diff options
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer')
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp | 40 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp | 1690 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp | 41 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/CMakeLists.txt | 6 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/Makefile | 15 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 470 | ||||
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h | 149 |
7 files changed, 2411 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp b/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp new file mode 100644 index 0000000..4288422 --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp @@ -0,0 +1,40 @@ +//===-- BitWriter.cpp -----------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm-c/BitWriter.h" +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + + +/*===-- Operations on modules ---------------------------------------------===*/ + +int LLVMWriteBitcodeToFile(LLVMModuleRef M, const char *Path) { + std::string ErrorInfo; + raw_fd_ostream OS(Path, ErrorInfo, + raw_fd_ostream::F_Binary); + + if (!ErrorInfo.empty()) + return -1; + + WriteBitcodeToFile(unwrap(M), OS); + return 0; +} + +int LLVMWriteBitcodeToFD(LLVMModuleRef M, int FD, int ShouldClose, + int Unbuffered) { + raw_fd_ostream OS(FD, ShouldClose, Unbuffered); + + WriteBitcodeToFile(unwrap(M), OS); + return 0; +} + +int LLVMWriteBitcodeToFileHandle(LLVMModuleRef M, int FileHandle) { + return LLVMWriteBitcodeToFD(M, FileHandle, true, false); +} diff --git a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp new file mode 100644 index 0000000..fa1b2c4 --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp @@ -0,0 +1,1690 @@ +//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Bitcode/BitstreamWriter.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "ValueEnumerator.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/System/Program.h" +using namespace llvm; + +/// These are manifest constants used by the bitcode writer. They do not need to +/// be kept in sync with the reader, but need to be consistent within this file. +enum { + CurVersion = 0, + + // VALUE_SYMTAB_BLOCK abbrev id's. + VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + VST_ENTRY_7_ABBREV, + VST_ENTRY_6_ABBREV, + VST_BBENTRY_6_ABBREV, + + // CONSTANTS_BLOCK abbrev id's. + CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + CONSTANTS_INTEGER_ABBREV, + CONSTANTS_CE_CAST_Abbrev, + CONSTANTS_NULL_Abbrev, + + // FUNCTION_BLOCK abbrev id's. + FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + FUNCTION_INST_BINOP_ABBREV, + FUNCTION_INST_BINOP_FLAGS_ABBREV, + FUNCTION_INST_CAST_ABBREV, + FUNCTION_INST_RET_VOID_ABBREV, + FUNCTION_INST_RET_VAL_ABBREV, + FUNCTION_INST_UNREACHABLE_ABBREV +}; + + +static unsigned GetEncodedCastOpcode(unsigned Opcode) { + switch (Opcode) { + default: llvm_unreachable("Unknown cast instruction!"); + case Instruction::Trunc : return bitc::CAST_TRUNC; + case Instruction::ZExt : return bitc::CAST_ZEXT; + case Instruction::SExt : return bitc::CAST_SEXT; + case Instruction::FPToUI : return bitc::CAST_FPTOUI; + case Instruction::FPToSI : return bitc::CAST_FPTOSI; + case Instruction::UIToFP : return bitc::CAST_UITOFP; + case Instruction::SIToFP : return bitc::CAST_SITOFP; + case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; + case Instruction::FPExt : return bitc::CAST_FPEXT; + case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; + case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; + case Instruction::BitCast : return bitc::CAST_BITCAST; + } +} + +static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: llvm_unreachable("Unknown binary instruction!"); + case Instruction::Add: + case Instruction::FAdd: return bitc::BINOP_ADD; + case Instruction::Sub: + case Instruction::FSub: return bitc::BINOP_SUB; + case Instruction::Mul: + case Instruction::FMul: return bitc::BINOP_MUL; + case Instruction::UDiv: return bitc::BINOP_UDIV; + case Instruction::FDiv: + case Instruction::SDiv: return bitc::BINOP_SDIV; + case Instruction::URem: return bitc::BINOP_UREM; + case Instruction::FRem: + case Instruction::SRem: return bitc::BINOP_SREM; + case Instruction::Shl: return bitc::BINOP_SHL; + case Instruction::LShr: return bitc::BINOP_LSHR; + case Instruction::AShr: return bitc::BINOP_ASHR; + case Instruction::And: return bitc::BINOP_AND; + case Instruction::Or: return bitc::BINOP_OR; + case Instruction::Xor: return bitc::BINOP_XOR; + } +} + + + +static void WriteStringRecord(unsigned Code, const std::string &Str, + unsigned AbbrevToUse, BitstreamWriter &Stream) { + SmallVector<unsigned, 64> Vals; + + // Code: [strchar x N] + for (unsigned i = 0, e = Str.size(); i != e; ++i) + Vals.push_back(Str[i]); + + // Emit the finished record. + Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +// Emit information about parameter attributes. +static void WriteAttributeTable(const ValueEnumerator &VE, + BitstreamWriter &Stream) { + const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); + if (Attrs.empty()) return; + + Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { + const AttrListPtr &A = Attrs[i]; + for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { + const AttributeWithIndex &PAWI = A.getSlot(i); + Record.push_back(PAWI.Index); + + // FIXME: remove in LLVM 3.0 + // Store the alignment in the bitcode as a 16-bit raw value instead of a + // 5-bit log2 encoded value. Shift the bits above the alignment up by + // 11 bits. + uint64_t FauxAttr = PAWI.Attrs & 0xffff; + if (PAWI.Attrs & Attribute::Alignment) + FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); + FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; + + Record.push_back(FauxAttr); + } + + Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); + Record.clear(); + } + + Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { + const ValueEnumerator::TypeList &TypeList = VE.getTypes(); + + Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); + SmallVector<uint64_t, 64> TypeVals; + + // Abbrev for TYPE_CODE_POINTER. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 + unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); + + // Abbrev for TYPE_CODE_FUNCTION. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg + Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); + + // Abbrev for TYPE_CODE_STRUCT. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); + + // Abbrev for TYPE_CODE_UNION. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv); + + // Abbrev for TYPE_CODE_ARRAY. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); + + // Emit an entry count so the reader can reserve space. + TypeVals.push_back(TypeList.size()); + Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); + TypeVals.clear(); + + // Loop over all of the types, emitting each in turn. + for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { + const Type *T = TypeList[i].first; + int AbbrevToUse = 0; + unsigned Code = 0; + + switch (T->getTypeID()) { + default: llvm_unreachable("Unknown type!"); + case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; + case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; + case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; + case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; + case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; + case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; + case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; + case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; + case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; + case Type::IntegerTyID: + // INTEGER: [width] + Code = bitc::TYPE_CODE_INTEGER; + TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); + break; + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(T); + // POINTER: [pointee type, address space] + Code = bitc::TYPE_CODE_POINTER; + TypeVals.push_back(VE.getTypeID(PTy->getElementType())); + unsigned AddressSpace = PTy->getAddressSpace(); + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; + break; + } + case Type::FunctionTyID: { + const FunctionType *FT = cast<FunctionType>(T); + // FUNCTION: [isvararg, attrid, retty, paramty x N] + Code = bitc::TYPE_CODE_FUNCTION; + TypeVals.push_back(FT->isVarArg()); + TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 + TypeVals.push_back(VE.getTypeID(FT->getReturnType())); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) + TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); + AbbrevToUse = FunctionAbbrev; + break; + } + case Type::StructTyID: { + const StructType *ST = cast<StructType>(T); + // STRUCT: [ispacked, eltty x N] + Code = bitc::TYPE_CODE_STRUCT; + TypeVals.push_back(ST->isPacked()); + // Output all of the element types. + for (StructType::element_iterator I = ST->element_begin(), + E = ST->element_end(); I != E; ++I) + TypeVals.push_back(VE.getTypeID(*I)); + AbbrevToUse = StructAbbrev; + break; + } + case Type::UnionTyID: { + const UnionType *UT = cast<UnionType>(T); + // UNION: [eltty x N] + Code = bitc::TYPE_CODE_UNION; + // Output all of the element types. + for (UnionType::element_iterator I = UT->element_begin(), + E = UT->element_end(); I != E; ++I) + TypeVals.push_back(VE.getTypeID(*I)); + AbbrevToUse = UnionAbbrev; + break; + } + case Type::ArrayTyID: { + const ArrayType *AT = cast<ArrayType>(T); + // ARRAY: [numelts, eltty] + Code = bitc::TYPE_CODE_ARRAY; + TypeVals.push_back(AT->getNumElements()); + TypeVals.push_back(VE.getTypeID(AT->getElementType())); + AbbrevToUse = ArrayAbbrev; + break; + } + case Type::VectorTyID: { + const VectorType *VT = cast<VectorType>(T); + // VECTOR [numelts, eltty] + Code = bitc::TYPE_CODE_VECTOR; + TypeVals.push_back(VT->getNumElements()); + TypeVals.push_back(VE.getTypeID(VT->getElementType())); + break; + } + } + + // Emit the finished record. + Stream.EmitRecord(Code, TypeVals, AbbrevToUse); + TypeVals.clear(); + } + + Stream.ExitBlock(); +} + +static unsigned getEncodedLinkage(const GlobalValue *GV) { + switch (GV->getLinkage()) { + default: llvm_unreachable("Invalid linkage!"); + case GlobalValue::ExternalLinkage: return 0; + case GlobalValue::WeakAnyLinkage: return 1; + case GlobalValue::AppendingLinkage: return 2; + case GlobalValue::InternalLinkage: return 3; + case GlobalValue::LinkOnceAnyLinkage: return 4; + case GlobalValue::DLLImportLinkage: return 5; + case GlobalValue::DLLExportLinkage: return 6; + case GlobalValue::ExternalWeakLinkage: return 7; + case GlobalValue::CommonLinkage: return 8; + case GlobalValue::PrivateLinkage: return 9; + case GlobalValue::WeakODRLinkage: return 10; + case GlobalValue::LinkOnceODRLinkage: return 11; + case GlobalValue::AvailableExternallyLinkage: return 12; + case GlobalValue::LinkerPrivateLinkage: return 13; + case GlobalValue::LinkerPrivateWeakLinkage: return 14; + } +} + +static unsigned getEncodedVisibility(const GlobalValue *GV) { + switch (GV->getVisibility()) { + default: llvm_unreachable("Invalid visibility!"); + case GlobalValue::DefaultVisibility: return 0; + case GlobalValue::HiddenVisibility: return 1; + case GlobalValue::ProtectedVisibility: return 2; + } +} + +// Emit top-level description of module, including target triple, inline asm, +// descriptors for global variables, and function prototype info. +static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, + BitstreamWriter &Stream) { + // Emit the list of dependent libraries for the Module. + for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) + WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); + + // Emit various pieces of data attached to a module. + if (!M->getTargetTriple().empty()) + WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), + 0/*TODO*/, Stream); + if (!M->getDataLayout().empty()) + WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), + 0/*TODO*/, Stream); + if (!M->getModuleInlineAsm().empty()) + WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), + 0/*TODO*/, Stream); + + // Emit information about sections and GC, computing how many there are. Also + // compute the maximum alignment value. + std::map<std::string, unsigned> SectionMap; + std::map<std::string, unsigned> GCMap; + unsigned MaxAlignment = 0; + unsigned MaxGlobalType = 0; + for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); + GV != E; ++GV) { + MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); + MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); + + if (!GV->hasSection()) continue; + // Give section names unique ID's. + unsigned &Entry = SectionMap[GV->getSection()]; + if (Entry != 0) continue; + WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), + 0/*TODO*/, Stream); + Entry = SectionMap.size(); + } + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + MaxAlignment = std::max(MaxAlignment, F->getAlignment()); + if (F->hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[F->getSection()]; + if (!Entry) { + WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), + 0/*TODO*/, Stream); + Entry = SectionMap.size(); + } + } + if (F->hasGC()) { + // Same for GC names. + unsigned &Entry = GCMap[F->getGC()]; + if (!Entry) { + WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), + 0/*TODO*/, Stream); + Entry = GCMap.size(); + } + } + } + + // Emit abbrev for globals, now that we know # sections and max alignment. + unsigned SimpleGVarAbbrev = 0; + if (!M->global_empty()) { + // Add an abbrev for common globals with no visibility or thread localness. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxGlobalType+1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. + if (MaxAlignment == 0) // Alignment. + Abbv->Add(BitCodeAbbrevOp(0)); + else { + unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxEncAlignment+1))); + } + if (SectionMap.empty()) // Section. + Abbv->Add(BitCodeAbbrevOp(0)); + else + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(SectionMap.size()+1))); + // Don't bother emitting vis + thread local. + SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); + } + + // Emit the global variable information. + SmallVector<unsigned, 64> Vals; + for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); + GV != E; ++GV) { + unsigned AbbrevToUse = 0; + + // GLOBALVAR: [type, isconst, initid, + // linkage, alignment, section, visibility, threadlocal] + Vals.push_back(VE.getTypeID(GV->getType())); + Vals.push_back(GV->isConstant()); + Vals.push_back(GV->isDeclaration() ? 0 : + (VE.getValueID(GV->getInitializer()) + 1)); + Vals.push_back(getEncodedLinkage(GV)); + Vals.push_back(Log2_32(GV->getAlignment())+1); + Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); + if (GV->isThreadLocal() || + GV->getVisibility() != GlobalValue::DefaultVisibility) { + Vals.push_back(getEncodedVisibility(GV)); + Vals.push_back(GV->isThreadLocal()); + } else { + AbbrevToUse = SimpleGVarAbbrev; + } + + Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the function proto information. + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + // FUNCTION: [type, callingconv, isproto, paramattr, + // linkage, alignment, section, visibility, gc] + Vals.push_back(VE.getTypeID(F->getType())); + Vals.push_back(F->getCallingConv()); + Vals.push_back(F->isDeclaration()); + Vals.push_back(getEncodedLinkage(F)); + Vals.push_back(VE.getAttributeID(F->getAttributes())); + Vals.push_back(Log2_32(F->getAlignment())+1); + Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); + Vals.push_back(getEncodedVisibility(F)); + Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); + + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); + Vals.clear(); + } + + + // Emit the alias information. + for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); + AI != E; ++AI) { + Vals.push_back(VE.getTypeID(AI->getType())); + Vals.push_back(VE.getValueID(AI->getAliasee())); + Vals.push_back(getEncodedLinkage(AI)); + Vals.push_back(getEncodedVisibility(AI)); + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); + Vals.clear(); + } +} + +static uint64_t GetOptimizationFlags(const Value *V) { + uint64_t Flags = 0; + + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(V)) { + if (OBO->hasNoSignedWrap()) + Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; + if (OBO->hasNoUnsignedWrap()) + Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; + } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { + if (Div->isExact()) + Flags |= 1 << bitc::SDIV_EXACT; + } + + return Flags; +} + +static void WriteMDNode(const MDNode *N, + const ValueEnumerator &VE, + BitstreamWriter &Stream, + SmallVector<uint64_t, 64> &Record) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (N->getOperand(i)) { + Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); + Record.push_back(VE.getValueID(N->getOperand(i))); + } else { + Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); + Record.push_back(0); + } + } + unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : + bitc::METADATA_NODE; + Stream.EmitRecord(MDCode, Record, 0); + Record.clear(); +} + +static void WriteModuleMetadata(const ValueEnumerator &VE, + BitstreamWriter &Stream) { + const ValueEnumerator::ValueList &Vals = VE.getMDValues(); + bool StartedMetadataBlock = false; + unsigned MDSAbbrev = 0; + SmallVector<uint64_t, 64> Record; + for (unsigned i = 0, e = Vals.size(); i != e; ++i) { + + if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { + if (!N->isFunctionLocal() || !N->getFunction()) { + if (!StartedMetadataBlock) { + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + StartedMetadataBlock = true; + } + WriteMDNode(N, VE, Stream, Record); + } + } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { + if (!StartedMetadataBlock) { + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + + // Abbrev for METADATA_STRING. