT.first * 2; + return LT.first * 1; + } + + if (!TLI->isOperationExpand(ISD, LT.second)) { + // If the operation is custom lowered then assume + // thare the code is twice as expensive. + return LT.first * 2; + } + + // Else, assume that we need to scalarize this intrinsic. For math builtins + // this will emit a costly libcall, adding call overhead and spills. Make it + // very expensive. + if (RetTy->isVectorTy()) { + unsigned Num = RetTy->getVectorNumElements(); + unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), + Tys); + return 10 * Cost * Num; + } + + // This is going to be turned into a library call, make it expensive. + return 10; +} + +unsigned BasicTTI::getNumberOfParts(Type *Tp) const { + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); + return LT.first; +} + +unsigned BasicTTI::getAddressComputationCost(Type *Ty) const { + return 0; +} |