diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/Analysis.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/Analysis.cpp | 741 |
1 files changed, 741 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/Analysis.cpp b/contrib/llvm/lib/CodeGen/Analysis.cpp new file mode 100644 index 0000000..75579a2 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/Analysis.cpp @@ -0,0 +1,741 @@ +//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines several CodeGen-specific LLVM IR analysis utilities. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Analysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/Transforms/Utils/GlobalStatus.h" + +using namespace llvm; + +/// Compute the linearized index of a member in a nested aggregate/struct/array +/// by recursing and accumulating CurIndex as long as there are indices in the +/// index list. +unsigned llvm::ComputeLinearIndex(Type *Ty, + const unsigned *Indices, + const unsigned *IndicesEnd, + unsigned CurIndex) { + // Base case: We're done. + if (Indices && Indices == IndicesEnd) + return CurIndex; + + // Given a struct type, recursively traverse the elements. + if (StructType *STy = dyn_cast<StructType>(Ty)) { + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) { + if (Indices && *Indices == unsigned(EI - EB)) + return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); + CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); + } + assert(!Indices && "Unexpected out of bound"); + return CurIndex; + } + // Given an array type, recursively traverse the elements. + else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Type *EltTy = ATy->getElementType(); + unsigned NumElts = ATy->getNumElements(); + // Compute the Linear offset when jumping one element of the array + unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); + if (Indices) { + assert(*Indices < NumElts && "Unexpected out of bound"); + // If the indice is inside the array, compute the index to the requested + // elt and recurse inside the element with the end of the indices list + CurIndex += EltLinearOffset* *Indices; + return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); + } + CurIndex += EltLinearOffset*NumElts; + return CurIndex; + } + // We haven't found the type we're looking for, so keep searching. + return CurIndex + 1; +} + +/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of +/// EVTs that represent all the individual underlying +/// non-aggregate types that comprise it. +/// +/// If Offsets is non-null, it points to a vector to be filled in +/// with the in-memory offsets of each of the individual values. +/// +void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, + Type *Ty, SmallVectorImpl<EVT> &ValueVTs, + SmallVectorImpl<uint64_t> *Offsets, + uint64_t StartingOffset) { + // Given a struct type, recursively traverse the elements. + if (StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = DL.getStructLayout(STy); + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) + ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, + StartingOffset + SL->getElementOffset(EI - EB)); + return; + } + // Given an array type, recursively traverse the elements. + if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Type *EltTy = ATy->getElementType(); + uint64_t EltSize = DL.getTypeAllocSize(EltTy); + for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) + ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, + StartingOffset + i * EltSize); + return; + } + // Interpret void as zero return values. + if (Ty->isVoidTy()) + return; + // Base case: we can get an EVT for this LLVM IR type. + ValueVTs.push_back(TLI.getValueType(DL, Ty)); + if (Offsets) + Offsets->push_back(StartingOffset); +} + +/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. +GlobalValue *llvm::ExtractTypeInfo(Value *V) { + V = V->stripPointerCasts(); + GlobalValue *GV = dyn_cast<GlobalValue>(V); + GlobalVariable *Var = dyn_cast<GlobalVariable>(V); + + if (Var && Var->getName() == "llvm.eh.catch.all.value") { + assert(Var->hasInitializer() && + "The EH catch-all value must have an initializer"); + Value *Init = Var->getInitializer(); + GV = dyn_cast<GlobalValue>(Init); + if (!GV) V = cast<ConstantPointerNull>(Init); + } + + assert((GV || isa<ConstantPointerNull>(V)) && + "TypeInfo must be a global variable or NULL"); + return GV; +} + +/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being +/// processed uses a memory 'm' constraint. +bool +llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, + const TargetLowering &TLI) { + for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { + InlineAsm::ConstraintInfo &CI = CInfos[i]; + for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { + TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); + if (CType == TargetLowering::C_Memory) + return true; + } + + // Indirect operand accesses access memory. + if (CI.isIndirect) + return true; + } + + return false; +} + +/// getFCmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR floating-point condition code. This includes +/// consideration of global floating-point math flags. +/// +ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { + switch (Pred) { + case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; + case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; + case FCmpInst::FCMP_OGT: return ISD::SETOGT; + case FCmpInst::FCMP_OGE: return