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + MDSAbbrev = Stream.EmitAbbrev(Abbv); + StartedMetadataBlock = true; + } + + // Code: [strchar x N] + Record.append(MDS->begin(), MDS->end()); + + // Emit the finished record. + Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); + Record.clear(); + } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { + if (!StartedMetadataBlock) { + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + StartedMetadataBlock = true; + } + + // Write name. + StringRef Str = NMD->getName(); + for (unsigned i = 0, e = Str.size(); i != e; ++i) + Record.push_back(Str[i]); + Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); + Record.clear(); + + // Write named metadata operands. + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { + if (NMD->getOperand(i)) + Record.push_back(VE.getValueID(NMD->getOperand(i))); + else + Record.push_back(~0U); + } + Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); + Record.clear(); + } + } + + if (StartedMetadataBlock) + Stream.ExitBlock(); +} + +static void WriteFunctionLocalMetadata(const Function &F, + const ValueEnumerator &VE, + BitstreamWriter &Stream) { + bool StartedMetadataBlock = false; + SmallVector<uint64_t, 64> Record; + const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); + for (unsigned i = 0, e = Vals.size(); i != e; ++i) + if (const MDNode *N = Vals[i]) + if (N->isFunctionLocal() && N->getFunction() == &F) { + if (!StartedMetadataBlock) { + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + StartedMetadataBlock = true; + } + WriteMDNode(N, VE, Stream, Record); + } + + if (StartedMetadataBlock) + Stream.ExitBlock(); +} + +static void WriteMetadataAttachment(const Function &F, + const ValueEnumerator &VE, + BitstreamWriter &Stream) { + Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); + + SmallVector<uint64_t, 64> Record; + + // Write metadata attachments + // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] + SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; + + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); + I != E; ++I) { + MDs.clear(); + I->getAllMetadataOtherThanDebugLoc(MDs); + + // If no metadata, ignore instruction. + if (MDs.empty()) continue; + + Record.push_back(VE.getInstructionID(I)); + + for (unsigned i = 0, e = MDs.size(); i != e; ++i) { + Record.push_back(MDs[i].first); + Record.push_back(VE.getValueID(MDs[i].second)); + } + Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { + SmallVector<uint64_t, 64> Record; + + // Write metadata kinds + // METADATA_KIND - [n x [id, name]] + SmallVector<StringRef, 4> Names; + M->getMDKindNames(Names); + + assert(Names[0] == "" && "MDKind #0 is invalid"); + if (Names.size() == 1) return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + + for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) { + Record.push_back(MDKindID); + StringRef KName = Names[MDKindID]; + Record.append(KName.begin(), KName.end()); + + Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +static void WriteConstants(unsigned FirstVal, unsigned LastVal, + const ValueEnumerator &VE, + BitstreamWriter &Stream, bool isGlobal) { + if (FirstVal == LastVal) return; + + Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + + unsigned AggregateAbbrev = 0; + unsigned String8Abbrev = 0; + unsigned CString7Abbrev = 0; + unsigned CString6Abbrev = 0; + // If this is a constant pool for the module, emit module-specific abbrevs. + if (isGlobal) { + // Abbrev for CST_CODE_AGGREGATE. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); + AggregateAbbrev = Stream.EmitAbbrev(Abbv); + + // Abbrev for CST_CODE_STRING. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + String8Abbrev = Stream.EmitAbbrev(Abbv); + // Abbrev for CST_CODE_CSTRING. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + CString7Abbrev = Stream.EmitAbbrev(Abbv); + // Abbrev for CST_CODE_CSTRING. + Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + CString6Abbrev = Stream.EmitAbbrev(Abbv); + } + + SmallVector<uint64_t, 64> Record; + + const ValueEnumerator::ValueList &Vals = VE.getValues(); + const Type *LastTy = 0; + for (unsigned i = FirstVal; i != LastVal; ++i) { + const Value *V = Vals[i].first; + // If we need to switch types, do so now. + if (V->getType() != LastTy) { + LastTy = V->getType(); + Record.push_back(VE.getTypeID(LastTy)); + Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, + CONSTANTS_SETTYPE_ABBREV); + Record.clear(); + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Record.push_back(unsigned(IA->hasSideEffects()) | + unsigned(IA->isAlignStack()) << 1); + + // Add the asm string. + const std::string &AsmStr = IA->getAsmString(); + Record.push_back(AsmStr.size()); + for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) + Record.push_back(AsmStr[i]); + + // Add the constraint string. + const std::string &ConstraintStr = IA->getConstraintString(); + Record.push_back(ConstraintStr.size()); + for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) + Record.push_back(ConstraintStr[i]); + Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); + Record.clear(); + continue; + } + const Constant *C = cast<Constant>(V); + unsigned Code = -1U; + unsigned AbbrevToUse = 0; + if (C->isNullValue()) { + Code = bitc::CST_CODE_NULL; + } else if (isa<UndefValue>(C)) { + Code = bitc::CST_CODE_UNDEF; + } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { + if (IV->getBitWidth() <= 64) { + int64_t V = IV->getSExtValue(); + if (V >= 0) + Record.push_back(V << 1); + else + Record.push_back((-V << 1) | 1); + Code = bitc::CST_CODE_INTEGER; + AbbrevToUse = CONSTANTS_INTEGER_ABBREV; + } else { // Wide integers, > 64 bits in size. + // We have an arbitrary precision integer value to write whose + // bit width is > 64. However, in canonical unsigned integer + // format it is likely that the high bits are going to be zero. + // So, we only write the number of active words. + unsigned NWords = IV->getValue().getActiveWords(); + const uint64_t *RawWords = IV->getValue().getRawData(); + for (unsigned i = 0; i != NWords; ++i) { + int64_t V = RawWords[i]; + if (V >= 0) + Record.push_back(V << 1); + else + Record.push_back((-V << 1) | 1); + } + Code = bitc::CST_CODE_WIDE_INTEGER; + } + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Code = bitc::CST_CODE_FLOAT; + const Type *Ty = CFP->getType(); + if (Ty->isFloatTy() || Ty->isDoubleTy()) { + Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + } else if (Ty->isX86_FP80Ty()) { + // api needed to prevent premature destruction + // bits are not in the same order as a normal i80 APInt, compensate. + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back((p[1] << 48) | (p[0] >> 16)); + Record.push_back(p[0] & 0xffffLL); + } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back(p[0]); + Record.push_back(p[1]); + } else { + assert (0 && "Unknown FP type!"); + } + } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { + const ConstantArray *CA = cast<ConstantArray>(C); + // Emit constant strings specially. + unsigned NumOps = CA->getNumOperands(); + // If this is a null-terminated string, use the denser CSTRING encoding. + if (CA->getOperand(NumOps-1)->isNullValue()) { + Code = bitc::CST_CODE_CSTRING; + --NumOps; // Don't encode the null, which isn't allowed by char6. + } else { + Code = bitc::CST_CODE_STRING; + AbbrevToUse = String8Abbrev; + } + bool isCStr7 = Code == bitc::CST_CODE_CSTRING; + bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; + for (unsigned i = 0; i != NumOps; ++i) { + unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); + Record.push_back(V); + isCStr7 &= (V & 128) == 0; + if (isCStrChar6) + isCStrChar6 = BitCodeAbbrevOp::isChar6(V); + } + + if (isCStrChar6) + AbbrevToUse = CString6Abbrev; + else if (isCStr7) + AbbrevToUse = CString7Abbrev; + } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || + isa<ConstantVector>(V)) { + Code = bitc::CST_CODE_AGGREGATE; + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) + Record.push_back(VE.getValueID(C->getOperand(i))); + AbbrevToUse = AggregateAbbrev; + } else if (isa<ConstantUnion>(C)) { + Code = bitc::CST_CODE_AGGREGATE; + + // Unions only have one entry but we must send type along with it. + const Type *EntryKind = C->getOperand(0)->getType(); + + const