diff options
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 524 |
1 files changed, 396 insertions, 128 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp index 15f8034..27a63d8 100644 --- a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp +++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -18,31 +18,288 @@ #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" +#include "llvm/IR/UseListOrder.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; +namespace { +struct OrderMap { + DenseMap<const Value *, std::pair<unsigned, bool>> IDs; + unsigned LastGlobalConstantID; + unsigned LastGlobalValueID; + + OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} + + bool isGlobalConstant(unsigned ID) const { + return ID <= LastGlobalConstantID; + } + bool isGlobalValue(unsigned ID) const { + return ID <= LastGlobalValueID && !isGlobalConstant(ID); + } + + unsigned size() const { return IDs.size(); } + std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } + std::pair<unsigned, bool> lookup(const Value *V) const { + return IDs.lookup(V); + } + void index(const Value *V) { + // Explicitly sequence get-size and insert-value operations to avoid UB. + unsigned ID = IDs.size() + 1; + IDs[V].first = ID; + } +}; +} + +static void orderValue(const Value *V, OrderMap &OM) { + if (OM.lookup(V).first) + return; + + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands() && !isa<GlobalValue>(C)) + for (const Value *Op : C->operands()) + if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) + orderValue(Op, OM); + + // Note: we cannot cache this lookup above, since inserting into the map + // changes the map's size, and thus affects the other IDs. + OM.index(V); +} + +static OrderMap orderModule(const Module &M) { + // This needs to match the order used by ValueEnumerator::ValueEnumerator() + // and ValueEnumerator::incorporateFunction(). + OrderMap OM; + + // In the reader, initializers of GlobalValues are set *after* all the + // globals have been read. Rather than awkwardly modeling this behaviour + // directly in predictValueUseListOrderImpl(), just assign IDs to + // initializers of GlobalValues before GlobalValues themselves to model this + // implicitly. + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + if (!isa<GlobalValue>(G.getInitializer())) + orderValue(G.getInitializer(), OM); + for (const GlobalAlias &A : M.aliases()) + if (!isa<GlobalValue>(A.getAliasee())) + orderValue(A.getAliasee(), OM); + for (const Function &F : M) { + if (F.hasPrefixData()) + if (!isa<GlobalValue>(F.getPrefixData())) + orderValue(F.getPrefixData(), OM); + if (F.hasPrologueData()) + if (!isa<GlobalValue>(F.getPrologueData())) + orderValue(F.getPrologueData(), OM); + } + OM.LastGlobalConstantID = OM.size(); + + // Initializers of GlobalValues are processed in + // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather + // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() + // by giving IDs in reverse order. + // + // Since GlobalValues never reference each other directly (just through + // initializers), their relative IDs only matter for determining order of + // uses in their initializers. + for (const Function &F : M) + orderValue(&F, OM); + for (const GlobalAlias &A : M.aliases()) + orderValue(&A, OM); + for (const GlobalVariable &G : M.globals()) + orderValue(&G, OM); + OM.LastGlobalValueID = OM.size(); + + for (const Function &F : M) { + if (F.isDeclaration()) + continue; + // Here we need to match the union of ValueEnumerator::incorporateFunction() + // and WriteFunction(). Basic blocks are implicitly declared before + // anything else (by declaring their size). + for (const BasicBlock &BB : F) + orderValue(&BB, OM); + for (const Argument &A : F.args()) + orderValue(&A, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || + isa<InlineAsm>(*Op)) + orderValue(Op, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + orderValue(&I, OM); + } + return OM; +} + +static void predictValueUseListOrderImpl(const Value *V, const Function *F, + unsigned ID, const OrderMap &OM, + UseListOrderStack &Stack) { + // Predict use-list order for this one. + typedef std::pair<const Use *, unsigned> Entry; + SmallVector<Entry, 64> List; + for (const Use &U : V->uses()) + // Check if this user will be serialized. + if (OM.lookup(U.getUser()).first) + List.push_back(std::make_pair(&U, List.size())); + + if (List.size() < 2) + // We may have lost some users. + return; + + bool IsGlobalValue = OM.isGlobalValue(ID); + std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { + const Use *LU = L.first; + const Use *RU = R.first; + if (LU == RU) + return false; + + auto LID = OM.lookup(LU->getUser()).first; + auto RID = OM.lookup(RU->getUser()).first; + + // Global values are processed in reverse order. + // + // Moreover, initializers of GlobalValues are set *after* all the globals + // have been read (despite having earlier IDs). Rather than awkwardly + // modeling this behaviour here, orderModule() has assigned IDs to + // initializers of GlobalValues before GlobalValues themselves. + if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) + return LID < RID; + + // If ID is 4, then expect: 7 6 5 1 2 3. + if (LID < RID) { + if (RID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return true; + return false; + } + if (RID < LID) { + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return false; + return true; + } + + // LID and RID are equal, so we have different operands of the same user. + // Assume operands are added in order for all instructions. + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return LU->getOperandNo() < RU->getOperandNo(); + return LU->getOperandNo() > RU->getOperandNo(); + }); + + if (std::is_sorted( + List.begin(), List.end(), + [](const Entry &L, const Entry &R) { return L.second < R.second; })) + // Order is already correct. + return; + + // Store the shuffle. + Stack.emplace_back(V, F, List.size()); + assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); + for (size_t I = 0, E = List.size(); I != E; ++I) + Stack.back().Shuffle[I] = List[I].second; +} + +static void predictValueUseListOrder(const Value *V, const Function *F, + OrderMap &OM, UseListOrderStack &Stack) { + auto &IDPair = OM[V]; + assert(IDPair.first && "Unmapped value"); + if (IDPair.second) + // Already predicted. + return; + + // Do the actual prediction. + IDPair.second = true; + if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) + predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); + + // Recursive descent into constants. + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands()) // Visit GlobalValues. + for (const Value *Op : C->operands()) + if (isa<Constant>(Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, F, OM, Stack); +} + +static UseListOrderStack predictUseListOrder(const Module &M) { + OrderMap OM = orderModule(M); + + // Use-list orders need to be serialized after all the users have been added + // to a value, or else the shuffles will be incomplete. Store them per + // function in a stack. + // + // Aside from function order, the order of values doesn't matter much here. + UseListOrderStack Stack; + + // We want to visit the functions backward now so we can list function-local + // constants in the last Function they're used in. Module-level constants + // have already been visited above. + for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { + const Function &F = *I; + if (F.isDeclaration()) + continue; + for (const BasicBlock &BB : F) + predictValueUseListOrder(&BB, &F, OM, Stack); + for (const Argument &A : F.args()) + predictValueUseListOrder(&A, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + predictValueUseListOrder(&I, &F, OM, Stack); + } + + // Visit globals last, since the module-level use-list block will be seen + // before the function bodies are processed. + for (const GlobalVariable &G : M.globals()) + predictValueUseListOrder(&G, nullptr, OM, Stack); + for (const Function &F : M) + predictValueUseListOrder(&F, nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(&A, nullptr, OM, Stack); + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); + for (const Function &F : M) { + if (F.hasPrefixData()) + predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack); + if (F.hasPrologueData()) + predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack); + } + + return Stack; +} + static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { return V.first->getType()->isIntOrIntVectorTy(); } -/// ValueEnumerator - Enumerate module-level information. -ValueEnumerator::ValueEnumerator(const Module *M) { +ValueEnumerator::ValueEnumerator(const Module &M) + : HasMDString(false), HasMDLocation(false) { + if (shouldPreserveBitcodeUseListOrder()) + UseListOrders = predictUseListOrder(M); + // Enumerate the global variables. - for (Module::const_global_iterator I = M->global_begin(), - E = M->global_end(); I != E; ++I) + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) EnumerateValue(I); // Enumerate the functions. - for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. - for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) EnumerateValue(I); @@ -50,41 +307,58 @@ ValueEnumerator::ValueEnumerator(const Module *M) { unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. - for (Module::const_global_iterator I = M->global_begin(), - E = M->global_end(); I != E; ++I) + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. - for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate the prefix data constants. - for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) if (I->hasPrefixData()) EnumerateValue(I->getPrefixData()); + // Enumerate the prologue data constants. + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) + if (I->hasPrologueData()) + EnumerateValue(I->getPrologueData()); + + // Enumerate the metadata type. + // + // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode + // only encodes the metadata type when it's used as a value. + EnumerateType(Type::getMetadataTy(M.getContext())); + // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... - EnumerateValueSymbolTable(M->getValueSymbolTable()); + EnumerateValueSymbolTable(M.getValueSymbolTable()); EnumerateNamedMetadata(M); - SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; + SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; // Enumerate types used by function bodies and argument lists. - for (const Function &F : *M) { + for (const Function &F : M) { for (const Argument &A : F.args()) EnumerateType(A.getType()); for (const BasicBlock &BB : F) for (const Instruction &I : BB) { for (const Use &Op : I.operands()) { - if (MDNode *MD = dyn_cast<MDNode>(&Op)) - if (MD->isFunctionLocal() && MD->getFunction()) - // These will get enumerated during function-incorporation. - continue; - EnumerateOperandType(Op); + auto *MD = dyn_cast<MetadataAsValue>(&Op); + if (!MD) { + EnumerateOperandType(Op); + continue; + } + + // Local metadata is enumerated during function-incorporation. + if (isa<LocalAsMetadata>(MD->getMetadata())) + continue; + + EnumerateMetadata(MD->getMetadata()); } EnumerateType(I.getType()); if (const CallInst *CI = dyn_cast<CallInst>(&I)) @@ -128,17 +402,20 @@ void ValueEnumerator::setInstructionID(const Instruction *I) { } unsigned ValueEnumerator::getValueID(const Value *V) const { - if (isa<MDNode>(V) || isa<MDString>(V)) { - ValueMapType::const_iterator I = MDValueMap.find(V); - assert(I != MDValueMap.end() && "Value not in slotcalculator!"); - return I->second-1; - } + if (auto *MD = dyn_cast<MetadataAsValue>(V)) + return getMetadataID(MD->getMetadata()); ValueMapType::const_iterator I = ValueMap.find(V); assert(I != ValueMap.end() && "Value not in slotcalculator!"); return I->second-1; } +unsigned ValueEnumerator::getMetadataID(const Metadata *MD) const { + auto I = MDValueMap.find(MD); + assert(I != MDValueMap.end() && "Metadata not in slotcalculator!"); + return I->second - 1; +} + void ValueEnumerator::dump() const { print(dbgs(), ValueMap, "Default"); dbgs() << '\n'; @@ -175,10 +452,27 @@ void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, } } +void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, + const char *Name) const { + + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { + const Metadata *MD = I->first; + OS << "Metadata: slot = " << I->second << "\n"; + MD->print(OS); + } +} + /// OptimizeConstants - Reorder constant pool for denser encoding. void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + if (shouldPreserveBitcodeUseListOrder()) + // Optimizing constants makes the use-list order difficult to predict. + // Disable it for now when trying to preserve the order. + return; + std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, [this](const std::pair<const Value *, unsigned> &LHS, const std::pair<const Value *, unsigned> &RHS) { @@ -209,11 +503,12 @@ void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { EnumerateValue(VI->getValue()); } -/// EnumerateNamedMetadata - Insert all of the values referenced by -/// named metadata in the specified module. -void ValueEnumerator::EnumerateNamedMetadata(const Module *M) { - for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), - E = M->named_metadata_end(); I != E; ++I) +/// Insert all of the values referenced by named metadata in the specified +/// module. +void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { + for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); + I != E; ++I) EnumerateNamedMDNode(I); } @@ -226,84 +521,62 @@ void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { /// and types referenced by the given MDNode. void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - if (Value *V = N->getOperand(i)) { - if (isa<MDNode>(V) || isa<MDString>(V)) - EnumerateMetadata(V); - else if (!isa<Instruction>(V) && !isa<Argument>(V)) - EnumerateValue(V); - } else - EnumerateType(Type::getVoidTy(N->getContext())); + Metadata *MD = N->getOperand(i); + if (!MD) + continue; + assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local"); + EnumerateMetadata(MD); } } -void ValueEnumerator::EnumerateMetadata(const Value *MD) { - assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); +void ValueEnumerator::EnumerateMetadata(const Metadata *MD) { + assert( + (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && + "Invalid metadata kind"); - // Enumerate the type of this value. - EnumerateType(MD->getType()); - - const MDNode *N = dyn_cast<MDNode>(MD); + // Insert a dummy ID to block the co-recursive call to + // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. + // + // Return early if there's already an ID. + if (!MDValueMap.insert(std::make_pair(MD, 0)).second) + return; - // In the module-level pass, skip function-local nodes themselves, but - // do walk their operands. - if (N && N->isFunctionLocal() && N->getFunction()) { + // Visit operands first to minimize RAUW. + if (auto *N = dyn_cast<MDNode>(MD)) EnumerateMDNodeOperands(N); - return; - } + else if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) + EnumerateValue(C->getValue()); - // Check to see if it's already in! - unsigned &MDValueID = MDValueMap[MD]; - if (MDValueID) { - // Increment use count. - MDValues[MDValueID-1].second++; - return; - } - MDValues.push_back(std::make_pair(MD, 1U)); - MDValueID = MDValues.size(); + HasMDString |= isa<MDString>(MD); + HasMDLocation |= isa<MDLocation>(MD); - // Enumerate all non-function-local operands. - if (N) - EnumerateMDNodeOperands(N); + // Replace the dummy ID inserted above with the correct one. MDValueMap may + // have changed by inserting operands, so we need a fresh lookup here. + MDs.push_back(MD); + MDValueMap[MD] = MDs.size(); } /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata -/// information reachable from the given MDNode. -void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) { - assert(N->isFunctionLocal() && N->getFunction() && - "EnumerateFunctionLocalMetadata called on non-function-local mdnode!"); - - // Enumerate the type of this value. - EnumerateType(N->getType()); - +/// information reachable from the metadata. +void ValueEnumerator::EnumerateFunctionLocalMetadata( + const LocalAsMetadata *Local) { // Check to see if it's already in! - unsigned &MDValueID = MDValueMap[N]; - if (MDValueID) { - // Increment use count. - MDValues[MDValueID-1].second++; + unsigned &MDValueID = MDValueMap[Local]; + if (MDValueID) return; - } - MDValues.push_back(std::make_pair(N, 1U)); - MDValueID = MDValues.size(); - - // To incoroporate function-local information visit all function-local - // MDNodes and all function-local values they reference. - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) - if (Value *V = N->getOperand(i)) { - if (MDNode *O = dyn_cast<MDNode>(V)) { - if (O->isFunctionLocal() && O->getFunction()) - EnumerateFunctionLocalMetadata(O); - } else if (isa<Instruction>(V) || isa<Argument>(V)) - EnumerateValue(V); - } - // Also, collect all function-local MDNodes for easy access. - FunctionLocalMDs.push_back(N); + MDs.push_back(Local); + MDValueID = MDs.size(); + + EnumerateValue(Local->getValue()); + + // Also, collect all function-local metadata for easy access. + FunctionLocalMDs.push_back(Local); } void ValueEnumerator::EnumerateValue(const Value *V) { assert(!V->getType()->isVoidTy() && "Can't insert void