ISD::SETOGE; + case FCmpInst::FCMP_OLT: return ISD::SETOLT; + case FCmpInst::FCMP_OLE: return ISD::SETOLE; + case FCmpInst::FCMP_ONE: return ISD::SETONE; + case FCmpInst::FCMP_ORD: return ISD::SETO; + case FCmpInst::FCMP_UNO: return ISD::SETUO; + case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; + case FCmpInst::FCMP_UGT: return ISD::SETUGT; + case FCmpInst::FCMP_UGE: return ISD::SETUGE; + case FCmpInst::FCMP_ULT: return ISD::SETULT; + case FCmpInst::FCMP_ULE: return ISD::SETULE; + case FCmpInst::FCMP_UNE: return ISD::SETUNE; + case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; + default: llvm_unreachable("Invalid FCmp predicate opcode!"); + } +} + +ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { + switch (CC) { + case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; + case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; + case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; + case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; + case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; + case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; + default: return CC; + } +} + +/// getICmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR integer condition code. +/// +ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { + switch (Pred) { + case ICmpInst::ICMP_EQ: return ISD::SETEQ; + case ICmpInst::ICMP_NE: return ISD::SETNE; + case ICmpInst::ICMP_SLE: return ISD::SETLE; + case ICmpInst::ICMP_ULE: return ISD::SETULE; + case ICmpInst::ICMP_SGE: return ISD::SETGE; + case ICmpInst::ICMP_UGE: return ISD::SETUGE; + case ICmpInst::ICMP_SLT: return ISD::SETLT; + case ICmpInst::ICMP_ULT: return ISD::SETULT; + case ICmpInst::ICMP_SGT: return ISD::SETGT; + case ICmpInst::ICMP_UGT: return ISD::SETUGT; + default: + llvm_unreachable("Invalid ICmp predicate opcode!"); + } +} + +static bool isNoopBitcast(Type *T1, Type *T2, + const TargetLoweringBase& TLI) { + return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || + (isa<VectorType>(T1) && isa<VectorType>(T2) && + TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); +} + +/// Look through operations that will be free to find the earliest source of +/// this value. +/// +/// @param ValLoc If V has aggegate type, we will be interested in a particular +/// scalar component. This records its address; the reverse of this list gives a +/// sequence of indices appropriate for an extractvalue to locate the important +/// value. This value is updated during the function and on exit will indicate +/// similar information for the Value returned. +/// +/// @param DataBits If this function looks through truncate instructions, this +/// will record the smallest size attained. +static const Value *getNoopInput(const Value *V, + SmallVectorImpl<unsigned> &ValLoc, + unsigned &DataBits, + const TargetLoweringBase &TLI, + const DataLayout &DL) { + while (true) { + // Try to look through V1; if V1 is not an instruction, it can't be looked + // through. + const Instruction *I = dyn_cast<Instruction>(V); + if (!I || I->getNumOperands() == 0) return V; + const Value *NoopInput = nullptr; + + Value *Op = I->getOperand(0); + if (isa<BitCastInst>(I)) { + // Look through truly no-op bitcasts. + if (isNoopBitcast(Op->getType(), I->getType(), TLI)) + NoopInput = Op; + } else if (isa<GetElementPtrInst>(I)) { + // Look through getelementptr + if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) + NoopInput = Op; + } else if (isa<IntToPtrInst>(I)) { + // Look through inttoptr. + // Make sure this isn't a truncating or extending cast. We could + // support this eventually, but don't bother for now. + if (!isa<VectorType>(I->getType()) && + DL.getPointerSizeInBits() == + cast<IntegerType>(Op->getType())->getBitWidth()) + NoopInput = Op; + } else if (isa<PtrToIntInst>(I)) { + // Look through ptrtoint. + // Make sure this isn't a truncating or extending cast. We could + // support this eventually, but don't bother for now. + if (!isa<VectorType>(I->getType()) && + DL.getPointerSizeInBits() == + cast<IntegerType>(I->getType())->getBitWidth()) + NoopInput = Op; + } else if (isa<TruncInst>(I) && + TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { + DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); + NoopInput = Op; + } else if (isa<CallInst>(I)) { + // Look through call (skipping callee) + for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; + i != e; ++i) { + unsigned attrInd = i - I->op_begin() + 1; + if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && + isNoopBitcast((*i)->getType(), I->getType(), TLI)) { + NoopInput = *i; + break; + } + } + } else if (isa<InvokeInst>(I)) { + // Look through invoke (skipping BB, BB, Callee) + for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; + i != e; ++i) { + unsigned attrInd = i - I->op_begin() + 1; + if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && + isNoopBitcast((*i)->getType(), I->getType(), TLI)) { + NoopInput = *i; + break; + } + } + } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { + // Value may come from either the aggregate or the scalar + ArrayRef<unsigned> InsertLoc = IVI->getIndices(); + if (ValLoc.size() >= InsertLoc.size() && + std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { + // The type being inserted is a nested sub-type of the aggregate; we + // have to remove those initial indices to get the location we're + // interested