diff options
Diffstat (limited to 'contrib/llvm/lib/AsmParser')
-rw-r--r-- | contrib/llvm/lib/AsmParser/LLLexer.cpp | 832 | ||||
-rw-r--r-- | contrib/llvm/lib/AsmParser/LLLexer.h | 92 | ||||
-rw-r--r-- | contrib/llvm/lib/AsmParser/LLParser.cpp | 3997 | ||||
-rw-r--r-- | contrib/llvm/lib/AsmParser/LLParser.h | 382 | ||||
-rw-r--r-- | contrib/llvm/lib/AsmParser/LLToken.h | 160 | ||||
-rw-r--r-- | contrib/llvm/lib/AsmParser/Parser.cpp | 62 |
6 files changed, 5525 insertions, 0 deletions
diff --git a/contrib/llvm/lib/AsmParser/LLLexer.cpp b/contrib/llvm/lib/AsmParser/LLLexer.cpp new file mode 100644 index 0000000..8818168 --- /dev/null +++ b/contrib/llvm/lib/AsmParser/LLLexer.cpp @@ -0,0 +1,832 @@ +//===- LLLexer.cpp - Lexer for .ll Files ----------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implement the Lexer for .ll files. +// +//===----------------------------------------------------------------------===// + +#include "LLLexer.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instruction.h" +#include "llvm/LLVMContext.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Assembly/Parser.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/raw_ostream.h" +#include <cctype> +#include <cstdio> +#include <cstdlib> +#include <cstring> +using namespace llvm; + +bool LLLexer::Error(LocTy ErrorLoc, const Twine &Msg) const { + ErrorInfo = SM.GetMessage(ErrorLoc, SourceMgr::DK_Error, Msg); + return true; +} + +//===----------------------------------------------------------------------===// +// Helper functions. +//===----------------------------------------------------------------------===// + +// atoull - Convert an ascii string of decimal digits into the unsigned long +// long representation... this does not have to do input error checking, +// because we know that the input will be matched by a suitable regex... +// +uint64_t LLLexer::atoull(const char *Buffer, const char *End) { + uint64_t Result = 0; + for (; Buffer != End; Buffer++) { + uint64_t OldRes = Result; + Result *= 10; + Result += *Buffer-'0'; + if (Result < OldRes) { // Uh, oh, overflow detected!!! + Error("constant bigger than 64 bits detected!"); + return 0; + } + } + return Result; +} + +static char parseHexChar(char C) { + if (C >= '0' && C <= '9') + return C-'0'; + if (C >= 'A' && C <= 'F') + return C-'A'+10; + if (C >= 'a' && C <= 'f') + return C-'a'+10; + return 0; +} + +uint64_t LLLexer::HexIntToVal(const char *Buffer, const char *End) { + uint64_t Result = 0; + for (; Buffer != End; ++Buffer) { + uint64_t OldRes = Result; + Result *= 16; + Result += parseHexChar(*Buffer); + + if (Result < OldRes) { // Uh, oh, overflow detected!!! + Error("constant bigger than 64 bits detected!"); + return 0; + } + } + return Result; +} + +void LLLexer::HexToIntPair(const char *Buffer, const char *End, + uint64_t Pair[2]) { + Pair[0] = 0; + for (int i=0; i<16; i++, Buffer++) { + assert(Buffer != End); + Pair[0] *= 16; + Pair[0] += parseHexChar(*Buffer); + } + Pair[1] = 0; + for (int i=0; i<16 && Buffer != End; i++, Buffer++) { + Pair[1] *= 16; + Pair[1] += parseHexChar(*Buffer); + } + if (Buffer != End) + Error("constant bigger than 128 bits detected!"); +} + +/// FP80HexToIntPair - translate an 80 bit FP80 number (20 hexits) into +/// { low64, high16 } as usual for an APInt. +void LLLexer::FP80HexToIntPair(const char *Buffer, const char *End, + uint64_t Pair[2]) { + Pair[1] = 0; + for (int i=0; i<4 && Buffer != End; i++, Buffer++) { + assert(Buffer != End); + Pair[1] *= 16; + Pair[1] += parseHexChar(*Buffer); + } + Pair[0] = 0; + for (int i=0; i<16; i++, Buffer++) { + Pair[0] *= 16; + Pair[0] += parseHexChar(*Buffer); + } + if (Buffer != End) + Error("constant bigger than 128 bits detected!"); +} + +// UnEscapeLexed - Run through the specified buffer and change \xx codes to the +// appropriate character. +static void UnEscapeLexed(std::string &Str) { + if (Str.empty()) return; + + char *Buffer = &Str[0], *EndBuffer = Buffer+Str.size(); + char *BOut = Buffer; + for (char *BIn = Buffer; BIn != EndBuffer; ) { + if (BIn[0] == '\\') { + if (BIn < EndBuffer-1 && BIn[1] == '\\') { + *BOut++ = '\\'; // Two \ becomes one + BIn += 2; + } else if (BIn < EndBuffer-2 && isxdigit(BIn[1]) && isxdigit(BIn[2])) { + *BOut = parseHexChar(BIn[1]) * 16 + parseHexChar(BIn[2]); + BIn += 3; // Skip over handled chars + ++BOut; + } else { + *BOut++ = *BIn++; + } + } else { + *BOut++ = *BIn++; + } + } + Str.resize(BOut-Buffer); +} + +/// isLabelChar - Return true for [-a-zA-Z$._0-9]. +static bool isLabelChar(char C) { + return isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_'; +} + + +/// isLabelTail - Return true if this pointer points to a valid end of a label. +static const char *isLabelTail(const char *CurPtr) { + while (1) { + if (CurPtr[0] == ':') return CurPtr+1; + if (!isLabelChar(CurPtr[0])) return 0; + ++CurPtr; + } +} + + + +//===----------------------------------------------------------------------===// +// Lexer definition. +//===----------------------------------------------------------------------===// + +LLLexer::LLLexer(MemoryBuffer *StartBuf, SourceMgr &sm, SMDiagnostic &Err, + LLVMContext &C) + : CurBuf(StartBuf), ErrorInfo(Err), SM(sm), Context(C), APFloatVal(0.0) { + CurPtr = CurBuf->getBufferStart(); +} + +std::string LLLexer::getFilename() const { + return CurBuf->getBufferIdentifier(); +} + +int LLLexer::getNextChar() { + char CurChar = *CurPtr++; + switch (CurChar) { + default: return (unsigned char)CurChar; + case 0: + // A nul character in the stream is either the end of the current buffer or + // a random nul in the file. Disambiguate that here. + if (CurPtr-1 != CurBuf->getBufferEnd()) + return 0; // Just whitespace. + + // Otherwise, return end of file. + --CurPtr; // Another call to lex will return EOF again. + return EOF; + } +} + + +lltok::Kind LLLexer::LexToken() { + TokStart = CurPtr; + + int CurChar = getNextChar(); + switch (CurChar) { + default: + // Handle letters: [a-zA-Z_] + if (isalpha(CurChar) || CurChar == '_') + return LexIdentifier(); + + return lltok::Error; + case EOF: return lltok::Eof; + case 0: + case ' ': + case '\t': + case '\n': + case '\r': + // Ignore whitespace. + return LexToken(); + case '+': return LexPositive(); + case '@': return LexAt(); + case '%': return LexPercent(); + case '"': return LexQuote(); + case '.': + if (const char *Ptr = isLabelTail(CurPtr)) { + CurPtr = Ptr; + StrVal.assign(TokStart, CurPtr-1); + return lltok::LabelStr; + } + if (CurPtr[0] == '.' && CurPtr[1] == '.') { + CurPtr += 2; + return lltok::dotdotdot; + } + return lltok::Error; + case '$': + if (const char *Ptr = isLabelTail(CurPtr)) { + CurPtr = Ptr; + StrVal.assign(TokStart, CurPtr-1); + return lltok::LabelStr; + } + return lltok::Error; + case ';': + SkipLineComment(); + return LexToken(); + case '!': return LexExclaim(); + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': + case '-': + return LexDigitOrNegative(); + case '=': return lltok::equal; + case '[': return lltok::lsquare; + case ']': return lltok::rsquare; + case '{': return lltok::lbrace; + case '}': return lltok::rbrace; + case '<': return lltok::less; + case '>': return lltok::greater; + case '(': return lltok::lparen; + case ')': return lltok::rparen; + case ',': return lltok::comma; + case '*': return lltok::star; + case '\\': return lltok::backslash; + } +} + +void LLLexer::SkipLineComment() { + while (1) { + if (CurPtr[0] == '\n' || CurPtr[0] == '\r' || getNextChar() == EOF) + return; + } +} + +/// LexAt - Lex all tokens that start with an @ character: +/// GlobalVar @\"[^\"]*\" +/// GlobalVar @[-a-zA-Z$._][-a-zA-Z$._0-9]* +/// GlobalVarID @[0-9]+ +lltok::Kind LLLexer::LexAt() { + // Handle AtStringConstant: @\"[^\"]*\" + if (CurPtr[0] == '"') { + ++CurPtr; + + while (1) { + int CurChar = getNextChar(); + + if (CurChar == EOF) { + Error("end of file in global variable name"); + return lltok::Error; + } + if (CurChar == '"') { + StrVal.assign(TokStart+2, CurPtr-1); + UnEscapeLexed(StrVal); + return lltok::GlobalVar; + } + } + } + + // Handle GlobalVarName: @[-a-zA-Z$._][-a-zA-Z$._0-9]* + if (ReadVarName()) + return lltok::GlobalVar; + + // Handle GlobalVarID: @[0-9]+ + if (isdigit(CurPtr[0])) { + for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr) + /*empty*/; + + uint64_t Val = atoull(TokStart+1, CurPtr); + if ((unsigned)Val != Val) + Error("invalid value number (too large)!"); + UIntVal = unsigned(Val); + return lltok::GlobalID; + } + + return lltok::Error; +} + +/// ReadString - Read a string until the closing quote. +lltok::Kind LLLexer::ReadString(lltok::Kind kind) { + const char *Start = CurPtr; + while (1) { + int CurChar = getNextChar(); + + if (CurChar == EOF) { + Error("end of file in string constant"); + return lltok::Error; + } + if (CurChar == '"') { + StrVal.assign(Start, CurPtr-1); + UnEscapeLexed(StrVal); + return kind; + } + } +} + +/// ReadVarName - Read the rest of a token containing a variable name. +bool LLLexer::ReadVarName() { + const char *NameStart = CurPtr; + if (isalpha(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' || + CurPtr[0] == '.' || CurPtr[0] == '_') { + ++CurPtr; + while (isalnum(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' || + CurPtr[0] == '.' || CurPtr[0] == '_') + ++CurPtr; + + StrVal.assign(NameStart, CurPtr); + return true; + } + return false; +} + +/// LexPercent - Lex all tokens that start with a % character: +/// LocalVar ::= %\"[^\"]*\" +/// LocalVar ::= %[-a-zA-Z$._][-a-zA-Z$._0-9]* +/// LocalVarID ::= %[0-9]+ +lltok::Kind LLLexer::LexPercent() { + // Handle LocalVarName: %\"[^\"]*\" + if (CurPtr[0] == '"') { + ++CurPtr; + return ReadString(lltok::LocalVar); + } + + // Handle LocalVarName: %[-a-zA-Z$._][-a-zA-Z$._0-9]* + if (ReadVarName()) + return lltok::LocalVar; + + // Handle LocalVarID: %[0-9]+ + if (isdigit(CurPtr[0])) { + for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr) + /*empty*/; + + uint64_t Val = atoull(TokStart+1, CurPtr); + if ((unsigned)Val != Val) + Error("invalid value number (too large)!"); + UIntVal = unsigned(Val); + return lltok::LocalVarID; + } + + return lltok::Error; +} + +/// LexQuote - Lex all tokens that start with a " character: +/// QuoteLabel "[^"]+": +/// StringConstant "[^"]*" +lltok::Kind LLLexer::LexQuote() { + lltok::Kind kind = ReadString(lltok::StringConstant); + if (kind == lltok::Error || kind == lltok::Eof) + return kind; + + if (CurPtr[0] == ':') { + ++CurPtr; + kind = lltok::LabelStr; + } + + return kind; +} + +/// LexExclaim: +/// !foo +/// ! +lltok::Kind LLLexer::LexExclaim() { + // Lex a metadata name as a MetadataVar. + if (isalpha(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' || + CurPtr[0] == '.' || CurPtr[0] == '_' || CurPtr[0] == '\\') { + ++CurPtr; + while (isalnum(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' || + CurPtr[0] == '.' || CurPtr[0] == '_' || CurPtr[0] == '\\') + ++CurPtr; + + StrVal.assign(TokStart+1, CurPtr); // Skip ! + UnEscapeLexed(StrVal); + return lltok::MetadataVar; + } + return lltok::exclaim; +} + +/// LexIdentifier: Handle several related productions: +/// Label [-a-zA-Z$._0-9]+: +/// IntegerType i[0-9]+ +/// Keyword sdiv, float, ... +/// HexIntConstant [us]0x[0-9A-Fa-f]+ +lltok::Kind LLLexer::LexIdentifier() { + const char *StartChar = CurPtr; + const char *IntEnd = CurPtr[-1] == 'i' ? 0 : StartChar; + const char *KeywordEnd = 0; + + for (; isLabelChar(*CurPtr); ++CurPtr) { + // If we decide this is an integer, remember the end of the sequence. + if (!IntEnd && !isdigit(*CurPtr)) IntEnd = CurPtr; + if (!KeywordEnd && !isalnum(*CurPtr) && *CurPtr != '_') KeywordEnd = CurPtr; + } + + // If we stopped due to a colon, this really is a label. + if (*CurPtr == ':') { + StrVal.assign(StartChar-1, CurPtr++); + return lltok::LabelStr; + } + + // Otherwise, this wasn't a label. If this was valid as an integer type, + // return it. + if (IntEnd == 0) IntEnd = CurPtr; + if (IntEnd != StartChar) { + CurPtr = IntEnd; + uint64_t NumBits = atoull(StartChar, CurPtr); + if (NumBits < IntegerType::MIN_INT_BITS || + NumBits > IntegerType::MAX_INT_BITS) { + Error("bitwidth for integer type out of range!"); + return lltok::Error; + } + TyVal = IntegerType::get(Context, NumBits); + return lltok::Type; + } + + // Otherwise, this was a letter sequence. See which keyword this is. + if (KeywordEnd == 0) KeywordEnd = CurPtr; + CurPtr = KeywordEnd; + --StartChar; + unsigned Len = CurPtr-StartChar; +#define KEYWORD(STR) \ + if (Len == strlen(#STR) && !memcmp(StartChar, #STR, strlen(#STR))) \ + return