diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp | 564 |
1 files changed, 564 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp b/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp new file mode 100644 index 0000000..0bb0fa3 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp @@ -0,0 +1,564 @@ +//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains a pass (at IR level) to replace atomic instructions with +// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetSubtargetInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "atomic-expand" + +namespace { + class AtomicExpand: public FunctionPass { + const TargetMachine *TM; + const TargetLowering *TLI; + public: + static char ID; // Pass identification, replacement for typeid + explicit AtomicExpand(const TargetMachine *TM = nullptr) + : FunctionPass(ID), TM(TM), TLI(nullptr) { + initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + private: + bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, + bool IsStore, bool IsLoad); + bool expandAtomicLoad(LoadInst *LI); + bool expandAtomicLoadToLL(LoadInst *LI); + bool expandAtomicLoadToCmpXchg(LoadInst *LI); + bool expandAtomicStore(StoreInst *SI); + bool tryExpandAtomicRMW(AtomicRMWInst *AI); + bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); + bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI); + bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); + bool isIdempotentRMW(AtomicRMWInst *AI); + bool simplifyIdempotentRMW(AtomicRMWInst *AI); + }; +} // namespace + +char AtomicExpand::ID = 0; +char &llvm::AtomicExpandID = AtomicExpand::ID; +INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", + "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", + false, false) + +FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { + return new AtomicExpand(TM); +} + +bool AtomicExpand::runOnFunction(Function &F) { + if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) + return false; + TLI = TM->getSubtargetImpl(F)->getTargetLowering(); + + SmallVector<Instruction *, 1> AtomicInsts; + + // Changing control-flow while iterating through it is a bad idea, so gather a + // list of all atomic instructions before we start. + for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { + if (I->isAtomic()) + AtomicInsts.push_back(&*I); + } + + bool MadeChange = false; + for (auto I : AtomicInsts) { + auto LI = dyn_cast<LoadInst>(I); + auto SI = dyn_cast<StoreInst>(I); + auto RMWI = dyn_cast<AtomicRMWInst>(I); + auto CASI = dyn_cast<AtomicCmpXchgInst>(I); + assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && + "Unknown atomic instruction"); + + auto FenceOrdering = Monotonic; + bool IsStore, IsLoad; + if (TLI->getInsertFencesForAtomic()) { + if (LI && isAtLeastAcquire(LI->getOrdering())) { + FenceOrdering = LI->getOrdering(); + LI->setOrdering(Monotonic); + IsStore = false; + IsLoad = true; + } else if (SI && isAtLeastRelease(SI->getOrdering())) { + FenceOrdering = SI->getOrdering(); + SI->setOrdering(Monotonic); + IsStore = true; + IsLoad = false; + } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || + isAtLeastAcquire(RMWI->getOrdering()))) { + FenceOrdering = RMWI->getOrdering(); + RMWI->setOrdering(Monotonic); + IsStore = IsLoad = true; + } else if (CASI && !TLI->hasLoadLinkedStoreConditional() && + (isAtLeastRelease(CASI->getSuccessOrdering()) || + isAtLeastAcquire(CASI->getSuccessOrdering()))) { + // If a compare and swap is lowered to LL/SC, we can do smarter fence + // insertion, with a stronger one on the success path than on the + // failure path. As a result, fence insertion is directly done by + // expandAtomicCmpXchg in that case. + FenceOrdering = CASI->getSuccessOrdering(); + CASI->setSuccessOrdering(Monotonic); + CASI->setFailureOrdering(Monotonic); + IsStore = IsLoad = true; + } + + if (FenceOrdering != Monotonic) { + MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); + } + } + + if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) { + MadeChange |= expandAtomicLoad(LI); + } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { + MadeChange |= expandAtomicStore(SI); + } else if (RMWI) { + // There are two different ways of expanding RMW instructions: + // - into a load if it is idempotent + // - into a Cmpxchg/LL-SC loop otherwise + // we try them in that order. + + if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { + MadeChange = true; + } else { + MadeChange |= tryExpandAtomicRMW(RMWI); + } + } else if (CASI && TLI->hasLoadLinkedStoreConditional()) { + MadeChange |= expandAtomicCmpXchg(CASI); + } + } + return MadeChange; +} + +bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, + bool IsStore, bool