summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp467
1 files changed, 467 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
new file mode 100644
index 0000000..d2baec7
--- /dev/null
+++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -0,0 +1,467 @@
+//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Instructions.h"
+#include <algorithm>
+using namespace llvm;
+
+static bool isSingleValueType(const std::pair<const llvm::Type*,
+ unsigned int> &P) {
+ return P.first->isSingleValueType();
+}
+
+static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
+ return V.first->getType()->isIntegerTy();
+}
+
+static bool CompareByFrequency(const std::pair<const llvm::Type*,
+ unsigned int> &P1,
+ const std::pair<const llvm::Type*,
+ unsigned int> &P2) {
+ return P1.second > P2.second;
+}
+
+/// ValueEnumerator - Enumerate module-level information.
+ValueEnumerator::ValueEnumerator(const Module *M) {
+ // Enumerate the global variables.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ EnumerateValue(I);
+
+ // Enumerate the functions.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
+ EnumerateValue(I);
+ EnumerateAttributes(cast<Function>(I)->getAttributes());
+ }
+
+ // Enumerate the aliases.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ // Remember what is the cutoff between globalvalue's and other constants.
+ unsigned FirstConstant = Values.size();
+
+ // Enumerate the global variable initializers.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ EnumerateValue(I->getInitializer());
+
+ // Enumerate the aliasees.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I->getAliasee());
+
+ // Enumerate types used by the type symbol table.
+ EnumerateTypeSymbolTable(M->getTypeSymbolTable());
+
+ // Insert constants and metadata that are named at module level into the slot
+ // pool so that the module symbol table can refer to them...
+ EnumerateValueSymbolTable(M->getValueSymbolTable());
+ EnumerateMDSymbolTable(M->getMDSymbolTable());
+
+ SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
+
+ // Enumerate types used by function bodies and argument lists.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ EnumerateType(I->getType());
+
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if (MDNode *MD = dyn_cast<MDNode>(*OI))
+ if (MD->isFunctionLocal() && MD->getFunction())
+ // These will get enumerated during function-incorporation.
+ continue;
+ EnumerateOperandType(*OI);
+ }
+ EnumerateType(I->getType());
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ EnumerateAttributes(CI->getAttributes());
+ else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
+ EnumerateAttributes(II->getAttributes());
+
+ // Enumerate metadata attached with this instruction.
+ MDs.clear();
+ I->getAllMetadataOtherThanDebugLoc(MDs);
+ for (unsigned i = 0, e = MDs.size(); i != e; ++i)
+ EnumerateMetadata(MDs[i].second);
+
+ if (!I->getDebugLoc().isUnknown()) {
+ MDNode *Scope, *IA;
+ I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
+ if (Scope) EnumerateMetadata(Scope);
+ if (IA) EnumerateMetadata(IA);
+ }
+ }
+ }
+
+ // Optimize constant ordering.
+ OptimizeConstants(FirstConstant, Values.size());
+
+ // Sort the type table by frequency so that most commonly used types are early
+ // in the table (have low bit-width).
+ std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
+
+ // Partition the Type ID's so that the single-value types occur before the
+ // aggregate types. This allows the aggregate types to be dropped from the
+ // type table after parsing the global variable initializers.
+ std::partition(Types.begin(), Types.end(), isSingleValueType);
+
+ // Now that we rearranged the type table, rebuild TypeMap.
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ TypeMap[Types[i].first] = i+1;
+}
+
+unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
+ InstructionMapType::const_iterator I = InstructionMap.find(Inst);
+ assert (I != InstructionMap.end() && "Instruction is not mapped!");
+ return I->second;
+}
+
+void ValueEnumerator::setInstructionID(const Instruction *I) {
+ InstructionMap[I] = InstructionCount++;
+}
+
+unsigned ValueEnumerator::getValueID(const Value *V) const {
+ if (isa<MDNode>(V) || isa<MDString>(V)) {
+ ValueMapType::const_iterator I = MDValueMap.find(V);
+ assert(I != MDValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+ }
+
+ ValueMapType::const_iterator I = ValueMap.find(V);
+ assert(I != ValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+}
+
+// Optimize constant ordering.