lltok::kw_##STR; + + KEYWORD(true); KEYWORD(false); + KEYWORD(declare); KEYWORD(define); + KEYWORD(global); KEYWORD(constant); + + KEYWORD(private); + KEYWORD(linker_private); + KEYWORD(linker_private_weak); + KEYWORD(linker_private_weak_def_auto); + KEYWORD(internal); + KEYWORD(available_externally); + KEYWORD(linkonce); + KEYWORD(linkonce_odr); + KEYWORD(weak); + KEYWORD(weak_odr); + KEYWORD(appending); + KEYWORD(dllimport); + KEYWORD(dllexport); + KEYWORD(common); + KEYWORD(default); + KEYWORD(hidden); + KEYWORD(protected); + KEYWORD(unnamed_addr); + KEYWORD(extern_weak); + KEYWORD(external); + KEYWORD(thread_local); + KEYWORD(zeroinitializer); + KEYWORD(undef); + KEYWORD(null); + KEYWORD(to); + KEYWORD(tail); + KEYWORD(target); + KEYWORD(triple); + KEYWORD(unwind); + KEYWORD(deplibs); + KEYWORD(datalayout); + KEYWORD(volatile); + KEYWORD(atomic); + KEYWORD(unordered); + KEYWORD(monotonic); + KEYWORD(acquire); + KEYWORD(release); + KEYWORD(acq_rel); + KEYWORD(seq_cst); + KEYWORD(singlethread); + + KEYWORD(nuw); + KEYWORD(nsw); + KEYWORD(exact); + KEYWORD(inbounds); + KEYWORD(align); + KEYWORD(addrspace); + KEYWORD(section); + KEYWORD(alias); + KEYWORD(module); + KEYWORD(asm); + KEYWORD(sideeffect); + KEYWORD(alignstack); + KEYWORD(gc); + + KEYWORD(ccc); + KEYWORD(fastcc); + KEYWORD(coldcc); + KEYWORD(x86_stdcallcc); + KEYWORD(x86_fastcallcc); + KEYWORD(x86_thiscallcc); + KEYWORD(arm_apcscc); + KEYWORD(arm_aapcscc); + KEYWORD(arm_aapcs_vfpcc); + KEYWORD(msp430_intrcc); + KEYWORD(ptx_kernel); + KEYWORD(ptx_device); + + KEYWORD(cc); + KEYWORD(c); + + KEYWORD(signext); + KEYWORD(zeroext); + KEYWORD(inreg); + KEYWORD(sret); + KEYWORD(nounwind); + KEYWORD(noreturn); + KEYWORD(noalias); + KEYWORD(nocapture); + KEYWORD(byval); + KEYWORD(nest); + KEYWORD(readnone); + KEYWORD(readonly); + KEYWORD(uwtable); + KEYWORD(returns_twice); + + KEYWORD(inlinehint); + KEYWORD(noinline); + KEYWORD(alwaysinline); + KEYWORD(optsize); + KEYWORD(ssp); + KEYWORD(sspreq); + KEYWORD(noredzone); + KEYWORD(noimplicitfloat); + KEYWORD(naked); + KEYWORD(nonlazybind); + KEYWORD(address_safety); + + KEYWORD(type); + KEYWORD(opaque); + + KEYWORD(eq); KEYWORD(ne); KEYWORD(slt); KEYWORD(sgt); KEYWORD(sle); + KEYWORD(sge); KEYWORD(ult); KEYWORD(ugt); KEYWORD(ule); KEYWORD(uge); + KEYWORD(oeq); KEYWORD(one); KEYWORD(olt); KEYWORD(ogt); KEYWORD(ole); + KEYWORD(oge); KEYWORD(ord); KEYWORD(uno); KEYWORD(ueq); KEYWORD(une); + + KEYWORD(xchg); KEYWORD(nand); KEYWORD(max); KEYWORD(min); KEYWORD(umax); + KEYWORD(umin); + + KEYWORD(x); + KEYWORD(blockaddress); + + KEYWORD(personality); + KEYWORD(cleanup); + KEYWORD(catch); + KEYWORD(filter); +#undef KEYWORD + + // Keywords for types. +#define TYPEKEYWORD(STR, LLVMTY) \ + if (Len == strlen(STR) && !memcmp(StartChar, STR, strlen(STR))) { \ + TyVal = LLVMTY; return lltok::Type; } + TYPEKEYWORD("void", Type::getVoidTy(Context)); + TYPEKEYWORD("half", Type::getHalfTy(Context)); + TYPEKEYWORD("float", Type::getFloatTy(Context)); + TYPEKEYWORD("double", Type::getDoubleTy(Context)); + TYPEKEYWORD("x86_fp80", Type::getX86_FP80Ty(Context)); + TYPEKEYWORD("fp128", Type::getFP128Ty(Context)); + TYPEKEYWORD("ppc_fp128", Type::getPPC_FP128Ty(Context)); + TYPEKEYWORD("label", Type::getLabelTy(Context)); + TYPEKEYWORD("metadata", Type::getMetadataTy(Context)); + TYPEKEYWORD("x86_mmx", Type::getX86_MMXTy(Context)); +#undef TYPEKEYWORD + + // Keywords for instructions. +#define INSTKEYWORD(STR, Enum) \ + if (Len == strlen(#STR) && !memcmp(StartChar, #STR, strlen(#STR))) { \ + UIntVal = Instruction::Enum; return lltok::kw_##STR; } + + INSTKEYWORD(add, Add); INSTKEYWORD(fadd, FAdd); + INSTKEYWORD(sub, Sub); INSTKEYWORD(fsub, FSub); + INSTKEYWORD(mul, Mul); INSTKEYWORD(fmul, FMul); + INSTKEYWORD(udiv, UDiv); INSTKEYWORD(sdiv, SDiv); INSTKEYWORD(fdiv, FDiv); + INSTKEYWORD(urem, URem); INSTKEYWORD(srem, SRem); INSTKEYWORD(frem, FRem); + INSTKEYWORD(shl, Shl); INSTKEYWORD(lshr, LShr); INSTKEYWORD(ashr, AShr); + INSTKEYWORD(and, And); INSTKEYWORD(or, Or); INSTKEYWORD(xor, Xor); + INSTKEYWORD(icmp, ICmp); INSTKEYWORD(fcmp, FCmp); + + INSTKEYWORD(phi, PHI); + INSTKEYWORD(call, Call); + INSTKEYWORD(trunc, Trunc); + INSTKEYWORD(zext, ZExt); + INSTKEYWORD(sext, SExt); + INSTKEYWORD(fptrunc, FPTrunc); + INSTKEYWORD(fpext, FPExt); + INSTKEYWORD(uitofp, UIToFP); + INSTKEYWORD(sitofp, SIToFP); + INSTKEYWORD(fptoui, FPToUI); + INSTKEYWORD(fptosi, FPToSI); + INSTKEYWORD(inttoptr, IntToPtr); + INSTKEYWORD(ptrtoint, PtrToInt); + INSTKEYWORD(bitcast, BitCast); + INSTKEYWORD(select, Select); + INSTKEYWORD(va_arg, VAArg); + INSTKEYWORD(ret, Ret); + INSTKEYWORD(br, Br); + INSTKEYWORD(switch, Switch); + INSTKEYWORD(indirectbr, IndirectBr); + INSTKEYWORD(invoke, Invoke); + INSTKEYWORD(resume, Resume); + INSTKEYWORD(unreachable, Unreachable); + + INSTKEYWORD(alloca, Alloca); + INSTKEYWORD(load, Load); + INSTKEYWORD(store, Store); + INSTKEYWORD(cmpxchg, AtomicCmpXchg); + INSTKEYWORD(atomicrmw, AtomicRMW); + INSTKEYWORD(fence, Fence); + INSTKEYWORD(getelementptr, GetElementPtr); + + INSTKEYWORD(extractelement, ExtractElement); + INSTKEYWORD(insertelement, InsertElement); + INSTKEYWORD(shufflevector, ShuffleVector); + INSTKEYWORD(extractvalue, ExtractValue); + INSTKEYWORD(insertvalue, InsertValue); + INSTKEYWORD(landingpad, LandingPad); +#undef INSTKEYWORD + + // Check for [us]0x[0-9A-Fa-f]+ which are Hexadecimal constant generated by + // the CFE to avoid forcing it to deal with 64-bit numbers. + if ((TokStart[0] == 'u' || TokStart[0] == 's') && + TokStart[1] == '0' && TokStart[2] == 'x' && isxdigit(TokStart[3])) { + int len = CurPtr-TokStart-3; + uint32_t bits = len * 4; + APInt Tmp(bits, StringRef(TokStart+3, len), 16); + uint32_t activeBits = Tmp.getActiveBits(); + if (activeBits > 0 && activeBits < bits) + Tmp = Tmp.trunc(activeBits); + APSIntVal = APSInt(Tmp, TokStart[0] == 'u'); + return lltok::APSInt; + } + + // If this is "cc1234", return this as just "cc". + if (TokStart[0] == 'c' && TokStart[1] == 'c') { + CurPtr = TokStart+2; + return lltok::kw_cc; + } + + // Finally, if this isn't known, return an error. + CurPtr = TokStart+1; + return lltok::Error; +} + + +/// Lex0x: Handle productions that start with 0x, knowing that it matches and +/// that this is not a label: +/// HexFPConstant 0x[0-9A-Fa-f]+ +/// HexFP80Constant 0xK[0-9A-Fa-f]+ +/// HexFP128Constant 0xL[0-9A-Fa-f]+ +/// HexPPC128Constant 0xM[0-9A-Fa-f]+ +lltok::Kind LLLexer::Lex0x() { + CurPtr = TokStart + 2; + + char Kind; + if (CurPtr[0] >= 'K' && CurPtr[0] <= 'M') { + Kind = *CurPtr++; + } else { + Kind = 'J'; + } + + if (!isxdigit(CurPtr[0])) { + // Bad token, return it as an error. + CurPtr = TokStart+1; + return lltok::Error; + } + + while (isxdigit(CurPtr[0])) + ++CurPtr; + + if (Kind == 'J') { + // HexFPConstant - Floating point constant represented in IEEE format as a + // hexadecimal number for when exponential notation is not precise enough. + // Half, Float, and double only. + APFloatVal = APFloat(BitsToDouble(HexIntToVal(TokStart+2, CurPtr))); + return lltok::APFloat; + } + + uint64_t Pair[2]; + switch (Kind) { + default: llvm_unreachable("Unknown kind!"); + case 'K': + // F80HexFPConstant - x87 long double in hexadecimal format (10 bytes) + FP80HexToIntPair(TokStart+3, CurPtr, Pair); + APFloatVal = APFloat(APInt(80, Pair)); + return lltok::APFloat; + case 'L': + // F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes) + HexToIntPair(TokStart+3, CurPtr, Pair); + APFloatVal = APFloat(APInt(128, Pair), true); + return lltok::APFloat; + case 'M': + // PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes) + HexToIntPair(TokStart+3, CurPtr, Pair); + APFloatVal = APFloat(APInt(128, Pair)); + return lltok::APFloat; + } +} + +/// LexIdentifier: Handle several related productions: +/// Label [-a-zA-Z$._0-9]+: +/// NInteger -[0-9]+ +/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? +/// PInteger [0-9]+ +/// HexFPConstant 0x[0-9A-Fa-f]+ +/// HexFP80Constant 0xK[0-9A-Fa-f]+ +/// HexFP128Constant 0xL[0-9A-Fa-f]+ +/// HexPPC128Constant 0xM[0-9A-Fa-f]+ +lltok::Kind LLLexer::LexDigitOrNegative() { + // If the letter after the negative is a number, this is probably a label. + if (!isdigit(TokStart[0]) && !isdigit(CurPtr[0])) { + // Okay, this is not a number after the -, it's probably a label. + if (const char *End = isLabelTail(CurPtr)) { + StrVal.assign(TokStart, End-1); + CurPtr = End; + return lltok::LabelStr; + } + + return lltok::Error; + } + + // At this point, it is either a label, int or fp constant. + + // Skip digits, we have at least one. + for (; isdigit(CurPtr[0]); ++CurPtr) + /*empty*/; + + // Check to see if this really is a label afterall, e.g. "-1:". + if (isLabelChar(CurPtr[0]) || CurPtr[0] == ':') { + if (const char *End = isLabelTail(CurPtr)) { + StrVal.assign(TokStart, End-1); + CurPtr = End; + return lltok::LabelStr; + } + } + + // If the next character is a '.', then it is a fp value, otherwise its + // integer. + if (CurPtr[0] != '.') { + if (TokStart[0] == '0' && TokStart[1] == 'x') + return Lex0x(); + unsigned Len = CurPtr-TokStart; + uint32_t numBits = ((Len * 64) / 19) + 2; + APInt Tmp(numBits, StringRef(TokStart, Len), 10); + if (TokStart[0] == '-') { + uint32_t minBits = Tmp.getMinSignedBits(); + if (minBits > 0 && minBits < numBits) + Tmp = Tmp.trunc(minBits); + APSIntVal = APSInt(Tmp, false); + } else { + uint32_t activeBits = Tmp.getActiveBits(); + if (activeBits > 0 && activeBits < numBits) + Tmp = Tmp.trunc(activeBits); + APSIntVal = APSInt(Tmp, true); + } + return lltok::APSInt; + } + + ++CurPtr; + + // Skip over [0-9]*([eE][-+]?[0-9]+)? + while (isdigit(CurPtr[0])) ++CurPtr; + + if (CurPtr[0] == 'e' || CurPtr[0] == 'E') { + if (isdigit(CurPtr[1]) || + ((CurPtr[1] == '-' || CurPtr[1] == '+') && isdigit(CurPtr[2]))) { + CurPtr += 2; + while (isdigit(CurPtr[0])) ++CurPtr; + } + } + + APFloatVal = APFloat(std::atof(TokStart)); + return lltok::APFloat; +} + +/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? +lltok::Kind LLLexer::LexPositive() { + // If the letter after the negative is a number, this is probably not a + // label. + if (!isdigit(CurPtr[0])) + return lltok::Error; + + // Skip digits. + for (++CurPtr; isdigit(CurPtr[0]); ++CurPtr) + /*empty*/; + + // At this point, we need a '.'. + if (CurPtr[0] != '.') { + CurPtr = TokStart+1; + return lltok::Error; + } + + ++CurPtr; + + // Skip over [0-9]*([eE][-+]?[0-9]+)? + while (isdigit(CurPtr[0])) ++CurPtr; + + if (CurPtr[0] == 'e' || CurPtr[0] == 'E') { + if (isdigit(CurPtr[1]) || + ((CurPtr[1] == '-' || CurPtr[1] == '+') && isdigit(CurPtr[2]))) { + CurPtr += 2; + while (isdigit(CurPtr[0])) ++CurPtr; + } + } + + APFloatVal = APFloat(std::atof(TokStart)); + return lltok::APFloat; +} diff --git a/contrib/llvm/lib/AsmParser/LLLexer.h b/contrib/llvm/lib/AsmParser/LLLexer.h new file mode 100644 index 0000000..09aea5b --- /dev/null +++ b/contrib/llvm/lib/AsmParser/LLLexer.h @@ -0,0 +1,92 @@ +//===- LLLexer.h - Lexer for LLVM Assembly Files ----------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This class represents the Lexer for .ll files. +// +//===----------------------------------------------------------------------===// + +#ifndef LIB_ASMPARSER_LLLEXER_H +#define LIB_ASMPARSER_LLLEXER_H + +#include "LLToken.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/Support/SourceMgr.h" +#include <string> + +namespace llvm { + class MemoryBuffer; + class Type; + class SMDiagnostic; + class LLVMContext; + + class LLLexer { + const char *CurPtr; + MemoryBuffer *CurBuf; + SMDiagnostic &ErrorInfo; + SourceMgr &SM; + LLVMContext &Context; + + // Information about the current token. + const char *TokStart; + lltok::Kind CurKind; + std::string StrVal; + unsigned UIntVal; + Type *TyVal; + APFloat APFloatVal; + APSInt APSIntVal; + + public: + explicit LLLexer(MemoryBuffer *StartBuf, SourceMgr &SM, SMDiagnostic &, + LLVMContext &C); + ~LLLexer() {} + + lltok::Kind Lex() { + return CurKind = LexToken(); + } + + typedef SMLoc LocTy; + LocTy getLoc() const { return SMLoc::getFromPointer(TokStart); } + lltok::Kind getKind() const { return CurKind; } + const std::string &getStrVal() const { return StrVal; } + Type *getTyVal() const { return TyVal; } + unsigned getUIntVal() const { return UIntVal; } + const APSInt &getAPSIntVal() const { return APSIntVal; } + const APFloat &getAPFloatVal() const { return APFloatVal; } + + + bool Error(LocTy L, const Twine &Msg) const; + bool Error(const Twine &Msg) const { return Error(getLoc(), Msg); } + std::string getFilename() const; + + private: + lltok::Kind LexToken(); + + int getNextChar(); + void SkipLineComment(); + lltok::Kind ReadString(lltok::Kind kind); + bool ReadVarName(); + + lltok::Kind LexIdentifier(); + lltok::Kind LexDigitOrNegative(); + lltok::Kind LexPositive(); + lltok::Kind LexAt(); + lltok::Kind LexExclaim(); + lltok::Kind LexPercent(); + lltok::Kind LexQuote(); + lltok::Kind Lex0x(); + + uint64_t atoull(const char *Buffer, const char *End); + uint64_t HexIntToVal(const char *Buffer, const char *End); + void HexToIntPair(const char *Buffer, const char *End, uint64_t Pair[2]); + void FP80HexToIntPair(const char *Buff, const char *End, uint64_t Pair[2]); + }; +} // end namespace llvm + +#endif diff --git a/contrib/llvm/lib/AsmParser/LLParser.cpp b/contrib/llvm/lib/AsmParser/LLParser.cpp new file mode 100644 index 0000000..068be3d --- /dev/null +++ b/contrib/llvm/lib/AsmParser/LLParser.cpp @@ -0,0 +1,3997 @@ +//===-- LLParser.cpp - Parser Class ---------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the parser class for .ll files. +// +//===----------------------------------------------------------------------===// + +#include "LLParser.h" +#include "llvm/AutoUpgrade.