diff options
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 820 |
1 files changed, 820 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp new file mode 100644 index 0000000..53c3a40 --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -0,0 +1,820 @@ +//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +namespace { +struct OrderMap { + DenseMap<const Value *, std::pair<unsigned, bool>> IDs; + unsigned LastGlobalConstantID; + unsigned LastGlobalValueID; + + OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} + + bool isGlobalConstant(unsigned ID) const { + return ID <= LastGlobalConstantID; + } + bool isGlobalValue(unsigned ID) const { + return ID <= LastGlobalValueID && !isGlobalConstant(ID); + } + + unsigned size() const { return IDs.size(); } + std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } + std::pair<unsigned, bool> lookup(const Value *V) const { + return IDs.lookup(V); + } + void index(const Value *V) { + // Explicitly sequence get-size and insert-value operations to avoid UB. + unsigned ID = IDs.size() + 1; + IDs[V].first = ID; + } +}; +} // namespace + +static void orderValue(const Value *V, OrderMap &OM) { + if (OM.lookup(V).first) + return; + + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands() && !isa<GlobalValue>(C)) + for (const Value *Op : C->operands()) + if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) + orderValue(Op, OM); + + // Note: we cannot cache this lookup above, since inserting into the map + // changes the map's size, and thus affects the other IDs. + OM.index(V); +} + +static OrderMap orderModule(const Module &M) { + // This needs to match the order used by ValueEnumerator::ValueEnumerator() + // and ValueEnumerator::incorporateFunction(). + OrderMap OM; + + // In the reader, initializers of GlobalValues are set *after* all the + // globals have been read. Rather than awkwardly modeling this behaviour + // directly in predictValueUseListOrderImpl(), just assign IDs to + // initializers of GlobalValues before GlobalValues themselves to model this + // implicitly. + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + if (!isa<GlobalValue>(G.getInitializer())) + orderValue(G.getInitializer(), OM); + for (const GlobalAlias &A : M.aliases()) + if (!isa<GlobalValue>(A.getAliasee())) + orderValue(A.getAliasee(), OM); + for (const Function &F : M) { + if (F.hasPrefixData()) + if (!isa<GlobalValue>(F.getPrefixData())) + orderValue(F.getPrefixData(), OM); + if (F.hasPrologueData()) + if (!isa<GlobalValue>(F.getPrologueData())) + orderValue(F.getPrologueData(), OM); + if (F.hasPersonalityFn()) + if (!isa<GlobalValue>(F.getPersonalityFn())) + orderValue(F.getPersonalityFn(), OM); + } + OM.LastGlobalConstantID = OM.size(); + + // Initializers of GlobalValues are processed in + // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather + // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() + // by giving IDs in reverse order. + // + // Since GlobalValues never reference each other directly (just through + // initializers), their relative IDs only matter for determining order of + // uses in their initializers. + for (const Function &F : M) + orderValue(&F, OM); + for (const GlobalAlias &A : M.aliases()) + orderValue(&A, OM); + for (const GlobalVariable &G : M.globals()) + orderValue(&G, OM); + OM.LastGlobalValueID = OM.size(); + + for (const Function &F : M) { + if (F.isDeclaration()) + continue; + // Here we need to match the union of ValueEnumerator::incorporateFunction() + // and WriteFunction(). Basic blocks are implicitly declared before + // anything else (by declaring their size). + for (const BasicBlock &BB : F) + orderValue(&BB, OM); + for (const Argument &A : F.args()) + orderValue(&A, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || + isa<InlineAsm>(*Op)) + orderValue(Op, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + orderValue(&I, OM); + } + return OM; +} + +static void predictValueUseListOrderImpl(const Value *V, const Function *F, + unsigned ID, const OrderMap &OM, + UseListOrderStack &Stack) { + // Predict use-list order for this one. + typedef std::pair<const Use *, unsigned> Entry; + SmallVector<Entry, 64> List; + for (const Use &U : V->uses()) + // Check if this user will be serialized. + if (OM.lookup(U.getUser()).first) + List.push_back(std::make_pair(&U, List.size())); + + if (List.size() < 2) + // We may have lost some users. + return; + + bool IsGlobalValue = OM.isGlobalValue(ID); + std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { + const Use *LU = L.first; + const Use *RU = R.first; + if (LU == RU) + return false; + + auto LID = OM.lookup(LU->getUser()).first; + auto RID = OM.lookup(RU->getUser()).first; + + // Global values are processed in reverse order. + // + // Moreover, initializers of GlobalValues are set *after* all the globals + // have been read (despite having earlier IDs). Rather than awkwardly + // modeling this behaviour here, orderModule() has assigned IDs to + // initializers of GlobalValues before GlobalValues themselves. + if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) + return LID < RID; + + // If ID is 4, then expect: 7 6 5 1 2 3. + if (LID < RID) { + if (RID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return true; + return false; + } + if (RID < LID) { + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return false; + return true; + } + + // LID and RID are equal, so we have different operands of the same user. + // Assume operands are added in order for all instructions. + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return LU->getOperandNo() < RU->getOperandNo(); + return LU->getOperandNo() > RU->getOperandNo(); + }); + + if (std::is_sorted( + List.begin(), List.end(), + [](const Entry &L, const Entry &R) { return L.second < R.second; })) + // Order is already correct. + return; + + // Store the shuffle. + Stack.emplace_back(V, F, List.size()); + assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); + for (size_t I = 0, E = List.size(); I != E; ++I) + Stack.back().Shuffle[I] = List[I].second; +} + +static void predictValueUseListOrder(const Value *V, const Function *F, + OrderMap &OM, UseListOrderStack &Stack) { + auto &IDPair = OM[V]; + assert(IDPair.first && "Unmapped value"); + if (IDPair.second) + // Already predicted. + return; + + // Do the actual prediction. + IDPair.second = true; + if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) + predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); + + // Recursive descent into constants. + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands()) // Visit GlobalValues. + for (const Value *Op : C->operands()) + if (isa<Constant>(Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, F, OM, Stack); +} + +static UseListOrderStack predictUseListOrder(const Module &M) { + OrderMap OM = orderModule(M); + + // Use-list orders need to be serialized after all the users have been added + // to a value, or else the shuffles will be incomplete. Store them per + // function in a stack. + // + // Aside from function order, the order of values doesn't matter much here. + UseListOrderStack Stack; + + // We want to visit the functions backward now so we can list function-local + // constants in the last Function they're used in. Module-level constants + // have already been visited above. + for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { + const Function &F = *I; + if (F.isDeclaration()) + continue; + for (const BasicBlock &BB : F) + predictValueUseListOrder(&BB, &F, OM, Stack); + for (const Argument &A : F.args()) + predictValueUseListOrder(&A, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + predictValueUseListOrder(&I, &F, OM, Stack); + } + + // Visit globals last, since the module-level use-list block will be seen + // before the function bodies are processed. + for (const GlobalVariable &G : M.globals()) + predictValueUseListOrder(&G, nullptr, OM, Stack); + for (const Function &F : M) + predictValueUseListOrder(&F, nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(&A, nullptr, OM, Stack); + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); + for (const Function &F : M) { + if (F.hasPrefixData()) + predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack); + if (F.hasPrologueData()) + predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack); + if (F.hasPersonalityFn()) + predictValueUseListOrder(F.getPersonalityFn(), nullptr, OM, Stack); + } + + return Stack; +} + +static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { + return V.first->getType()->isIntOrIntVectorTy(); +} + +ValueEnumerator::ValueEnumerator(const Module &M, + bool ShouldPreserveUseListOrder) + : HasMDString(false), HasDILocation(false), HasGenericDINode(false), + ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { + if (ShouldPreserveUseListOrder) + UseListOrders = predictUseListOrder(M); + + // Enumerate the global variables. + for (const GlobalVariable &GV : M.globals()) + EnumerateValue(&GV); + + // Enumerate the functions. + for (const Function & F : M) { + EnumerateValue(&F); + EnumerateAttributes(F.getAttributes()); + } + + // Enumerate the aliases. + for (const GlobalAlias &GA : M.aliases()) + EnumerateValue(&GA); + + // Remember what is the cutoff between globalvalue's and other constants. + unsigned FirstConstant = Values.size(); + + // Enumerate the global variable initializers. + for (const GlobalVariable &GV : M.globals()) + if (GV.hasInitializer()) + EnumerateValue(GV.getInitializer()); + + // Enumerate the aliasees. + for (const GlobalAlias &GA : M.aliases()) + EnumerateValue(GA.getAliasee()); + + // Enumerate