UnionType *UnTy = cast<UnionType>(C->getType()); + int UnionIndex = UnTy->getElementTypeIndex(EntryKind); + assert(UnionIndex != -1 && "Constant union contains invalid entry"); + + Record.push_back(UnionIndex); + Record.push_back(VE.getValueID(C->getOperand(0))); + + AbbrevToUse = AggregateAbbrev; + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + switch (CE->getOpcode()) { + default: + if (Instruction::isCast(CE->getOpcode())) { + Code = bitc::CST_CODE_CE_CAST; + Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; + } else { + assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); + Code = bitc::CST_CODE_CE_BINOP; + Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + uint64_t Flags = GetOptimizationFlags(CE); + if (Flags != 0) + Record.push_back(Flags); + } + break; + case Instruction::GetElementPtr: + Code = bitc::CST_CODE_CE_GEP; + if (cast<GEPOperator>(C)->isInBounds()) + Code = bitc::CST_CODE_CE_INBOUNDS_GEP; + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { + Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); + Record.push_back(VE.getValueID(C->getOperand(i))); + } + break; + case Instruction::Select: + Code = bitc::CST_CODE_CE_SELECT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ExtractElement: + Code = bitc::CST_CODE_CE_EXTRACTELT; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + break; + case Instruction::InsertElement: + Code = bitc::CST_CODE_CE_INSERTELT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ShuffleVector: + // If the return type and argument types are the same, this is a + // standard shufflevector instruction. If the types are different, + // then the shuffle is widening or truncating the input vectors, and + // the argument type must also be encoded. + if (C->getType() == C->getOperand(0)->getType()) { + Code = bitc::CST_CODE_CE_SHUFFLEVEC; + } else { + Code = bitc::CST_CODE_CE_SHUFVEC_EX; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + } + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ICmp: + case Instruction::FCmp: + Code = bitc::CST_CODE_CE_CMP; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(CE->getPredicate()); + break; + } + } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { + assert(BA->getFunction() == BA->getBasicBlock()->getParent() && + "Malformed blockaddress"); + Code = bitc::CST_CODE_BLOCKADDRESS; + Record.push_back(VE.getTypeID(BA->getFunction()->getType())); + Record.push_back(VE.getValueID(BA->getFunction())); + Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); + } else { + llvm_unreachable("Unknown constant!"); + } + Stream.EmitRecord(Code, Record, AbbrevToUse); + Record.clear(); + } + + Stream.ExitBlock(); +} + +static void WriteModuleConstants(const ValueEnumerator &VE, + BitstreamWriter &Stream) { + const ValueEnumerator::ValueList &Vals = VE.getValues(); + + // Find the first constant to emit, which is the first non-globalvalue value. + // We know globalvalues have been emitted by WriteModuleInfo. + for (unsigned i = 0, e = Vals.size(); i != e; ++i) { + if (!isa<GlobalValue>(Vals[i].first)) { + WriteConstants(i, Vals.size(), VE, Stream, true); + return; + } + } +} + +/// PushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references. However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals. If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID. +static bool PushValueAndType(const Value *V, unsigned InstID, + SmallVector<unsigned, 64> &Vals, + ValueEnumerator &VE) { + unsigned ValID = VE.getValueID(V); + Vals.push_back(ValID); + if (ValID >= InstID) { + Vals.push_back(VE.getTypeID(V->getType())); + return true; + } + return false; +} + +/// WriteInstruction - Emit an instruction to the specified stream. +static void WriteInstruction(const Instruction &I, unsigned InstID, + ValueEnumerator &VE, BitstreamWriter &Stream, + SmallVector<unsigned, 64> &Vals) { + unsigned Code = 0; + unsigned AbbrevToUse = 0; + VE.setInstructionID(&I); + switch (I.getOpcode()) { + default: + if (Instruction::isCast(I.getOpcode())) { + Code = bitc::FUNC_CODE_INST_CAST; + if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) + AbbrevToUse = FUNCTION_INST_CAST_ABBREV; + Vals.push_back(VE.getTypeID(I.getType())); + Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); + } else { + assert(isa<BinaryOperator>(I) && "Unknown instruction!"); + Code = bitc::FUNC_CODE_INST_BINOP; + if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) + AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; + Vals.push_back(VE.getValueID(I.getOperand(1))); + Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); + uint64_t Flags = GetOptimizationFlags(&I); + if (Flags != 0) { + if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) + AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; + Vals.push_back(Flags); + } + } + break; + + case Instruction::GetElementPtr: + Code = bitc::FUNC_CODE_INST_GEP; + if (cast<GEPOperator>(&I)->isInBounds()) + Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + PushValueAndType(I.getOperand(i), InstID, Vals, VE); + break; + case Instruction::ExtractValue: { + Code = bitc::FUNC_CODE_INST_EXTRACTVAL; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); + for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) + Vals.push_back(*i); + break; + } + case Instruction::InsertValue: { + Code = bitc::FUNC_CODE_INST_INSERTVAL; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + PushValueAndType(I.getOperand(1), InstID, Vals, VE); + const InsertValueInst *IVI = cast<InsertValueInst>(&I); + for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) + Vals.push_back(*i); + break; + } + case Instruction::Select: + Code = bitc::FUNC_CODE_INST_VSELECT; + PushValueAndType(I.getOperand(1), InstID, Vals, VE); + Vals.push_back(VE.getValueID(I.getOperand(2))); + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + break; + case Instruction::ExtractElement: + Code = bitc::FUNC_CODE_INST_EXTRACTELT; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + Vals.push_back(VE.getValueID(I.getOperand(1))); + break; + case Instruction::InsertElement: + Code = bitc::FUNC_CODE_INST_INSERTELT; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + Vals.push_back(VE.getValueID(I.getOperand(1))); + Vals.push_back(VE.getValueID(I.getOperand(2))); + break; + case Instruction::ShuffleVector: + Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + Vals.push_back(VE.getValueID(I.getOperand(1))); + Vals.push_back(VE.getValueID(I.getOperand(2))); + break; + case Instruction::ICmp: + case Instruction::FCmp: + // compare returning Int1Ty or vector of Int1Ty + Code = bitc::FUNC_CODE_INST_CMP2; + PushValueAndType(I.getOperand(0), InstID, Vals, VE); + Vals.push_back(VE.getValueID(I.getOperand(1))); + Vals.push_back(cast<CmpInst>(I).getPredicate()); + break; + + case Instruction::Ret: + { + Code = bitc::FUNC_CODE_INST_RET; + unsigned NumOperands = I.getNumOperands(); + if (NumOperands == 0) + AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; + else if (NumOperands == 1) { + if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) + AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; + } else { + for (unsigned i = 0, e = NumOperands; i != e; ++i) + PushValueAndType(I.getOperand(i), InstID, Vals, VE); + } + } + break; + case Instruction::Br: + { + Code = bitc::FUNC_CODE_INST_BR; + BranchInst &II = cast<BranchInst>(I); + Vals.push_back(VE.getValueID(II.getSuccessor(0))); + if (II.isConditional()) { + Vals.push_back(VE.getValueID(II.getSuccessor(1))); + Vals.push_back(VE.getValueID(II.getCondition())); + } + } + break; + case Instruction::Switch: + Code = bitc::FUNC_CODE_INST_SWITCH; + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); + break; + case Instruction::IndirectBr: + Code = bitc::FUNC_CODE_INST_INDIRECTBR; + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); + break; + + case Instruction::Invoke: { + const InvokeInst *II = cast<InvokeInst>(&I); + const Value *Callee(II->getCalledValue()); + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + Code = bitc::FUNC_CODE_INST_INVOKE; + + Vals.push_back(VE.getAttributeID(II->getAttributes())); + Vals.push_back(II->getCallingConv()); + Vals.push_back(VE.getValueID(II->getNormalDest())); + Vals.push_back(VE.getValueID(II->getUnwindDest())); + PushValueAndType(Callee, InstID, Vals, VE); + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; + i != e; ++i) + PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg + } + break; + } + case Instruction::Unwind: + Code = bitc::FUNC_CODE_INST_UNWIND; + break; + case Instruction::Unreachable: + Code = bitc::FUNC_CODE_INST_UNREACHABLE; + AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; + break; + + case Instruction::PHI: + Code = bitc::FUNC_CODE_INST_PHI; + Vals.push_back(VE.getTypeID(I.getType())); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); + break; + + case Instruction::Alloca: + Code = bitc::FUNC_CODE_INST_ALLOCA; + Vals.push_back(VE.getTypeID(I.getType())); + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); + Vals.push_back(VE.getValueID(I.getOperand(0))); // size. + Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); + break; + + case Instruction::Load: + Code = bitc::FUNC_CODE_INST_LOAD; + if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr + AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; + + Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); + Vals.push_back(cast<LoadInst>(I).isVolatile()); + break; + case Instruction::Store: + Code = bitc::FUNC_CODE_INST_STORE2; + PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr + Vals.push_back(VE.getValueID(I.getOperand(0))); // val. + Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); + Vals.push_back(cast<StoreInst>(I).isVolatile()); + break; + case Instruction::Call: { + const CallInst &CI = cast<CallInst>(I); + const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + + Code = bitc::FUNC_CODE_INST_CALL; + + Vals.push_back(VE.getAttributeID(CI.getAttributes())); + Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); + PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); + i != e; ++i) + PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs + } + break; + } + case Instruction::VAArg: + Code = bitc::FUNC_CODE_INST_VAARG; + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty + Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. + Vals.push_back(VE.getTypeID(I.getType())); // restype. + break; + } + + Stream.EmitRecord(Code, Vals, AbbrevToUse); + Vals.clear(); +} + +// Emit names for globals/functions etc. +static void WriteValueSymbolTable(const ValueSymbolTable &VST, + const ValueEnumerator &VE, + BitstreamWriter &Stream) { + if (VST.empty()) return; + Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + + // FIXME: Set up the abbrev, we know how many values there are! + // FIXME: We know if the type names can use 7-bit ascii. + SmallVector<unsigned, 64> NameVals; + + for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); + SI != SE; ++SI) { + + const ValueName &Name = *SI; + + // Figure out the encoding to use for the name. + bool is7Bit = true; + bool isChar6 = true; + for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); + C != E; ++C) { + if (isChar6) + isChar6 = BitCodeAbbrevOp::isChar6(*C); + if ((unsigned char)*C & 128) { + is7Bit = false; + break; // don't bother scanning the rest. + } + } + + unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; + + // VST_ENTRY: [valueid, namechar x N] + // VST_BBENTRY: [bbid, namechar x N] + unsigned Code; + if (isa<BasicBlock>(SI->getValue())) { + Code = bitc::VST_CODE_BBENTRY; + if (isChar6) + AbbrevToUse = VST_BBENTRY_6_ABBREV; + } else { + Code = bitc::VST_CODE_ENTRY; + if (isChar6) + AbbrevToUse = VST_ENTRY_6_ABBREV; + else if (is7Bit) + AbbrevToUse = VST_ENTRY_7_ABBREV; + } + + NameVals.push_back(VE.getValueID(SI->getValue())); + for (const char *P = Name.getKeyData(), + *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) + NameVals.push_back((unsigned char)*P); + + // Emit the finished record. + Stream.EmitRecord(Code, NameVals, AbbrevToUse); + NameVals.clear(); + } + Stream.ExitBlock(); +} + +/// WriteFunction - Emit a function body to the module stream. +static void WriteFunction(const Function &F, ValueEnumerator &VE, + BitstreamWriter &Stream) { + Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); + VE.incorporateFunction(F); + + SmallVector<unsigned, 64> Vals; + + // Emit the number of basic blocks, so the reader can create them ahead of + // time. + Vals.push_back(VE.getBasicBlocks().size()); + Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); + Vals.clear(); + + // If there are function-local constants, emit them now. + unsigned CstStart, CstEnd; + VE.getFunctionConstantRange(CstStart, CstEnd); + WriteConstants(CstStart, CstEnd, VE, Stream, false); + + // If there is function-local metadata, emit it now. + WriteFunctionLocalMetadata(F, VE, Stream); + + // Keep a running idea of what the instruction ID is. + unsigned InstID = CstEnd; + + bool NeedsMetadataAttachment = false; + + DebugLoc LastDL; + + // Finally, emit all the instructions, in order. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); + I != E; ++I) { + WriteInstruction(*I, InstID, VE, Stream, Vals); + + if (!I->getType()->isVoidTy()) + ++InstID; + + // If the instruction has metadata, write a metadata attachment later. + NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); + + // If the instruction has a debug location, emit it. + DebugLoc DL = I->getDebugLoc(); + if (DL.isUnknown()) { + // nothing todo. + } else if (DL == LastDL) { + // Just repeat the same debug loc as last time. + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); + } else { + MDNode *Scope, *IA; + DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); + + Vals.push_back(DL.getLine()); + Vals.push_back(DL.getCol()); + Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); + Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); + Vals.clear(); + + LastDL = DL; + } + } + + // Emit names for all the instructions etc. + WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); + + if (NeedsMetadataAttachment) + WriteMetadataAttachment(F, VE, Stream); + VE.purgeFunction(); + Stream.ExitBlock(); +} + +/// WriteTypeSymbolTable - Emit a block for the specified type symtab. +static void WriteTypeSymbolTable(const TypeSymbolTable &TST, + const ValueEnumerator &VE, + BitstreamWriter &Stream) { + if (TST.empty()) return; + + Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); + + // 7-bit fixed width VST_CODE_ENTRY strings. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); + + SmallVector<unsigned, 64> NameVals; + + for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); + TI != TE; ++TI) { + // TST_ENTRY: [typeid, namechar x N] + NameVals.push_back(VE.getTypeID(TI->second)); + + const std::string &Str = TI->first; + bool is7Bit = true; + for (unsigned i = 0, e = Str.size(); i != e; ++i) { + NameVals.push_back((unsigned char)Str[i]); + if (Str[i] & 128) + is7Bit = false; + } + + // Emit the finished record. + Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); + NameVals.clear(); + } + + Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { + // We only want to emit block info records for blocks that have multiple + // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other + // blocks can defined their abbrevs inline. + Stream.EnterBlockInfoBlock(2); + + { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + Abbv) != VST_ENTRY_8_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // 7-bit fixed width VST_ENTRY strings. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + Abbv) != VST_ENTRY_7_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_ENTRY strings. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + Abbv) != VST_ENTRY_6_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_BBENTRY strings. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + Abbv) != VST_BBENTRY_6_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + + + { // SETTYPE abbrev for CONSTANTS_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(VE.getTypes().size()+1))); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, + Abbv) != CONSTANTS_SETTYPE_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // INTEGER abbrev for CONSTANTS_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, + Abbv) != CONSTANTS_INTEGER_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // CE_CAST abbrev for CONSTANTS_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid + Log2_32_Ceil(VE.getTypes().size()+1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id + + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, + Abbv) != CONSTANTS_CE_CAST_Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // NULL abbrev for CONSTANTS_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, + Abbv) != CONSTANTS_NULL_Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + // FIXME: This should only use space for first class types! + + { // INST_LOAD abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_LOAD_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_BINOP abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_BINOP_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_CAST abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + Log2_32_Ceil(VE.getTypes().size()+1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_CAST_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // INST_RET abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_RET_VOID_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_RET abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_RET_VAL_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. + BitCodeAbbrev *Abbv = new BitCodeAbbrev(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, + Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + Stream.ExitBlock(); +} + + +/// WriteModule - Emit the specified module to the bitstream. +static void WriteModule(const Module *M, BitstreamWriter &Stream) { + Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + + // Emit the version number if it is non-zero. + if (CurVersion) { + SmallVector<unsigned, 1> Vals; + Vals.push_back(CurVersion); + Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); + } + + // Analyze the module, enumerating globals, functions, etc. + ValueEnumerator VE(M); + + // Emit blockinfo, which defines the standard abbreviations etc. + WriteBlockInfo(VE, Stream); + + // Emit information about parameter attributes. + WriteAttributeTable(VE, Stream); + + // Emit information describing all of the types in the module. + WriteTypeTable(VE, Stream); + + // Emit top-level description of module, including target triple, inline asm, + // descriptors for global variables, and function prototype info. + WriteModuleInfo(M, VE, Stream); + + // Emit constants. + WriteModuleConstants(VE, Stream); + + // Emit metadata. + WriteModuleMetadata(VE, Stream); + + // Emit function bodies. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + if (!I->isDeclaration()) + WriteFunction(*I, VE, Stream); + + // Emit metadata. + WriteModuleMetadataStore(M, Stream); + + // Emit the type symbol table information. + WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); + + // Emit names for globals/functions etc. + WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); + + Stream.ExitBlock(); +} + +/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a +/// header and trailer to make it compatible with the system archiver. To do +/// this we emit the following header, and then emit a trailer that pads the +/// file out to be a multiple of 16 bytes. +/// +/// struct bc_header { +/// uint32_t Magic; // 0x0B17C0DE +/// uint32_t Version; // Version, currently always 0. +/// uint32_t BitcodeOffset; // Offset to traditional bitcode file. +/// uint32_t BitcodeSize; // Size of traditional bitcode file. +/// uint32_t CPUType; // CPU specifier. +/// ... potentially more later ... +/// }; +enum { + DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. + DarwinBCHeaderSize = 5*4 +}; + +/// isARMTriplet - Return true if the triplet looks like: +/// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. +static bool isARMTriplet(const std::string &TT) { + size_t Pos = 0; + size_t Size = TT.size(); + if (Size >= 6 && + TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && + TT[3] == 'm' && TT[4] == 'b') + Pos = 5; + else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') + Pos = 3; + else + return false; + + if (TT[Pos] == '-') + return true; + else if (TT[Pos] == 'v') { + if (Size >= Pos+4 && + TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') + return true; + else if (Size >= Pos+4 && + TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') + return true; + } else + return false; + while (++Pos < Size && TT[Pos] != '-') { + if (!isdigit(TT[Pos])) + return false; + } + return true; +} + +static void EmitDarwinBCHeader(BitstreamWriter &Stream, + const std::string &TT) { + unsigned CPUType = ~0U; + + // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, + // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic + // number from /usr/include/mach/machine.h. It is ok to reproduce the + // specific constants here because they are implicitly part of the Darwin ABI. + enum { + DARWIN_CPU_ARCH_ABI64 = 0x01000000, + DARWIN_CPU_TYPE_X86 = 7, + DARWIN_CPU_TYPE_ARM = 12, + DARWIN_CPU_TYPE_POWERPC = 18 + }; + + if (TT.find("x86_64-") == 0) + CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; + else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && + TT[4] == '-' && TT[1] - '3' < 6) + CPUType = DARWIN_CPU_TYPE_X86; + else if (TT.find("powerpc-") == 0) + CPUType = DARWIN_CPU_TYPE_POWERPC; + else if (TT.find("powerpc64-") == 0) + CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; + else if (isARMTriplet(TT)) + CPUType = DARWIN_CPU_TYPE_ARM; + + // Traditional Bitcode starts after header. + unsigned BCOffset = DarwinBCHeaderSize; + + Stream.Emit(0x0B17C0DE, 32); + Stream.Emit(0 , 32); // Version. + Stream.Emit(BCOffset , 32); + Stream.Emit(0 , 32); // Filled in later. + Stream.Emit(CPUType , 32); +} + +/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and +/// finalize the header. +static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { + // Update the size field in the header. + Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); + + // If the file is not a multiple of 16 bytes, insert dummy padding. + while (BufferSize & 15) { + Stream.Emit(0, 8); + ++BufferSize; + } +} + + +/// WriteBitcodeToFile - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { + std::vector<unsigned char> Buffer; + BitstreamWriter Stream(Buffer); + + Buffer.reserve(256*1024); + + WriteBitcodeToStream( M, Stream ); + + // Write the generated bitstream to "Out". + Out.write((char*)&Buffer.front(), Buffer.size()); +} + +/// WriteBitcodeToStream - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { + // If this is darwin, emit a file header and trailer if needed. + bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; + if (isDarwin) + EmitDarwinBCHeader(Stream, M->getTargetTriple()); + + // Emit the file header. + Stream.Emit((unsigned)'B', 8); + Stream.Emit((unsigned)'C', 8); + Stream.Emit(0x0, 4); + Stream.Emit(0xC, 4); + Stream.Emit(0xE, 4); + Stream.Emit(0xD, 4); + + // Emit the module. + WriteModule(M, Stream); + + if (isDarwin) + EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); +} diff --git a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp new file mode 100644 index 0000000..3a0d3ce --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp @@ -0,0 +1,41 @@ +//===--- Bitcode/Writer/BitcodeWriterPass.cpp - Bitcode Writer ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// BitcodeWriterPass implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Pass.h" +using namespace llvm; + +namespace { + class WriteBitcodePass : public ModulePass { + raw_ostream &OS; // raw_ostream to print on + public: + static char ID; // Pass identification, replacement for typeid + explicit WriteBitcodePass(raw_ostream &o) + : ModulePass(&ID), OS(o) {} + + const char *getPassName() const { return "Bitcode Writer"; } + + bool runOnModule(Module &M) { + WriteBitcodeToFile(&M, OS); + return false; + } + }; +} + +char WriteBitcodePass::ID = 0; + +/// createBitcodeWriterPass - Create and return a pass that writes the module +/// to the specified ostream. +ModulePass *llvm::createBitcodeWriterPass(raw_ostream &Str) { + return new WriteBitcodePass(Str); +} diff --git a/contrib/llvm/lib/Bitcode/Writer/CMakeLists.txt b/contrib/llvm/lib/Bitcode/Writer/CMakeLists.txt new file mode 100644 index 0000000..f097b09 --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/CMakeLists.txt @@ -0,0 +1,6 @@ +add_llvm_library(LLVMBitWriter + BitWriter.cpp + BitcodeWriter.cpp + BitcodeWriterPass.cpp + ValueEnumerator.cpp + ) diff --git a/contrib/llvm/lib/Bitcode/Writer/Makefile b/contrib/llvm/lib/Bitcode/Writer/Makefile new file mode 100644 index 0000000..7b0bd72 --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/Makefile @@ -0,0 +1,15 @@ +##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file is distributed under the University of Illinois Open Source +# License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## + +LEVEL = ../../.. +LIBRARYNAME = LLVMBitWriter +BUILD_ARCHIVE = 1 + +include $(LEVEL)/Makefile.common + diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp new file mode 100644 index 0000000..7fa425a --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -0,0 +1,470 @@ +//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/Instructions.h" +#include <algorithm> +using namespace llvm; + +static bool isSingleValueType(const std::pair<const llvm::Type*, + unsigned int> &P) { + return P.first->isSingleValueType(); +} + +static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { + return V.first->getType()->isIntegerTy(); +} + +static bool CompareByFrequency(const std::pair<const llvm::Type*, + unsigned int> &P1, + const std::pair<const llvm::Type*, + unsigned int> &P2) { + return P1.second > P2.second; +} + +/// ValueEnumerator - Enumerate module-level information. +ValueEnumerator::ValueEnumerator(const Module *M) { + // Enumerate the global variables. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + EnumerateValue(I); + + // Enumerate the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { + EnumerateValue(I); + EnumerateAttributes(cast<Function>(I)->getAttributes()); + } + + // Enumerate the aliases. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I); + + // Remember what is the cutoff between globalvalue's and other constants. + unsigned FirstConstant = Values.size(); + + // Enumerate the global variable initializers. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + if (I->hasInitializer()) + EnumerateValue(I->getInitializer()); + + // Enumerate the aliasees. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I->getAliasee()); + + // Enumerate types used by the type symbol table. + EnumerateTypeSymbolTable(M->getTypeSymbolTable()); + + // Insert constants and metadata that are named at module level into the slot + // pool so that the module symbol table can refer to them... + EnumerateValueSymbolTable(M->getValueSymbolTable()); + EnumerateMDSymbolTable(M->getMDSymbolTable()); + + SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; + + // Enumerate types used by function bodies and argument lists. + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) + EnumerateType(I->getType()); + + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if (MDNode *MD = dyn_cast<MDNode>(*OI)) + if (MD->isFunctionLocal() && MD->getFunction()) + // These will get enumerated during function-incorporation. + continue; + EnumerateOperandType(*OI); + } + EnumerateType(I->getType()); + if (const CallInst *CI = dyn_cast<CallInst>(I)) + EnumerateAttributes(CI->getAttributes()); + else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) + EnumerateAttributes(II->getAttributes()); + + // Enumerate metadata attached with this instruction. + MDs.clear(); + I->getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned i = 0, e = MDs.size(); i != e; ++i) + EnumerateMetadata(MDs[i].second); + + if (!I->getDebugLoc().isUnknown()) { + MDNode *Scope, *IA; + I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); + if (Scope) EnumerateMetadata(Scope); + if (IA) EnumerateMetadata(IA); + } + } + } + + // Optimize constant ordering. + OptimizeConstants(FirstConstant, Values.size()); + + // Sort the type table by frequency so that most commonly used types are early + // in the table (have low bit-width). + std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); + + // Partition the Type ID's so that the single-value types occur before the + // aggregate types. This allows the aggregate types to be dropped from the + // type table after parsing the global variable initializers. + std::partition(Types.begin(), Types.end(), isSingleValueType); + + // Now that we rearranged the type table, rebuild TypeMap. + for (unsigned i = 0, e = Types.size(); i != e; ++i) + TypeMap[Types[i].first] = i+1; +} + +unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { + InstructionMapType::const_iterator I = InstructionMap.find(Inst); + assert (I != InstructionMap.end() && "Instruction is not mapped!"); + return I->second; +} + +void ValueEnumerator::setInstructionID(const Instruction *I) { + InstructionMap[I] = InstructionCount++; +} + +unsigned ValueEnumerator::getValueID(const Value *V) const { + if (isa<MDNode>(V) || isa<MDString>(V)) { + ValueMapType::const_iterator I = MDValueMap.find(V); + assert(I != MDValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; + } + + ValueMapType::const_iterator I = ValueMap.find(V); + assert(I != ValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; +} + +// Optimize constant ordering. +namespace { + struct CstSortPredicate { + ValueEnumerator &VE; + explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} + bool operator()(const std::pair<const Value*, unsigned> &LHS, + const std::pair<const Value*, unsigned> &RHS) { + // Sort by plane. + if (LHS.first->getType() != RHS.first->getType()) + return VE.getTypeID(LHS.first->getType()) < + VE.getTypeID(RHS.first->getType()); + // Then by frequency. + return LHS.second > RHS.second; + } + }; +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { + if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + + CstSortPredicate P(*this); + std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); + + // Ensure that integer constants are at the start of the constant pool. This + // is important so that GEP structure indices come before gep constant exprs. + std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, + isIntegerValue); + + // Rebuild the modified portion of ValueMap. + for (; CstStart != CstEnd; ++CstStart) + ValueMap[Values[CstStart].first] = CstStart+1; +} + + +/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol +/// table. +void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) { + for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); + TI != TE; ++TI) + EnumerateType(TI->second); +} + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { + for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); + VI != VE; ++VI) + EnumerateValue(VI->getValue()); +} + +/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata +/// table. +void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) { + for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end(); + MI != ME; ++MI) + EnumerateValue(MI->getValue()); +} + +void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { + // Check to see if it's already in! + unsigned &MDValueID = MDValueMap[MD]; + if (MDValueID) { + // Increment use count. + MDValues[MDValueID-1].second++; + return; + } + + // Enumerate the type of this value. + EnumerateType(MD->getType()); + + for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) + if (MDNode *E = MD->getOperand(i)) + EnumerateValue(E); + MDValues.push_back(std::make_pair(MD, 1U)); + MDValueMap[MD] = Values.size(); +} + +void ValueEnumerator::EnumerateMetadata(const Value *MD) { + assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); + // Check to see if it's already in! + unsigned &MDValueID = MDValueMap[MD]; + if (MDValueID) { + // Increment use count. + MDValues[MDValueID-1].second++; + return; + } + + // Enumerate the type of this value. + EnumerateType(MD->getType()); + + if (const MDNode *N = dyn_cast<MDNode>(MD)) { + MDValues.push_back(std::make_pair(MD, 1U)); + MDValueMap[MD] = MDValues.size(); + MDValueID = MDValues.size(); + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (Value *V = N->getOperand(i)) + EnumerateValue(V); + else + EnumerateType(Type::getVoidTy(MD->getContext())); + } + if (N->isFunctionLocal() && N->getFunction()) + FunctionLocalMDs.push_back(N); + return; + } + + // Add the value. + assert(isa<MDString>(MD) && "Unknown metadata kind"); + MDValues.push_back(std::make_pair(MD, 1U)); + MDValueID = MDValues.size(); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { + assert(!V->getType()->isVoidTy() && "Can't insert void values!"); + if (isa<MDNode>(V) || isa<MDString>(V)) + return EnumerateMetadata(V); + else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) + return EnumerateNamedMDNode(NMD); + + // Check to see if it's already in! + unsigned &ValueID = ValueMap[V]; + if (ValueID) { + // Increment use count. + Values[ValueID-1].second++; + return; + } + + // Enumerate the type of this value. + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + if (isa<GlobalValue>(C)) { + // Initializers for globals are handled explicitly elsewhere. + } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { + // Do not enumerate the initializers for an array of simple characters. + // The initializers just polute the value table, and we emit the strings + // specially. + } else if (C->getNumOperands()) { + // If a constant has operands, enumerate them. This makes sure that if a + // constant has uses (for example an array of const ints), that they are + // inserted also. + + // We prefer to enumerate them with values before we enumerate the user + // itself. This makes it more likely that we can avoid forward references + // in the reader. We know that there can be no cycles in the constants + // graph that don't go through a global variable. + for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); + I != E; ++I) + if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. + EnumerateValue(*I); + + // Finally, add the value. Doing this could make the ValueID reference be + // dangling, don't reuse it. + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } + } + + // Add the value. + Values.push_back(std::make_pair(V, 