+namespace {
+ struct CstSortPredicate {
+ ValueEnumerator &VE;
+ explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
+ bool operator()(const std::pair<const Value*, unsigned> &LHS,
+ const std::pair<const Value*, unsigned> &RHS) {
+ // Sort by plane.
+ if (LHS.first->getType() != RHS.first->getType())
+ return VE.getTypeID(LHS.first->getType()) <
+ VE.getTypeID(RHS.first->getType());
+ // Then by frequency.
+ return LHS.second > RHS.second;
+ }
+ };
+}
+
+/// OptimizeConstants - Reorder constant pool for denser encoding.
+void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
+ if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
+
+ CstSortPredicate P(*this);
+ std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
+
+ // Ensure that integer constants are at the start of the constant pool. This
+ // is important so that GEP structure indices come before gep constant exprs.
+ std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
+ isIntegerValue);
+
+ // Rebuild the modified portion of ValueMap.
+ for (; CstStart != CstEnd; ++CstStart)
+ ValueMap[Values[CstStart].first] = CstStart+1;
+}
+
+
+/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
+/// table.
+void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI)
+ EnumerateType(TI->second);
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ VI != VE; ++VI)
+ EnumerateValue(VI->getValue());
+}
+
+/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
+/// table.
+void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
+ for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
+ MI != ME; ++MI)
+ EnumerateValue(MI->getValue());
+}
+
+void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
+ // Check to see if it's already in!
+ unsigned &MDValueID = MDValueMap[MD];
+ if (MDValueID) {
+ // Increment use count.
+ MDValues[MDValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(MD->getType());
+
+ for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
+ if (MDNode *E = MD->getOperand(i))
+ EnumerateValue(E);
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueMap[MD] = Values.size();
+}
+
+void ValueEnumerator::EnumerateMetadata(const Value *MD) {
+ assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
+ // Check to see if it's already in!
+ unsigned &MDValueID = MDValueMap[MD];
+ if (MDValueID) {
+ // Increment use count.
+ MDValues[MDValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(MD->getType());
+
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueMap[MD] = MDValues.size();
+ MDValueID = MDValues.size();
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (Value *V = N->getOperand(i))
+ EnumerateValue(V);
+ else
+ EnumerateType(Type::getVoidTy(MD->getContext()));
+ }
+ return;
+ }
+
+ // Add the value.
+ assert(isa<MDString>(MD) && "Unknown metadata kind");
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueID = MDValues.size();
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+ assert(!V->getType()->isVoidTy() && "Can't insert void values!");
+ if (isa<MDNode>(V) || isa<MDString>(V))
+ return EnumerateMetadata(V);
+ else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
+ return EnumerateNamedMDNode(NMD);
+
+ // Check to see if it's already in!
+ unsigned &ValueID = ValueMap[V];
+ if (ValueID) {
+ // Increment use count.
+ Values[ValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(V->getType());
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<GlobalValue>(C)) {
+ // Initializers for globals are handled explicitly elsewhere.
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Do not enumerate the initializers for an array of simple characters.
+ // The initializers just polute the value table, and we emit the strings
+ // specially.
+ } else if (C->getNumOperands()) {
+ // If a constant has operands, enumerate them. This makes sure that if a
+ // constant has uses (for example an array of const ints), that they are
+ // inserted also.
+
+ // We prefer to enumerate them with values before we enumerate the user
+ // itself. This makes it more likely that we can avoid forward references
+ // in the reader. We know that there can be no cycles in the constants
+ // graph that don't go through a global variable.
+ for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
+ I != E; ++I)
+ if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
+ EnumerateValue(*I);
+
+ // Finally, add the value. Doing this could make the ValueID reference be
+ // dangling, don't reuse it.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueMap[V] = Values.size();
+ return;
+ }
+ }
+
+ // Add the value.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueID = Values.size();
+}
+
+
+void ValueEnumerator::EnumerateType(const Type *Ty) {
+ unsigned &TypeID = TypeMap[Ty];
+
+ if (TypeID) {
+ // If we've already seen this type, just increase its occurrence count.