the prefix data constants. + for (const Function &F : M) + if (F.hasPrefixData()) + EnumerateValue(F.getPrefixData()); + + // Enumerate the prologue data constants. + for (const Function &F : M) + if (F.hasPrologueData()) + EnumerateValue(F.getPrologueData()); + + // Enumerate the personality functions. + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) + if (I->hasPersonalityFn()) + EnumerateValue(I->getPersonalityFn()); + + // Enumerate the metadata type. + // + // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode + // only encodes the metadata type when it's used as a value. + EnumerateType(Type::getMetadataTy(M.getContext())); + + // Insert constants and metadata that are named at module level into the slot + // pool so that the module symbol table can refer to them... + EnumerateValueSymbolTable(M.getValueSymbolTable()); + EnumerateNamedMetadata(M); + + SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; + + // Enumerate types used by function bodies and argument lists. + for (const Function &F : M) { + for (const Argument &A : F.args()) + EnumerateType(A.getType()); + + // Enumerate metadata attached to this function. + F.getAllMetadata(MDs); + for (const auto &I : MDs) + EnumerateMetadata(I.second); + + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) { + for (const Use &Op : I.operands()) { + auto *MD = dyn_cast<MetadataAsValue>(&Op); + if (!MD) { + EnumerateOperandType(Op); + continue; + } + + // Local metadata is enumerated during function-incorporation. + if (isa<LocalAsMetadata>(MD->getMetadata())) + continue; + + EnumerateMetadata(MD->getMetadata()); + } + EnumerateType(I.getType()); + if (const CallInst *CI = dyn_cast<CallInst>(&I)) + EnumerateAttributes(CI->getAttributes()); + else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) + EnumerateAttributes(II->getAttributes()); + + // Enumerate metadata attached with this instruction. + MDs.clear(); + I.getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned i = 0, e = MDs.size(); i != e; ++i) + EnumerateMetadata(MDs[i].second); + + // Don't enumerate the location directly -- it has a special record + // type -- but enumerate its operands. + if (DILocation *L = I.getDebugLoc()) + EnumerateMDNodeOperands(L); + } + } + + // Optimize constant ordering. + OptimizeConstants(FirstConstant, Values.size()); +} + +unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { + InstructionMapType::const_iterator I = InstructionMap.find(Inst); + assert(I != InstructionMap.end() && "Instruction is not mapped!"); + return I->second; +} + +unsigned ValueEnumerator::getComdatID(const Comdat *C) const { + unsigned ComdatID = Comdats.idFor(C); + assert(ComdatID && "Comdat not found!"); + return ComdatID; +} + +void ValueEnumerator::setInstructionID(const Instruction *I) { + InstructionMap[I] = InstructionCount++; +} + +unsigned ValueEnumerator::getValueID(const Value *V) const { + if (auto *MD = dyn_cast<MetadataAsValue>(V)) + return getMetadataID(MD->getMetadata()); + + ValueMapType::const_iterator I = ValueMap.find(V); + assert(I != ValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; +} + +void ValueEnumerator::dump() const { + print(dbgs(), ValueMap, "Default"); + dbgs() << '\n'; + print(dbgs(), MDValueMap, "MetaData"); + dbgs() << '\n'; +} + +void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, + const char *Name) const { + + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (ValueMapType::const_iterator I = Map.begin(), + E = Map.end(); I != E; ++I) { + + const Value *V = I->first; + if (V->hasName()) + OS << "Value: " << V->getName(); + else + OS << "Value: [null]\n"; + V->dump(); + + OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; + for (const Use &U : V->uses()) { + if (&U != &*V->use_begin()) + OS << ","; + if(U->hasName()) + OS << " " << U->getName(); + else + OS << " [null]"; + + } + OS << "\n\n"; + } +} + +void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, + const char *Name) const { + + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { + const Metadata *MD = I->first; + OS << "Metadata: slot = " << I->second << "\n"; + MD->print(OS); + } +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { + if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + + if (ShouldPreserveUseListOrder) + // Optimizing constants makes the use-list order difficult to predict. + // Disable it for now when trying to preserve the order. + return; + + std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, + [this](const std::pair<const Value *, unsigned> &LHS, + const std::pair<const Value *, unsigned> &RHS) { + // Sort by plane. + if (LHS.first->getType() != RHS.first->getType()) + return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); + // Then by frequency. + return LHS.second > RHS.second; + }); + + // Ensure that integer and