1U)); + ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(const Type *Ty) { + unsigned &TypeID = TypeMap[Ty]; + + if (TypeID) { + // If we've already seen this type, just increase its occurrence count. + Types[TypeID-1].second++; + return; + } + + // First time we saw this type, add it. + Types.push_back(std::make_pair(Ty, 1U)); + TypeID = Types.size(); + + // Enumerate subtypes. + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + EnumerateType(*I); +} + +// Enumerate the types for the specified value. If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(V)) return; + + // This constant may have operands, make sure to enumerate the types in + // them. + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { + const User *Op = C->getOperand(i); + + // Don't enumerate basic blocks here, this happens as operands to + // blockaddress. + if (isa<BasicBlock>(Op)) continue; + + EnumerateOperandType(cast<Constant>(Op)); + } + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (Value *Elem = N->getOperand(i)) + EnumerateOperandType(Elem); + } + } else if (isa<MDString>(V) || isa<MDNode>(V)) + EnumerateValue(V); +} + +void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { + if (PAL.isEmpty()) return; // null is always 0. + // Do a lookup. + unsigned &Entry = AttributeMap[PAL.getRawPointer()]; + if (Entry == 0) { + // Never saw this before, add it. + Attributes.push_back(PAL); + Entry = Attributes.size(); + } +} + + +void ValueEnumerator::incorporateFunction(const Function &F) { + InstructionCount = 0; + NumModuleValues = Values.size(); + + // Adding function arguments to the value table. + for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I) + EnumerateValue(I); + + FirstFuncConstantID = Values.size(); + + // Add all function-level constants to the value table. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || + isa<InlineAsm>(*OI)) + EnumerateValue(*OI); + } + BasicBlocks.push_back(BB); + ValueMap[BB] = BasicBlocks.size(); + } + + // Optimize the constant layout. + OptimizeConstants(FirstFuncConstantID, Values.size()); + + // Add the function's parameter attributes so they are available for use in + // the function's instruction. + EnumerateAttributes(F.getAttributes()); + + FirstInstID = Values.size(); + + FunctionLocalMDs.clear(); + SmallVector<MDNode *, 8> FnLocalMDVector; + // Add all of the instructions. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if (MDNode *MD = dyn_cast<MDNode>(*OI)) + if (MD->isFunctionLocal() && MD->getFunction()) + // Enumerate metadata after the instructions they might refer to. + FnLocalMDVector.push_back(MD); + } + if (!I->getType()->isVoidTy()) + EnumerateValue(I); + } + } + + // Add all of the function-local metadata. + for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) + EnumerateOperandType(FnLocalMDVector[i]); +} + +void ValueEnumerator::purgeFunction() { + /// Remove purged values from the ValueMap. + for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) + ValueMap.erase(Values[i].first); + for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) + ValueMap.erase(BasicBlocks[i]); + + Values.resize(NumModuleValues); + BasicBlocks.clear(); +} + +static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, + DenseMap<const BasicBlock*, unsigned> &IDMap) { + unsigned Counter = 0; + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + IDMap[BB] = ++Counter; +} + +/// getGlobalBasicBlockID - This returns the function-specific ID for the +/// specified basic block. This is relatively expensive information, so it +/// should only be used by rare constructs such as address-of-label. +unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { + unsigned &Idx = GlobalBasicBlockIDs[BB]; + if (Idx != 0) + return Idx-1; + + IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); + return getGlobalBasicBlockID(BB); +} + diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h new file mode 100644 index 0000000..2b9b15f --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h @@ -0,0 +1,149 @@ +//===-- Bitcode/Writer/ValueEnumerator.h - Number values --------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This class gives values and types Unique ID's. +// +//===----------------------------------------------------------------------===// + +#ifndef VALUE_ENUMERATOR_H +#define VALUE_ENUMERATOR_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Attributes.h" +#include <vector> + +namespace llvm { + +class Type; +class Value; +class Instruction; +class BasicBlock; +class Function; +class Module; +class MDNode; +class NamedMDNode; +class AttrListPtr; +class TypeSymbolTable; +class ValueSymbolTable; +class MDSymbolTable; + +class ValueEnumerator { +public: + // For each type, we remember its Type* and occurrence frequency. + typedef std::vector<std::pair<const Type*, unsigned> > TypeList; + + // For each value, we remember its Value* and occurrence frequency. + typedef std::vector<std::pair<const Value*, unsigned> > ValueList; +private: + typedef DenseMap<const Type*, unsigned> TypeMapType; + TypeMapType TypeMap; + TypeList Types; + + typedef DenseMap<const Value*, unsigned> ValueMapType; + ValueMapType ValueMap; + ValueList Values; + ValueList MDValues; + SmallVector<const MDNode *, 8> FunctionLocalMDs; + ValueMapType MDValueMap; + + typedef DenseMap<void*, unsigned> AttributeMapType; + AttributeMapType AttributeMap; + std::vector<AttrListPtr> Attributes; + + /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by + /// the "getGlobalBasicBlockID" method. + mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs; + + typedef DenseMap<const Instruction*, unsigned> InstructionMapType; + InstructionMapType InstructionMap; + unsigned InstructionCount; + + /// BasicBlocks - This contains all the basic blocks for the currently + /// incorporated function. Their reverse mapping is stored in ValueMap. + std::vector<const BasicBlock*> BasicBlocks; + + /// When a function is incorporated, this is the size of the Values list + /// before incorporation. + unsigned NumModuleValues; + unsigned FirstFuncConstantID; + unsigned FirstInstID; + + ValueEnumerator(const ValueEnumerator &); // DO NOT IMPLEMENT + void operator=(const ValueEnumerator &); // DO NOT IMPLEMENT +public: + ValueEnumerator(const Module *M); + + unsigned getValueID(const Value *V) const; + + unsigned getTypeID(const Type *T) const { + TypeMapType::const_iterator I = TypeMap.find(T); + assert(I != TypeMap.end() && "Type not in ValueEnumerator!"); + return I->second-1; + } + + unsigned getInstructionID(const Instruction *I) const; + void setInstructionID(const Instruction *I); + + unsigned getAttributeID(const AttrListPtr &PAL) const { + if (PAL.isEmpty()) return 0; // Null maps to zero. + AttributeMapType::const_iterator I = AttributeMap.find(PAL.getRawPointer()); + assert(I != AttributeMap.end() && "Attribute not in ValueEnumerator!"); + return I->second; + } + + /// getFunctionConstantRange - Return the range of values that corresponds to + /// function-local constants. + void getFunctionConstantRange(unsigned &Start, unsigned &End) const { + Start = FirstFuncConstantID; + End = FirstInstID; + } + + const ValueList &getValues() const { return Values; } + const ValueList &getMDValues() const { return MDValues; } + const SmallVector<const MDNode *, 8> &getFunctionLocalMDValues() const { + return FunctionLocalMDs; + } + const TypeList &getTypes() const { return Types; } + const std::vector<const BasicBlock*> &getBasicBlocks() const { + return BasicBlocks; + } + const std::vector<AttrListPtr> &getAttributes() const { + return Attributes; + } + + /// getGlobalBasicBlockID - This returns the function-specific ID for the + /// specified basic block. This is relatively expensive information, so it + /// should only be used by rare constructs such as address-of-label. + unsigned getGlobalBasicBlockID(const BasicBlock *BB) const; + + /// incorporateFunction/purgeFunction - If you'd like to deal with a function, + /// use these two methods to get its data into the ValueEnumerator! + /// + void incorporateFunction(const Function &F); + void purgeFunction(); + +private: + void OptimizeConstants(unsigned CstStart, unsigned CstEnd); + + void EnumerateMetadata(const Value *MD); + void EnumerateNamedMDNode(const NamedMDNode *NMD); + void EnumerateValue(const Value *V); + void EnumerateType(const Type *T); + void EnumerateOperandType(const Value *V); + void EnumerateAttributes(const AttrListPtr &PAL); + + void EnumerateTypeSymbolTable(const TypeSymbolTable &ST); + void EnumerateValueSymbolTable(const ValueSymbolTable &ST); + void EnumerateMDSymbolTable(const MDSymbolTable &ST); +}; + +} // End llvm namespace + +#endif |