values!"); - assert(!isa<MDNode>(V) && !isa<MDString>(V) && - "EnumerateValue doesn't handle Metadata!"); + assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); // Check to see if it's already in! unsigned &ValueID = ValueMap[V]; @@ -367,9 +640,8 @@ void ValueEnumerator::EnumerateType(Type *Ty) { // Enumerate all of the subtypes before we enumerate this type. This ensures // that the type will be enumerated in an order that can be directly built. - for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); - I != E; ++I) - EnumerateType(*I); + for (Type *SubTy : Ty->subtypes()) + EnumerateType(SubTy); // Refresh the TypeID pointer in case the table rehashed. TypeID = &TypeMap[Ty]; @@ -393,30 +665,35 @@ void ValueEnumerator::EnumerateType(Type *Ty) { void ValueEnumerator::EnumerateOperandType(const Value *V) { EnumerateType(V->getType()); - if (const Constant *C = dyn_cast<Constant>(V)) { - // If this constant is already enumerated, ignore it, we know its type must - // be enumerated. - if (ValueMap.count(V)) return; + if (auto *MD = dyn_cast<MetadataAsValue>(V)) { + assert(!isa<LocalAsMetadata>(MD->getMetadata()) && + "Function-local metadata should be left for later"); - // This constant may have operands, make sure to enumerate the types in - // them. - for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { - const Value *Op = C->getOperand(i); + EnumerateMetadata(MD->getMetadata()); + return; + } - // Don't enumerate basic blocks here, this happens as operands to - // blockaddress. - if (isa<BasicBlock>(Op)) continue; + const Constant *C = dyn_cast<Constant>(V); + if (!C) + return; - EnumerateOperandType(Op); - } + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(C)) + return; - if (const MDNode *N = dyn_cast<MDNode>(V)) { - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) - if (Value *Elem = N->getOperand(i)) - EnumerateOperandType(Elem); - } - } else if (isa<MDString>(V) || isa<MDNode>(V)) - EnumerateMetadata(V); + // This constant may have operands, make sure to enumerate the types in + // them. + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { + const Value *Op = C->getOperand(i); + + // Don't enumerate basic blocks here, this happens as operands to + // blockaddress. + if (isa<BasicBlock>(Op)) + continue; + + EnumerateOperandType(Op); + } } void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { @@ -444,7 +721,7 @@ void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { void ValueEnumerator::incorporateFunction(const Function &F) { InstructionCount = 0; NumModuleValues = Values.size(); - NumModuleMDValues = MDValues.size(); + NumModuleMDs = MDs.size(); // Adding function arguments to the value table. for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); @@ -475,24 +752,16 @@ void ValueEnumerator::incorporateFunction(const Function &F) { FirstInstID = Values.size(); - SmallVector<MDNode *, 8> FnLocalMDVector; + SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { - if (MDNode *MD = dyn_cast<MDNode>(*OI)) - if (MD->isFunctionLocal() && MD->getFunction()) + if (auto *MD = dyn_cast<MetadataAsValue>(&*OI)) + if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) // Enumerate metadata after the instructions they might refer to. - FnLocalMDVector.push_back(MD); - } - - SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; - I->getAllMetadataOtherThanDebugLoc(MDs); - for (unsigned i = 0, e = MDs.size(); i != e; ++i) { - MDNode *N = MDs[i].second; - if (N->isFunctionLocal() && N->getFunction()) - FnLocalMDVector.push_back(N); + FnLocalMDVector.push_back(Local); } if (!I->getType()->isVoidTy()) @@ -509,13 +778,13 @@ void ValueEnumerator::purgeFunction() { /// Remove purged values from the ValueMap. for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) ValueMap.erase(Values[i].first); - for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i) - MDValueMap.erase(MDValues[i].first); + for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) + MDValueMap.erase(MDs[i]); for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) ValueMap.erase(BasicBlocks[i]); Values.resize(NumModuleValues); - MDValues.resize(NumModuleMDValues); + MDs.resize(NumModuleMDs); BasicBlocks.clear(); FunctionLocalMDs.clear(); } @@ -538,4 +807,3 @@ unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); return getGlobalBasicBlockID(BB); } - |