in for the operand. + ValLoc.resize(ValLoc.size() - InsertLoc.size()); + NoopInput = IVI->getInsertedValueOperand(); + } else { + // The struct we're inserting into has the value we're interested in, no + // change of address. + NoopInput = Op; + } + } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { + // The part we're interested in will inevitably be some sub-section of the + // previous aggregate. Combine the two paths to obtain the true address of + // our element. + ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); + ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); + NoopInput = Op; + } + // Terminate if we couldn't find anything to look through. + if (!NoopInput) + return V; + + V = NoopInput; + } +} + +/// Return true if this scalar return value only has bits discarded on its path +/// from the "tail call" to the "ret". This includes the obvious noop +/// instructions handled by getNoopInput above as well as free truncations (or +/// extensions prior to the call). +static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, + SmallVectorImpl<unsigned> &RetIndices, + SmallVectorImpl<unsigned> &CallIndices, + bool AllowDifferingSizes, + const TargetLoweringBase &TLI, + const DataLayout &DL) { + + // Trace the sub-value needed by the return value as far back up the graph as + // possible, in the hope that it will intersect with the value produced by the + // call. In the simple case with no "returned" attribute, the hope is actually + // that we end up back at the tail call instruction itself. + unsigned BitsRequired = UINT_MAX; + RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); + + // If this slot in the value returned is undef, it doesn't matter what the + // call puts there, it'll be fine. + if (isa<UndefValue>(RetVal)) + return true; + + // Now do a similar search up through the graph to find where the value + // actually returned by the "tail call" comes from. In the simple case without + // a "returned" attribute, the search will be blocked immediately and the loop + // a Noop. + unsigned BitsProvided = UINT_MAX; + CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); + + // There's no hope if we can't actually trace them to (the same part of!) the + // same value. + if (CallVal != RetVal || CallIndices != RetIndices) + return false; + + // However, intervening truncates may have made the call non-tail. Make sure + // all the bits that are needed by the "ret" have been provided by the "tail + // call". FIXME: with sufficiently cunning bit-tracking, we could look through + // extensions too. + if (BitsProvided < BitsRequired || + (!AllowDifferingSizes && BitsProvided != BitsRequired)) + return false; + + return true; +} + +/// For an aggregate type, determine whether a given index is within bounds or +/// not. +static bool indexReallyValid(CompositeType *T, unsigned Idx) { + if (ArrayType *AT = dyn_cast<ArrayType>(T)) + return Idx < AT->getNumElements(); + + return Idx < cast<StructType>(T)->getNumElements(); +} + +/// Move the given iterators to the next leaf type in depth first traversal. +/// +/// Performs a depth-first traversal of the type as specified by its arguments, +/// stopping at the next leaf node (which may be a legitimate scalar type or an +/// empty struct or array). +/// +/// @param SubTypes List of the partial components making up the type from +/// outermost to innermost non-empty aggregate. The element currently +/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). +/// +/// @param Path Set of extractvalue indices leading from the outermost type +/// (SubTypes[0]) to the leaf node currently represented. +/// +/// @returns true if a new type was found, false otherwise. Calling this +/// function again on a finished iterator will repeatedly return +/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty +/// aggregate or a non-aggregate +static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, + SmallVectorImpl<unsigned> &Path) { + // First march back up the tree until we can successfully increment one of the + // coordinates in Path. + while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { + Path.pop_back(); + SubTypes.pop_back(); + } + + // If we reached the top, then the iterator is done. + if (Path.empty()) + return false; + + // We know there's *some* valid leaf now, so march back down the tree picking + // out the left-most element at each node. + ++Path.back(); + Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); + while (DeeperType->isAggregateType()) { + CompositeType *CT = cast<CompositeType>(DeeperType); + if (!indexReallyValid(CT, 0)) + return true; + + SubTypes.push_back(CT); + Path.push_back(0); + + DeeperType = CT->getTypeAtIndex(0U); + } + + return true; +} + +/// Find the first non-empty, scalar-like type in Next and setup the iterator +/// components. +/// +/// Assuming Next is an aggregate of some kind, this function will traverse the +/// tree from left to right (i.e. depth-first) looking for the first +/// non-aggregate type which will play a role in function return. +/// +/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup +/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first +/// i32 in that type. +static bool firstRealType(Type *Next, + SmallVectorImpl<CompositeType *> &SubTypes, + SmallVectorImpl<unsigned> &Path) { + // First initialise the iterator components to the first "leaf" node + // (i.e. node with no valid sub-type at any index, so {} does count as a leaf + // despite nominally being an aggregate). + while (Next->isAggregateType() && + indexReallyValid(cast<CompositeType>(Next), 0)) { + SubTypes.push_back(cast<CompositeType>(Next)); + Path.push_back(0); + Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); + } + + // If there's no Path now, Next was originally scalar already (or empty + // leaf). We're done. + if (Path.empty()) + return true; + + // Otherwise, use normal iteration to keep looking through the tree until we + // find a non-aggregate type. + while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { + if (!advanceToNextLeafType(SubTypes, Path)) + return false; + } + + return true; +} + +/// Set the iterator data-structures to the next non-empty, non-aggregate +/// subtype. +static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, + SmallVectorImpl<unsigned> &Path) { + do { + if (!advanceToNextLeafType(SubTypes, Path)) + return false; + + assert(!Path.empty() && "found a leaf but didn't set the path?"); + } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); + + return true; +} + + +/// Test if the given instruction is in a position to be optimized +/// with a tail-call. This roughly means that it's in a block with +/// a return and there's nothing that needs to be scheduled +/// between it and the return. +/// +/// This function only tests target-independent requirements. +bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { + const Instruction *I = CS.getInstruction(); + const BasicBlock *ExitBB = I->getParent(); + const TerminatorInst *Term = ExitBB->getTerminator(); + const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); + + // The block must end in a return statement or unreachable. + // + // FIXME: Decline tailcall if it's not guaranteed and if the block ends in + // an unreachable, for now. The way tailcall optimization is currently + // implemented means it will add an epilogue followed by a jump. That is + // not profitable. Also, if the callee is a special function (e.g. + // longjmp on x86), it can end up causing miscompilation that has not + // been fully understood. + if (!Ret && + (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) + return false; + + // If I will have a chain, make sure no other instruction that will have a + // chain interposes between I and the return. + if (I->mayHaveSideEffects() || I->mayReadFromMemory() || + !isSafeToSpeculativelyExecute(I)) + for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { + if (&*BBI == I) + break; + // Debug info intrinsics do not get in the way of tail call optimization. + if (isa<DbgInfoIntrinsic>(BBI)) + continue; + if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || + !isSafeToSpeculativelyExecute(&*BBI)) + return false; + } + + const Function *F = ExitBB->getParent(); + return returnTypeIsEligibleForTailCall( + F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); +} + +bool llvm::returnTypeIsEligibleForTailCall(const Function *F, + const Instruction *I, + const ReturnInst *Ret, + const TargetLoweringBase &TLI) { + // If the block ends with a void return or unreachable, it doesn't matter + // what the call's return type is. + if (!Ret || Ret->getNumOperands() == 0) return true; + + // If the return value is undef, it doesn't matter what the call's + // return type is. + if (isa<UndefValue>(Ret->getOperand(0))) return true; + + // Make sure the attributes attached to each return are compatible. + AttrBuilder CallerAttrs(F->getAttributes(), + AttributeSet::ReturnIndex); + AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), + AttributeSet::ReturnIndex); + + // Noalias is completely benign as far as calling convention goes, it + // shouldn't affect whether the call is a tail call. + CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); + CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); + + bool AllowDifferingSizes = true; + if (CallerAttrs.contains(Attribute::ZExt)) { + if (!CalleeAttrs.contains(Attribute::ZExt)) + return false; + + AllowDifferingSizes = false; + CallerAttrs.removeAttribute(Attribute::ZExt); + CalleeAttrs.removeAttribute(Attribute::ZExt); + } else if (CallerAttrs.contains(Attribute::SExt)) { + if (!CalleeAttrs.contains(Attribute::SExt)) + return false; + + AllowDifferingSizes = false; + CallerAttrs.removeAttribute(Attribute::SExt); + CalleeAttrs.removeAttribute(Attribute::SExt); + } + + // If they're still different, there's some facet we don't understand + // (currently only "inreg", but in future who knows). It may be OK but the + // only safe option is to reject the tail call. + if (CallerAttrs != CalleeAttrs) + return false; + + const Value *RetVal = Ret->getOperand(0), *CallVal = I; + SmallVector<unsigned, 4> RetPath, CallPath; + SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; + + bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); + bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); + + // Nothing's actually returned, it doesn't matter what the callee put there + // it's a valid tail call. + if (RetEmpty) + return true; + + // Iterate pairwise through each of the value types making up the tail call + // and the corresponding return. For each one we want to know whether it's + // essentially going directly from the tail call to the ret, via operations + // that end up not generating any