+ Types[TypeID-1].second++;
+ return;
+ }
+
+ // First time we saw this type, add it.
+ Types.push_back(std::make_pair(Ty, 1U));
+ TypeID = Types.size();
+
+ // Enumerate subtypes.
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I)
+ EnumerateType(*I);
+}
+
+// Enumerate the types for the specified value. If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+ EnumerateType(V->getType());
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ // If this constant is already enumerated, ignore it, we know its type must
+ // be enumerated.
+ if (ValueMap.count(V)) return;
+
+ // This constant may have operands, make sure to enumerate the types in
+ // them.
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
+ const User *Op = C->getOperand(i);
+
+ // Don't enumerate basic blocks here, this happens as operands to
+ // blockaddress.
+ if (isa<BasicBlock>(Op)) continue;
+
+ EnumerateOperandType(cast<Constant>(Op));
+ }
+
+ if (const MDNode *N = dyn_cast<MDNode>(V)) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (Value *Elem = N->getOperand(i))
+ EnumerateOperandType(Elem);
+ }
+ } else if (isa<MDString>(V) || isa<MDNode>(V))
+ EnumerateValue(V);
+}
+
+void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
+ if (PAL.isEmpty()) return; // null is always 0.
+ // Do a lookup.
+ unsigned &Entry = AttributeMap[PAL.getRawPointer()];
+ if (Entry == 0) {
+ // Never saw this before, add it.
+ Attributes.push_back(PAL);
+ Entry = Attributes.size();
+ }
+}
+
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+ InstructionCount = 0;
+ NumModuleValues = Values.size();
+
+ // Adding function arguments to the value table.
+ for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ FirstFuncConstantID = Values.size();
+
+ // Add all function-level constants to the value table.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
+ isa<InlineAsm>(*OI))
+ EnumerateValue(*OI);
+ }
+ BasicBlocks.push_back(BB);
+ ValueMap[BB] = BasicBlocks.size();
+ }
+
+ // Optimize the constant layout.
+ OptimizeConstants(FirstFuncConstantID, Values.size());
+
+ // Add the function's parameter attributes so they are available for use in
+ // the function's instruction.
+ EnumerateAttributes(F.getAttributes());
+
+ FirstInstID = Values.size();
+
+ SmallVector<MDNode *, 8> FunctionLocalMDs;
+ // Add all of the instructions.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if (MDNode *MD = dyn_cast<MDNode>(*OI))
+ if (MD->isFunctionLocal() && MD->getFunction())
+ // Enumerate metadata after the instructions they might refer to.
+ FunctionLocalMDs.push_back(MD);
+ }
+ if (!I->getType()->isVoidTy())
+ EnumerateValue(I);
+ }
+ }
+
+ // Add all of the function-local metadata.
+ for (unsigned i = 0, e = FunctionLocalMDs.size(); i != e; ++i)
+ EnumerateOperandType(FunctionLocalMDs[i]);
+}
+
+void ValueEnumerator::purgeFunction() {
+ /// Remove purged values from the ValueMap.
+ for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+ ValueMap.erase(Values[i].first);
+ for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
+ ValueMap.erase(BasicBlocks[i]);
+
+ Values.resize(NumModuleValues);
+ BasicBlocks.clear();
+}
+
+static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
+ DenseMap<const BasicBlock*, unsigned> &IDMap) {
+ unsigned Counter = 0;
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ IDMap[BB] = ++Counter;
+}
+
+/// getGlobalBasicBlockID - This returns the function-specific ID for the
+/// specified basic block. This is relatively expensive information, so it
+/// should only be used by rare constructs such as address-of-label.
+unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
+ unsigned &Idx = GlobalBasicBlockIDs[BB];
+ if (Idx != 0)
+ return Idx-1;
+
+ IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
+ return getGlobalBasicBlockID(BB);
+}
+
OpenPOWER on IntegriCloud