IsLoad) { + IRBuilder<> Builder(I); + + auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); + + auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); + // The trailing fence is emitted before the instruction instead of after + // because there is no easy way of setting Builder insertion point after + // an instruction. So we must erase it from the BB, and insert it back + // in the right place. + // We have a guard here because not every atomic operation generates a + // trailing fence. + if (TrailingFence) { + TrailingFence->removeFromParent(); + TrailingFence->insertAfter(I); + } + + return (LeadingFence || TrailingFence); +} + +bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { + if (TLI->hasLoadLinkedStoreConditional()) + return expandAtomicLoadToLL(LI); + else + return expandAtomicLoadToCmpXchg(LI); +} + +bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { + IRBuilder<> Builder(LI); + + // On some architectures, load-linked instructions are atomic for larger + // sizes than normal loads. For example, the only 64-bit load guaranteed + // to be single-copy atomic by ARM is an ldrexd (A3.5.3). + Value *Val = + TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); + + LI->replaceAllUsesWith(Val); + LI->eraseFromParent(); + + return true; +} + +bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { + IRBuilder<> Builder(LI); + AtomicOrdering Order = LI->getOrdering(); + Value *Addr = LI->getPointerOperand(); + Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); + Constant *DummyVal = Constant::getNullValue(Ty); + + Value *Pair = Builder.CreateAtomicCmpXchg( + Addr, DummyVal, DummyVal, Order, + AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); + Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); + + LI->replaceAllUsesWith(Loaded); + LI->eraseFromParent(); + + return true; +} + +bool AtomicExpand::expandAtomicStore(StoreInst *SI) { + // This function is only called on atomic stores that are too large to be + // atomic if implemented as a native store. So we replace them by an + // atomic swap, that can be implemented for example as a ldrex/strex on ARM + // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. + // It is the responsibility of the target to only signal expansion via + // shouldExpandAtomicRMW in cases where this is required and possible. + IRBuilder<> Builder(SI); + AtomicRMWInst *AI = + Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), + SI->getValueOperand(), SI->getOrdering()); + SI->eraseFromParent(); + + // Now we have an appropriate swap instruction, lower it as usual. + return tryExpandAtomicRMW(AI); +} + +bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { + switch (TLI->shouldExpandAtomicRMWInIR(AI)) { + case TargetLoweringBase::AtomicRMWExpansionKind::None: + return false; + case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: { + assert(TLI->hasLoadLinkedStoreConditional() && + "TargetLowering requested we expand AtomicRMW instruction into " + "load-linked/store-conditional combos, but such instructions aren't " + "supported"); + + return expandAtomicRMWToLLSC(AI); + } + case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: { + return expandAtomicRMWToCmpXchg(AI); + } + } + llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); +} + +/// Emit IR to implement the given atomicrmw operation on values in registers, +/// returning the new value. +static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, + Value *Loaded, Value *Inc) { + Value *NewVal; + switch (Op) { + case AtomicRMWInst::Xchg: + return Inc; + case AtomicRMWInst::Add: + return Builder.CreateAdd(Loaded, Inc, "new"); + case AtomicRMWInst::Sub: + return Builder.CreateSub(Loaded, Inc, "new"); + case AtomicRMWInst::And: + return Builder.CreateAnd(Loaded, Inc, "new"); + case AtomicRMWInst::Nand: + return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); + case AtomicRMWInst::Or: + return Builder.CreateOr(Loaded, Inc, "new"); + case AtomicRMWInst::Xor: + return Builder.CreateXor(Loaded, Inc, "new"); + case AtomicRMWInst::Max: + NewVal = Builder.CreateICmpSGT(Loaded, Inc); + return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); + case AtomicRMWInst::Min: + NewVal = Builder.CreateICmpSLE(Loaded, Inc); + return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); + case AtomicRMWInst::UMax: + NewVal = Builder.CreateICmpUGT(Loaded, Inc); + return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); + case AtomicRMWInst::UMin: + NewVal = Builder.CreateICmpULE(Loaded, Inc); + return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); + default: + llvm_unreachable("Unknown atomic op"); + } +} + +bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { + AtomicOrdering MemOpOrder = AI->getOrdering(); + Value *Addr = AI->getPointerOperand(); + BasicBlock *BB = AI->getParent(); + Function *F = BB->getParent(); + LLVMContext &Ctx = F->getContext(); + + // Given: atomicrmw some_op iN* %addr, iN %incr ordering + // + // The standard expansion we produce is: + // [...] + // fence? + // atomicrmw.start: + // %loaded = @load.linked(%addr) + // %new = some_op iN %loaded, %incr + // %stored = @store_conditional(%new, %addr) + // %try_again = icmp i32 ne %stored, 0 + // br i1 %try_again, label %loop, label %atomicrmw.end + // atomicrmw.end: + // fence? + // [...] + BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); + BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); + + // This grabs the DebugLoc from AI. + IRBuilder<> Builder(AI); + + // The split call above "helpfully" added a branch at the end of BB (to the + // wrong place), but we might want a fence too. It's easiest to just remove + // the branch entirely. + std::prev(BB->end())->eraseFromParent(); + Builder.SetInsertPoint(BB); + Builder.CreateBr(LoopBB); + + // Start the main loop block now that we've taken care of the preliminaries. + Builder.SetInsertPoint(LoopBB); + Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); + + Value *NewVal = + performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); + + Value *StoreSuccess = + TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); + Value *TryAgain = Builder.CreateICmpNE( + StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); + Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); + + Builder.SetInsertPoint(ExitBB, ExitBB->begin()); + + AI->replaceAllUsesWith(Loaded); + AI->eraseFromParent(); + + return true; +} + +bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) { + AtomicOrdering MemOpOrder = + AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); + Value *Addr = AI->getPointerOperand(); + BasicBlock *BB = AI->getParent(); + Function *F = BB->getParent(); + LLVMContext &Ctx = F->getContext(); + + // Given: atomicrmw some_op iN* %addr, iN %incr ordering + // + // The standard expansion we produce is: + // [...] + // %init_loaded = load atomic iN* %addr + // br label %loop + // loop: + // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] + // %new = some_op iN %loaded, %incr + // %pair = cmpxchg iN* %addr, iN %loaded, iN %new + // %new_loaded = extractvalue { iN, i1 } %pair, 0 + // %success = extractvalue { iN, i1 } %pair, 1 + // br i1 %success, label %atomicrmw.end, label %loop + // atomicrmw.end: + // [...] + BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); + BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); + + // This grabs the DebugLoc from AI. + IRBuilder<> Builder(AI); + + // The split call above "helpfully" added a branch at the end of BB (to the + // wrong place), but we want a load. It's easiest to just remove + // the branch entirely. + std::prev(BB->end())->eraseFromParent(); + Builder.SetInsertPoint(BB); + LoadInst *InitLoaded = Builder.CreateLoad(Addr); + // Atomics require at least natural alignment. + InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits()); + Builder.CreateBr(LoopBB); + + // Start the main loop block now that we've taken care of the preliminaries. + Builder.SetInsertPoint(LoopBB); + PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); + Loaded->addIncoming(InitLoaded, BB); + + Value *NewVal = + performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); + + Value *Pair = Builder.CreateAtomicCmpXchg( + Addr, Loaded, NewVal, MemOpOrder, + AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); + Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); + Loaded->addIncoming(NewLoaded, LoopBB); + + Value *Success = Builder.CreateExtractValue(Pair, 1, "success"); + Builder.CreateCondBr(Success, ExitBB, LoopBB); + + Builder.SetInsertPoint(ExitBB, ExitBB->begin()); + + AI->replaceAllUsesWith(NewLoaded); + AI->eraseFromParent(); + + return true; +} + +bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { + AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); + AtomicOrdering FailureOrder = CI->getFailureOrdering(); + Value *Addr = CI->getPointerOperand(); + BasicBlock *BB = CI->getParent(); + Function *F = BB->getParent(); + LLVMContext &Ctx = F->getContext(); + // If getInsertFencesForAtomic() returns true, then the target does not want + // to deal with memory orders, and emitLeading/TrailingFence should take care + // of everything. Otherwise, emitLeading/TrailingFence are no-op and we + // should preserve the ordering. + AtomicOrdering MemOpOrder = + TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; + + // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord + // + // The full expansion we produce is: + // [...] + // fence? + // cmpxchg.start: + // %loaded = @load.linked(%addr) + // %should_store = icmp eq %loaded, %desired + // br