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +static std::string getTypeString(Type *T) { + std::string Result; + raw_string_ostream Tmp(Result); + Tmp << *T; + return Tmp.str(); +} + +/// Run: module ::= toplevelentity* +bool LLParser::Run() { + // Prime the lexer. + Lex.Lex(); + + return ParseTopLevelEntities() || + ValidateEndOfModule(); +} + +/// ValidateEndOfModule - Do final validity and sanity checks at the end of the +/// module. +bool LLParser::ValidateEndOfModule() { + // Handle any instruction metadata forward references. + if (!ForwardRefInstMetadata.empty()) { + for (DenseMap<Instruction*, std::vector<MDRef> >::iterator + I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); + I != E; ++I) { + Instruction *Inst = I->first; + const std::vector<MDRef> &MDList = I->second; + + for (unsigned i = 0, e = MDList.size(); i != e; ++i) { + unsigned SlotNo = MDList[i].MDSlot; + + if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) + return Error(MDList[i].Loc, "use of undefined metadata '!" + + Twine(SlotNo) + "'"); + Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); + } + } + ForwardRefInstMetadata.clear(); + } + + + // If there are entries in ForwardRefBlockAddresses at this point, they are + // references after the function was defined. Resolve those now. + while (!ForwardRefBlockAddresses.empty()) { + // Okay, we are referencing an already-parsed function, resolve them now. + Function *TheFn = 0; + const ValID &Fn = ForwardRefBlockAddresses.begin()->first; + if (Fn.Kind == ValID::t_GlobalName) + TheFn = M->getFunction(Fn.StrVal); + else if (Fn.UIntVal < NumberedVals.size()) + TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); + + if (TheFn == 0) + return Error(Fn.Loc, "unknown function referenced by blockaddress"); + + // Resolve all these references. + if (ResolveForwardRefBlockAddresses(TheFn, + ForwardRefBlockAddresses.begin()->second, + 0)) + return true; + + ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); + } + + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) + if (NumberedTypes[i].second.isValid()) + return Error(NumberedTypes[i].second, + "use of undefined type '%" + Twine(i) + "'"); + + for (StringMap<std::pair<Type*, LocTy> >::iterator I = + NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) + if (I->second.second.isValid()) + return Error(I->second.second, + "use of undefined type named '" + I->getKey() + "'"); + + if (!ForwardRefVals.empty()) + return Error(ForwardRefVals.begin()->second.second, + "use of undefined value '@" + ForwardRefVals.begin()->first + + "'"); + + if (!ForwardRefValIDs.empty()) + return Error(ForwardRefValIDs.begin()->second.second, + "use of undefined value '@" + + Twine(ForwardRefValIDs.begin()->first) + "'"); + + if (!ForwardRefMDNodes.empty()) + return Error(ForwardRefMDNodes.begin()->second.second, + "use of undefined metadata '!" + + Twine(ForwardRefMDNodes.begin()->first) + "'"); + + + // Look for intrinsic functions and CallInst that need to be upgraded + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) + UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove + + return false; +} + +bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, + std::vector<std::pair<ValID, GlobalValue*> > &Refs, + PerFunctionState *PFS) { + // Loop over all the references, resolving them. + for (unsigned i = 0, e = Refs.size(); i != e; ++i) { + BasicBlock *Res; + if (PFS) { + if (Refs[i].first.Kind == ValID::t_LocalName) + Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); + else + Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); + } else if (Refs[i].first.Kind == ValID::t_LocalID) { + return Error(Refs[i].first.Loc, + "cannot take address of numeric label after the function is defined"); + } else { + Res = dyn_cast_or_null<BasicBlock>( + TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); + } + + if (Res == 0) + return Error(Refs[i].first.Loc, + "referenced value is not a basic block"); + + // Get the BlockAddress for this and update references to use it. + BlockAddress *BA = BlockAddress::get(TheFn, Res); + Refs[i].second->replaceAllUsesWith(BA); + Refs[i].second->eraseFromParent(); + } + return false; +} + + +//===----------------------------------------------------------------------===// +// Top-Level Entities +//===----------------------------------------------------------------------===// + +bool LLParser::ParseTopLevelEntities() { + while (1) { + switch (Lex.getKind()) { + default: return TokError("expected top-level entity"); + case lltok::Eof: return false; + case lltok::kw_declare: if (ParseDeclare()) return true; break; + case lltok::kw_define: if (ParseDefine()) return true; break; + case lltok::kw_module: if (ParseModuleAsm()) return true; break; + case lltok::kw_target: if (ParseTargetDefinition()) return true; break; + case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; + case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; + case lltok::LocalVar: if (ParseNamedType()) return true; break; + case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; + case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; + case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; + case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; + + // The Global variable production with no name can have many different + // optional leading prefixes, the production is: + // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal + // OptionalAddrSpace OptionalUnNammedAddr + // ('constant'|'global') ... + case lltok::kw_private: // OptionalLinkage + case lltok::kw_linker_private: // OptionalLinkage + case lltok::kw_linker_private_weak: // OptionalLinkage + case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage + case lltok::kw_internal: // OptionalLinkage + case lltok::kw_weak: // OptionalLinkage + case lltok::kw_weak_odr: // OptionalLinkage + case lltok::kw_linkonce: // OptionalLinkage + case lltok::kw_linkonce_odr: // OptionalLinkage + case lltok::kw_appending: // OptionalLinkage + case lltok::kw_dllexport: // OptionalLinkage + case lltok::kw_common: // OptionalLinkage + case lltok::kw_dllimport: // OptionalLinkage + case lltok::kw_extern_weak: // OptionalLinkage + case lltok::kw_external: { // OptionalLinkage + unsigned Linkage, Visibility; + if (ParseOptionalLinkage(Linkage) || + ParseOptionalVisibility(Visibility) || + ParseGlobal("", SMLoc(), Linkage, true, Visibility)) + return true; + break; + } + case lltok::kw_default: // OptionalVisibility + case lltok::kw_hidden: // OptionalVisibility + case lltok::kw_protected: { // OptionalVisibility + unsigned Visibility; + if (ParseOptionalVisibility(Visibility) || + ParseGlobal("", SMLoc(), 0, false, Visibility)) + return true; + break; + } + + case lltok::kw_thread_local: // OptionalThreadLocal + case lltok::kw_addrspace: // OptionalAddrSpace + case lltok::kw_constant: // GlobalType + case lltok::kw_global: // GlobalType + if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; + break; + } + } +} + + +/// toplevelentity +/// ::= 'module' 'asm' STRINGCONSTANT +bool LLParser::ParseModuleAsm() { + assert(Lex.getKind() == lltok::kw_module); + Lex.Lex(); + + std::string AsmStr; + if (ParseToken(lltok::kw_asm, "expected 'module asm'") || + ParseStringConstant(AsmStr)) return true; + + M->appendModuleInlineAsm(AsmStr); + return false; +} + +/// toplevelentity +/// ::= 'target' 'triple' '=' STRINGCONSTANT +/// ::= 'target' 'datalayout' '=' STRINGCONSTANT +bool LLParser::ParseTargetDefinition() { + assert(Lex.getKind() == lltok::kw_target); + std::string Str; + switch (Lex.Lex()) { + default: return TokError("unknown target property"); + case lltok::kw_triple: + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after target triple") || + ParseStringConstant(Str)) + return true; + M->setTargetTriple(Str); + return false; + case lltok::kw_datalayout: + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after target datalayout") || + ParseStringConstant(Str)) + return true; + M->setDataLayout(Str); + return false; + } +} + +/// toplevelentity +/// ::= 'deplibs' '=' '[' ']' +/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' +bool LLParser::ParseDepLibs() { + assert(Lex.getKind() == lltok::kw_deplibs); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after deplibs") || + ParseToken(lltok::lsquare, "expected '=' after deplibs")) + return true; + + if (EatIfPresent(lltok::rsquare)) + return false; + + std::string Str; + if (ParseStringConstant(Str)) return true; + M->addLibrary(Str); + + while (EatIfPresent(lltok::comma)) { + if (ParseStringConstant(Str)) return true; + M->addLibrary(Str); + } + + return ParseToken(lltok::rsquare, "expected ']' at end of list"); +} + +/// ParseUnnamedType: +/// ::= LocalVarID '=' 'type' type +bool LLParser::ParseUnnamedType() { + LocTy TypeLoc = Lex.getLoc(); + unsigned TypeID = Lex.getUIntVal(); + Lex.Lex(); // eat LocalVarID; + + if (ParseToken(lltok::equal, "expected '=' after name") || + ParseToken(lltok::kw_type, "expected 'type' after '='")) + return true; + + if (TypeID >= NumberedTypes.size()) + NumberedTypes.resize(TypeID+1); + + Type *Result = 0; + if (ParseStructDefinition(TypeLoc, "", + NumberedTypes[TypeID], Result)) return true; + + if (!isa<StructType>(Result)) { + std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; + if (Entry.first) + return Error(TypeLoc, "non-struct types may not be recursive"); + Entry.first = Result; + Entry.second = SMLoc(); + } + + return false; +} + + +/// toplevelentity +/// ::= LocalVar '=' 'type' type +bool LLParser::ParseNamedType() { + std::string Name = Lex.getStrVal(); + LocTy NameLoc = Lex.getLoc(); + Lex.Lex(); // eat LocalVar. + + if (ParseToken(lltok::equal, "expected '=' after name") || + ParseToken(lltok::kw_type, "expected 'type' after name")) + return true; + + Type *Result = 0; + if (ParseStructDefinition(NameLoc, Name, + NamedTypes[Name], Result)) return true; + + if (!isa<StructType>(Result)) { + std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; + if (Entry.first) + return Error(NameLoc, "non-struct types may not be recursive"); + Entry.first = Result; + Entry.second = SMLoc(); + } + + return false; +} + + +/// toplevelentity +/// ::= 'declare' FunctionHeader +bool LLParser::ParseDeclare() { + assert(Lex.getKind() == lltok::kw_declare); + Lex.Lex(); + + Function *F; + return ParseFunctionHeader(F, false); +} + +/// toplevelentity +/// ::= 'define' FunctionHeader '{' ... +bool LLParser::ParseDefine() { + assert(Lex.getKind() == lltok::kw_define); + Lex.Lex(); + + Function *F; + return ParseFunctionHeader(F, true) || + ParseFunctionBody(*F); +} + +/// ParseGlobalType +/// ::= 'constant' +/// ::= 'global' +bool LLParser::ParseGlobalType(bool &IsConstant) { + if (Lex.getKind() == lltok::kw_constant) + IsConstant = true; + else if (Lex.getKind() == lltok::kw_global) + IsConstant = false; + else { + IsConstant = false; + return TokError("expected 'global' or 'constant'"); + } + Lex.Lex(); + return false; +} + +/// ParseUnnamedGlobal: +/// OptionalVisibility ALIAS ... +/// OptionalLinkage OptionalVisibility ... -> global variable +/// GlobalID '=' OptionalVisibility ALIAS ... +/// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable +bool LLParser::ParseUnnamedGlobal() { + unsigned VarID = NumberedVals.size(); + std::string Name; + LocTy NameLoc = Lex.getLoc(); + + // Handle the GlobalID form. + if (Lex.getKind() == lltok::GlobalID) { + if (Lex.getUIntVal() != VarID) + return Error(Lex.getLoc(), "variable expected to be numbered '%" + + Twine(VarID) + "'"); + Lex.Lex(); // eat GlobalID; + + if (ParseToken(lltok::equal, "expected '=' after name")) + return true; + } + + bool HasLinkage; + unsigned Linkage, Visibility; + if (ParseOptionalLinkage(Linkage, HasLinkage) || + ParseOptionalVisibility(Visibility)) + return true; + + if (HasLinkage || Lex.getKind() != lltok::kw_alias) + return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); + return ParseAlias(Name, NameLoc, Visibility); +} + +/// ParseNamedGlobal: +/// GlobalVar '=' OptionalVisibility ALIAS ... +/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable +bool