vector of integer constants are at the start of the + // constant pool. This is important so that GEP structure indices come before + // gep constant exprs. + std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, + isIntOrIntVectorValue); + + // Rebuild the modified portion of ValueMap. + for (; CstStart != CstEnd; ++CstStart) + ValueMap[Values[CstStart].first] = CstStart+1; +} + + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { + for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); + VI != VE; ++VI) + EnumerateValue(VI->getValue()); +} + +/// Insert all of the values referenced by named metadata in the specified +/// module. +void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { + for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); + I != E; ++I) + EnumerateNamedMDNode(I); +} + +void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { + for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) + EnumerateMetadata(MD->getOperand(i)); +} + +/// EnumerateMDNodeOperands - Enumerate all non-function-local values +/// and types referenced by the given MDNode. +void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + Metadata *MD = N->getOperand(i); + if (!MD) + continue; + assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local"); + EnumerateMetadata(MD); + } +} + +void ValueEnumerator::EnumerateMetadata(const Metadata *MD) { + assert( + (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && + "Invalid metadata kind"); + + // Insert a dummy ID to block the co-recursive call to + // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. + // + // Return early if there's already an ID. + if (!MDValueMap.insert(std::make_pair(MD, 0)).second) + return; + + // Visit operands first to minimize RAUW. + if (auto *N = dyn_cast<MDNode>(MD)) + EnumerateMDNodeOperands(N); + else if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) + EnumerateValue(C->getValue()); + + HasMDString |= isa<MDString>(MD); + HasDILocation |= isa<DILocation>(MD); + HasGenericDINode |= isa<GenericDINode>(MD); + + // Replace the dummy ID inserted above with the correct one. MDValueMap may + // have changed by inserting operands, so we need a fresh lookup here. + MDs.push_back(MD); + MDValueMap[MD] = MDs.size(); +} + +/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata +/// information reachable from the metadata. +void ValueEnumerator::EnumerateFunctionLocalMetadata( + const LocalAsMetadata *Local) { + // Check to see if it's already in! + unsigned &MDValueID = MDValueMap[Local]; + if (MDValueID) + return; + + MDs.push_back(Local); + MDValueID = MDs.size(); + + EnumerateValue(Local->getValue()); + + // Also, collect all function-local metadata for easy access. + FunctionLocalMDs.push_back(Local); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { + assert(!V->getType()->isVoidTy() && "Can't insert void values!"); + assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); + + // Check to see if it's already in! + unsigned &ValueID = ValueMap[V]; + if (ValueID) { + // Increment use count. + Values[ValueID-1].second++; + return; + } + + if (auto *GO = dyn_cast<GlobalObject>(V)) + if (const Comdat *C = GO->getComdat()) + Comdats.insert(C); + + // Enumerate the type of this value. + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + if (isa<GlobalValue>(C)) { + // Initializers for globals are handled explicitly elsewhere. + } else if (C->getNumOperands()) { + // If a constant has operands, enumerate them. This makes sure that if a + // constant has uses (for example an array of const ints), that they are + // inserted also. + + // We prefer to enumerate them with values before we enumerate the user + // itself. This makes it more likely that we can avoid forward references + // in the reader. We know that there can be no cycles in the constants + // graph that don't go through a global variable. + for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); + I != E; ++I) + if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. + EnumerateValue(*I); + + // Finally, add the value. Doing this could make the ValueID reference be + // dangling, don't reuse it. + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } + } + + // Add the value. + Values.push_back(std::make_pair(V, 1U)); + ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(Type *Ty) { + unsigned *TypeID = &TypeMap[Ty]; + + // We've already seen this type. + if (*TypeID) + return; + + // If it is a non-anonymous struct, mark the type as being visited so that we + // don't recursively visit it. This is safe because we allow forward + // references of these in the bitcode reader. + if (StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isLiteral()) + *TypeID = ~0U; + + // Enumerate all of the subtypes before we enumerate this type. This ensures + // that the