i1 %should_store, label %cmpxchg.trystore, + // label %cmpxchg.failure + // cmpxchg.trystore: + // %stored = @store_conditional(%new, %addr) + // %success = icmp eq i32 %stored, 0 + // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure + // cmpxchg.success: + // fence? + // br label %cmpxchg.end + // cmpxchg.failure: + // fence? + // br label %cmpxchg.end + // cmpxchg.end: + // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] + // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 + // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 + // [...] + BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); + auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); + auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); + auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); + auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); + + // This grabs the DebugLoc from CI + IRBuilder<> Builder(CI); + + // The split call above "helpfully" added a branch at the end of BB (to the + // wrong place), but we might want a fence too. It's easiest to just remove + // the branch entirely. + std::prev(BB->end())->eraseFromParent(); + Builder.SetInsertPoint(BB); + TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, + /*IsLoad=*/true); + Builder.CreateBr(LoopBB); + + // Start the main loop block now that we've taken care of the preliminaries. + Builder.SetInsertPoint(LoopBB); + Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); + Value *ShouldStore = + Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); + + // If the cmpxchg doesn't actually need any ordering when it fails, we can + // jump straight past that fence instruction (if it exists). + Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); + + Builder.SetInsertPoint(TryStoreBB); + Value *StoreSuccess = TLI->emitStoreConditional( + Builder, CI->getNewValOperand(), Addr, MemOpOrder); + StoreSuccess = Builder.CreateICmpEQ( + StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); + Builder.CreateCondBr(StoreSuccess, SuccessBB, + CI->isWeak() ? FailureBB : LoopBB); + + // Make sure later instructions don't get reordered with a fence if necessary. + Builder.SetInsertPoint(SuccessBB); + TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, + /*IsLoad=*/true); + Builder.CreateBr(ExitBB); + + Builder.SetInsertPoint(FailureBB); + TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, + /*IsLoad=*/true); + Builder.CreateBr(ExitBB); + + // Finally, we have control-flow based knowledge of whether the cmpxchg + // succeeded or not. We expose this to later passes by converting any + // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. + + // Setup the builder so we can create any PHIs we need. + Builder.SetInsertPoint(ExitBB, ExitBB->begin()); + PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); + Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); + Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); + + // Look for any users of the cmpxchg that are just comparing the loaded value + // against the desired one, and replace them with the CFG-derived version. + SmallVector<ExtractValueInst *, 2> PrunedInsts; + for (auto User : CI->users()) { + ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); + if (!EV) + continue; + + assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && + "weird extraction from { iN, i1 }"); + + if (EV->getIndices()[0] == 0) + EV->replaceAllUsesWith(Loaded); + else + EV->replaceAllUsesWith(Success); + + PrunedInsts.push_back(EV); + } + + // We can remove the instructions now we're no longer iterating through them. + for (auto EV : PrunedInsts) + EV->eraseFromParent(); + + if (!CI->use_empty()) { + // Some use of the full struct return that we don't understand has happened, + // so we've got to reconstruct it properly. + Value *Res; + Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); + Res = Builder.CreateInsertValue(Res, Success, 1); + + CI->replaceAllUsesWith(Res); + } + + CI->eraseFromParent(); + return true; +} + +bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { + auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); + if(!C) + return false; + + AtomicRMWInst::BinOp Op = RMWI->getOperation(); + switch(Op) { + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + case AtomicRMWInst::Or: + case AtomicRMWInst::Xor: + return C->isZero(); + case AtomicRMWInst::And: + return C->isMinusOne(); + // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... + default: + return false; + } +} + +bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { + if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { + if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad)) + expandAtomicLoad(ResultingLoad); + return true; + } + return false; +} |