LLParser::ParseNamedGlobal() { + assert(Lex.getKind() == lltok::GlobalVar); + LocTy NameLoc = Lex.getLoc(); + std::string Name = Lex.getStrVal(); + Lex.Lex(); + + bool HasLinkage; + unsigned Linkage, Visibility; + if (ParseToken(lltok::equal, "expected '=' in global variable") || + ParseOptionalLinkage(Linkage, HasLinkage) || + ParseOptionalVisibility(Visibility)) + return true; + + if (HasLinkage || Lex.getKind() != lltok::kw_alias) + return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); + return ParseAlias(Name, NameLoc, Visibility); +} + +// MDString: +// ::= '!' STRINGCONSTANT +bool LLParser::ParseMDString(MDString *&Result) { + std::string Str; + if (ParseStringConstant(Str)) return true; + Result = MDString::get(Context, Str); + return false; +} + +// MDNode: +// ::= '!' MDNodeNumber +// +/// This version of ParseMDNodeID returns the slot number and null in the case +/// of a forward reference. +bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { + // !{ ..., !42, ... } + if (ParseUInt32(SlotNo)) return true; + + // Check existing MDNode. + if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) + Result = NumberedMetadata[SlotNo]; + else + Result = 0; + return false; +} + +bool LLParser::ParseMDNodeID(MDNode *&Result) { + // !{ ..., !42, ... } + unsigned MID = 0; + if (ParseMDNodeID(Result, MID)) return true; + + // If not a forward reference, just return it now. + if (Result) return false; + + // Otherwise, create MDNode forward reference. + MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); + ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); + + if (NumberedMetadata.size() <= MID) + NumberedMetadata.resize(MID+1); + NumberedMetadata[MID] = FwdNode; + Result = FwdNode; + return false; +} + +/// ParseNamedMetadata: +/// !foo = !{ !1, !2 } +bool LLParser::ParseNamedMetadata() { + assert(Lex.getKind() == lltok::MetadataVar); + std::string Name = Lex.getStrVal(); + Lex.Lex(); + + if (ParseToken(lltok::equal, "expected '=' here") || + ParseToken(lltok::exclaim, "Expected '!' here") || + ParseToken(lltok::lbrace, "Expected '{' here")) + return true; + + NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); + if (Lex.getKind() != lltok::rbrace) + do { + if (ParseToken(lltok::exclaim, "Expected '!' here")) + return true; + + MDNode *N = 0; + if (ParseMDNodeID(N)) return true; + NMD->addOperand(N); + } while (EatIfPresent(lltok::comma)); + + if (ParseToken(lltok::rbrace, "expected end of metadata node")) + return true; + + return false; +} + +/// ParseStandaloneMetadata: +/// !42 = !{...} +bool LLParser::ParseStandaloneMetadata() { + assert(Lex.getKind() == lltok::exclaim); + Lex.Lex(); + unsigned MetadataID = 0; + + LocTy TyLoc; + Type *Ty = 0; + SmallVector<Value *, 16> Elts; + if (ParseUInt32(MetadataID) || + ParseToken(lltok::equal, "expected '=' here") || + ParseType(Ty, TyLoc) || + ParseToken(lltok::exclaim, "Expected '!' here") || + ParseToken(lltok::lbrace, "Expected '{' here") || + ParseMDNodeVector(Elts, NULL) || + ParseToken(lltok::rbrace, "expected end of metadata node")) + return true; + + MDNode *Init = MDNode::get(Context, Elts); + + // See if this was forward referenced, if so, handle it. + std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator + FI = ForwardRefMDNodes.find(MetadataID); + if (FI != ForwardRefMDNodes.end()) { + MDNode *Temp = FI->second.first; + Temp->replaceAllUsesWith(Init); + MDNode::deleteTemporary(Temp); + ForwardRefMDNodes.erase(FI); + + assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); + } else { + if (MetadataID >= NumberedMetadata.size()) + NumberedMetadata.resize(MetadataID+1); + + if (NumberedMetadata[MetadataID] != 0) + return TokError("Metadata id is already used"); + NumberedMetadata[MetadataID] = Init; + } + + return false; +} + +/// ParseAlias: +/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee +/// Aliasee +/// ::= TypeAndValue +/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' +/// ::= 'getelementptr' 'inbounds'? '(' ... ')' +/// +/// Everything through visibility has already been parsed. +/// +bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, + unsigned Visibility) { + assert(Lex.getKind() == lltok::kw_alias); + Lex.Lex(); + unsigned Linkage; + LocTy LinkageLoc = Lex.getLoc(); + if (ParseOptionalLinkage(Linkage)) + return true; + + if (Linkage != GlobalValue::ExternalLinkage && + Linkage != GlobalValue::WeakAnyLinkage && + Linkage != GlobalValue::WeakODRLinkage && + Linkage != GlobalValue::InternalLinkage && + Linkage != GlobalValue::PrivateLinkage && + Linkage != GlobalValue::LinkerPrivateLinkage && + Linkage != GlobalValue::LinkerPrivateWeakLinkage && + Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) + return Error(LinkageLoc, "invalid linkage type for alias"); + + Constant *Aliasee; + LocTy AliaseeLoc = Lex.getLoc(); + if (Lex.getKind() != lltok::kw_bitcast && + Lex.getKind() != lltok::kw_getelementptr) { + if (ParseGlobalTypeAndValue(Aliasee)) return true; + } else { + // The bitcast dest type is not present, it is implied by the dest type. + ValID ID; + if (ParseValID(ID)) return true; + if (ID.Kind != ValID::t_Constant) + return Error(AliaseeLoc, "invalid aliasee"); + Aliasee = ID.ConstantVal; + } + + if (!Aliasee->getType()->isPointerTy()) + return Error(AliaseeLoc, "alias must have pointer type"); + + // Okay, create the alias but do not insert it into the module yet. + GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), + (GlobalValue::LinkageTypes)Linkage, Name, + Aliasee); + GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); + + // See if this value already exists in the symbol table. If so, it is either + // a redefinition or a definition of a forward reference. + if (GlobalValue *Val = M->getNamedValue(Name)) { + // See if this was a redefinition. If so, there is no entry in + // ForwardRefVals. + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I == ForwardRefVals.end()) + return Error(NameLoc, "redefinition of global named '@" + Name + "'"); + + // Otherwise, this was a definition of forward ref. Verify that types + // agree. + if (Val->getType() != GA->getType()) + return Error(NameLoc, + "forward reference and definition of alias have different types"); + + // If they agree, just RAUW the old value with the alias and remove the + // forward ref info. + Val->replaceAllUsesWith(GA); + Val->eraseFromParent(); + ForwardRefVals.erase(I); + } + + // Insert