type will be enumerated in an order that can be directly built. + for (Type *SubTy : Ty->subtypes()) + EnumerateType(SubTy); + + // Refresh the TypeID pointer in case the table rehashed. + TypeID = &TypeMap[Ty]; + + // Check to see if we got the pointer another way. This can happen when + // enumerating recursive types that hit the base case deeper than they start. + // + // If this is actually a struct that we are treating as forward ref'able, + // then emit the definition now that all of its contents are available. + if (*TypeID && *TypeID != ~0U) + return; + + // Add this type now that its contents are all happily enumerated. + Types.push_back(Ty); + + *TypeID = Types.size(); +} + +// Enumerate the types for the specified value. If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { + EnumerateType(V->getType()); + + if (auto *MD = dyn_cast<MetadataAsValue>(V)) { + assert(!isa<LocalAsMetadata>(MD->getMetadata()) && + "Function-local metadata should be left for later"); + + EnumerateMetadata(MD->getMetadata()); + return; + } + + const Constant *C = dyn_cast<Constant>(V); + if (!C) + return; + + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(C)) + return; + + // This constant may have operands, make sure to enumerate the types in + // them. + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { + const Value *Op = C->getOperand(i); + + // Don't enumerate basic blocks here, this happens as operands to + // blockaddress. + if (isa<BasicBlock>(Op)) + continue; + + EnumerateOperandType(Op); + } +} + +void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { + if (PAL.isEmpty()) return; // null is always 0. + + // Do a lookup. + unsigned &Entry = AttributeMap[PAL]; + if (Entry == 0) { + // Never saw this before, add it. + Attribute.push_back(PAL); + Entry = Attribute.size(); + } + + // Do lookups for all attribute groups. + for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { + AttributeSet AS = PAL.getSlotAttributes(i); + unsigned &Entry = AttributeGroupMap[AS]; + if (Entry == 0) { + AttributeGroups.push_back(AS); + Entry = AttributeGroups.size(); + } + } +} + +void ValueEnumerator::incorporateFunction(const Function &F) { + InstructionCount = 0; + NumModuleValues = Values.size(); + NumModuleMDs = MDs.size(); + + // Adding function arguments to the value table. + for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I) + EnumerateValue(I); + + FirstFuncConstantID = Values.size(); + + // Add all function-level constants to the value table. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || + isa<InlineAsm>(*OI)) + EnumerateValue(*OI); + } + BasicBlocks.push_back(BB); + ValueMap[BB] = BasicBlocks.size(); + } + + // Optimize the constant layout. + OptimizeConstants(FirstFuncConstantID, Values.size()); + + // Add the function's parameter attributes so they are available for use in + // the function's instruction. + EnumerateAttributes(F.getAttributes()); + + FirstInstID = Values.size(); + + SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; + // Add all of the instructions. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if (auto *MD = dyn_cast<MetadataAsValue>(&*OI)) + if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) + // Enumerate metadata after the instructions they might refer to. + FnLocalMDVector.push_back(Local); + } + + if (!I->getType()->isVoidTy()) + EnumerateValue(I); + } + } + + // Add all of the function-local metadata. + for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) + EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); +} + +void ValueEnumerator::purgeFunction() { + /// Remove purged values from the ValueMap. + for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) + ValueMap.erase(Values[i].first); + for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) + MDValueMap.erase(MDs[i]); + for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) + ValueMap.erase(BasicBlocks[i]); + + Values.resize(NumModuleValues); + MDs.resize(NumModuleMDs); + BasicBlocks.clear(); + FunctionLocalMDs.clear(); +} + +static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, + DenseMap<const BasicBlock*, unsigned> &IDMap) { + unsigned Counter = 0; + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + IDMap[BB] = ++Counter; +} + +/// getGlobalBasicBlockID - This returns the function-specific ID for the +/// specified basic block. This is relatively expensive information, so it +/// should only be used by rare constructs such as address-of-label. +unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { + unsigned &Idx = GlobalBasicBlockIDs[BB]; + if (Idx != 0) + return Idx-1; + + IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); + return getGlobalBasicBlockID(BB); +} + +uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { + return Log2_32_Ceil(getTypes().size() + 1); +} |