code. + // + // We allow a certain amount of covariance here. For example it's permitted + // for the tail call to define more bits than the ret actually cares about + // (e.g. via a truncate). + do { + if (CallEmpty) { + // We've exhausted the values produced by the tail call instruction, the + // rest are essentially undef. The type doesn't really matter, but we need + // *something*. + Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); + CallVal = UndefValue::get(SlotType); + } + + // The manipulations performed when we're looking through an insertvalue or + // an extractvalue would happen at the front of the RetPath list, so since + // we have to copy it anyway it's more efficient to create a reversed copy. + SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); + SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); + + // Finally, we can check whether the value produced by the tail call at this + // index is compatible with the value we return. + if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, + AllowDifferingSizes, TLI, + F->getParent()->getDataLayout())) + return false; + + CallEmpty = !nextRealType(CallSubTypes, CallPath); + } while(nextRealType(RetSubTypes, RetPath)); + + return true; +} + +bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { + if (!GV->hasLinkOnceODRLinkage()) + return false; + + if (GV->hasUnnamedAddr()) + return true; + + // If it is a non constant variable, it needs to be uniqued across shared + // objects. + if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { + if (!Var->isConstant()) + return false; + } + + // An alias can point to a variable. We could try to resolve the alias to + // decide, but for now just don't hide them. + if (isa<GlobalAlias>(GV)) + return false; + + GlobalStatus GS; + if (GlobalStatus::analyzeGlobal(GV, GS)) + return false; + + return !GS.IsCompared; +} + +static void collectFuncletMembers( + DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, + const MachineBasicBlock *MBB) { + // Add this MBB to our funclet. + auto P = FuncletMembership.insert(std::make_pair(MBB, Funclet)); + + // Don't revisit blocks. + if (!P.second) { + assert(P.first->second == Funclet && "MBB is part of two funclets!"); + return; + } + + bool IsReturn = false; + int NumTerminators = 0; + for (const MachineInstr &MI : MBB->terminators()) { + IsReturn |= MI.isReturn(); + ++NumTerminators; + } + assert((!IsReturn || NumTerminators == 1) && + "Expected only one terminator when a return is present!"); + + // Returns are boundaries where funclet transfer can occur, don't follow + // successors. + if (IsReturn) + return; + + for (const MachineBasicBlock *SMBB : MBB->successors()) + if (!SMBB->isEHPad()) + collectFuncletMembers(FuncletMembership, Funclet, SMBB); +} + +DenseMap<const MachineBasicBlock *, int> +llvm::getFuncletMembership(const MachineFunction &MF) { + DenseMap<const MachineBasicBlock *, int> FuncletMembership; + + // We don't have anything to do if there aren't any EH pads. + if (!MF.getMMI().hasEHFunclets()) + return FuncletMembership; + + int EntryBBNumber = MF.front().getNumber(); + bool IsSEH = isAsynchronousEHPersonality( + classifyEHPersonality(MF.getFunction()->getPersonalityFn())); + + const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); + SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; + SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; + SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; + SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; + for (const MachineBasicBlock &MBB : MF) { + if (MBB.isEHFuncletEntry()) { + FuncletBlocks.push_back(&MBB); + } else if (IsSEH && MBB.isEHPad()) { + SEHCatchPads.push_back(&MBB); + } else if (MBB.pred_empty()) { + UnreachableBlocks.push_back(&MBB); + } + + MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); + // CatchPads are not funclets for SEH so do not consider CatchRet to + // transfer control to another funclet. + if (MBBI->getOpcode() != TII->getCatchReturnOpcode()) + continue; + + // FIXME: SEH CatchPads are not necessarily in the parent function: + // they could be inside a finally block. + const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); + const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); + CatchRetSuccessors.push_back( + {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); + } + + // We don't have anything to do if there aren't any EH pads. + if (FuncletBlocks.empty()) + return FuncletMembership; + + // Identify all the basic blocks reachable from the function entry. + collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); + // All blocks not part of a funclet are in the parent function. + for (const MachineBasicBlock *MBB : UnreachableBlocks) + collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); + // Next, identify all the blocks inside the funclets. + for (const MachineBasicBlock *MBB : FuncletBlocks) + collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); + // SEH CatchPads aren't really funclets, handle them separately. + for (const MachineBasicBlock *MBB : SEHCatchPads) + collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); + // Finally, identify all the targets of a catchret. + for (std::pair<const MachineBasicBlock *, int> CatchRetPair : + CatchRetSuccessors) + collectFuncletMembers(FuncletMembership, CatchRetPair.second, + CatchRetPair.first); + return FuncletMembership; +} |