into the module, we know its name won't collide now. + M->getAliasList().push_back(GA); + assert(GA->getName() == Name && "Should not be a name conflict!"); + + return false; +} + +/// ParseGlobal +/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal +/// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const +/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal +/// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const +/// +/// Everything through visibility has been parsed already. +/// +bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, + unsigned Linkage, bool HasLinkage, + unsigned Visibility) { + unsigned AddrSpace; + bool ThreadLocal, IsConstant, UnnamedAddr; + LocTy UnnamedAddrLoc; + LocTy TyLoc; + + Type *Ty = 0; + if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || + ParseOptionalAddrSpace(AddrSpace) || + ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, + &UnnamedAddrLoc) || + ParseGlobalType(IsConstant) || + ParseType(Ty, TyLoc)) + return true; + + // If the linkage is specified and is external, then no initializer is + // present. + Constant *Init = 0; + if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && + Linkage != GlobalValue::ExternalWeakLinkage && + Linkage != GlobalValue::ExternalLinkage)) { + if (ParseGlobalValue(Ty, Init)) + return true; + } + + if (Ty->isFunctionTy() || Ty->isLabelTy()) + return Error(TyLoc, "invalid type for global variable"); + + GlobalVariable *GV = 0; + + // See if the global was forward referenced, if so, use the global. + if (!Name.empty()) { + if (GlobalValue *GVal = M->getNamedValue(Name)) { + if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) + return Error(NameLoc, "redefinition of global '@" + Name + "'"); + GV = cast<GlobalVariable>(GVal); + } + } else { + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefValIDs.find(NumberedVals.size()); + if (I != ForwardRefValIDs.end()) { + GV = cast<GlobalVariable>(I->second.first); + ForwardRefValIDs.erase(I); + } + } + + if (GV == 0) { + GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, + Name, 0, false, AddrSpace); + } else { + if (GV->getType()->getElementType() != Ty) + return Error(TyLoc, + "forward reference and definition of global have different types"); + + // Move the forward-reference to the correct spot in the module. + M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); + } + + if (Name.empty()) + NumberedVals.push_back(GV); + + // Set the parsed properties on the global. + if (Init) + GV->setInitializer(Init); + GV->setConstant(IsConstant); + GV->setLinkage((GlobalValue::LinkageTypes)Linkage); + GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); + GV->setThreadLocal(ThreadLocal); + GV->setUnnamedAddr(UnnamedAddr); + + // Parse attributes on the global. + while (Lex.getKind() == lltok::comma) { + Lex.Lex(); + + if (Lex.getKind() == lltok::kw_section) { + Lex.Lex(); + GV->setSection(Lex.getStrVal()); + if (ParseToken(lltok::StringConstant, "expected global section string")) + return true; + } else if (Lex.getKind() == lltok::kw_align) { + unsigned Alignment; + if (ParseOptionalAlignment(Alignment)) return true; + GV->setAlignment(Alignment); + } else { + TokError("unknown global variable property!"); + } + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// GlobalValue Reference/Resolution Routines. +//===----------------------------------------------------------------------===// + +/// GetGlobalVal - Get a value with the specified name or ID, creating a +/// forward reference record if needed. This can return null if the value +/// exists but does not have the right type. +GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, + LocTy Loc) { + PointerType *PTy = dyn_cast<PointerType>(Ty); + if (PTy == 0) { + Error(Loc, "global variable reference must have pointer type"); + return 0; + } + + // Look this name up in the normal function symbol table. + GlobalValue *Val = + cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I != ForwardRefVals.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + Error(Loc, "'@" + Name + "' defined with type '" + + getTypeString(Val->getType()) + "'"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + GlobalValue *FwdVal; + if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) + FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); + else + FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, + GlobalValue::ExternalWeakLinkage, 0, Name); + + ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { + PointerType *PTy = dyn_cast<PointerType>(Ty); + if (PTy == 0) { + Error(Loc, "global variable reference must have pointer type"); + return 0; + } + + GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefValIDs.find(ID); + if (I != ForwardRefValIDs.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + Error(Loc, "'@" + Twine(ID) + "' defined with type '" + + getTypeString(Val->getType()) + "'"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + GlobalValue *FwdVal; + if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) + FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); + else + FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, + GlobalValue::ExternalWeakLinkage, 0, ""); + + ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + + +//===----------------------------------------------------------------------===// +// Helper Routines. +//===----------------------------------------------------------------------===// + +/// ParseToken - If the current token has the specified kind, eat it and return +/// success. Otherwise, emit the specified error and return failure. +bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { + if (Lex.getKind() != T) + return TokError(ErrMsg); + Lex.Lex(); + return false; +} + +/// ParseStringConstant +/// ::= StringConstant +bool LLParser::ParseStringConstant(std::string &Result) { + if (Lex.getKind() != lltok::StringConstant) + return TokError("expected string constant"); + Result = Lex.getStrVal(); + Lex.Lex(); + return false; +} + +/// ParseUInt32 +/// ::= uint32 +bool LLParser::ParseUInt32(unsigned &Val) { + if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) + return TokError("expected integer"); + uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); + if (Val64 != unsigned(Val64)) + return TokError("expected 32-bit integer (too large)"); + Val = Val64; + Lex.Lex(); + return false; +} + + +/// ParseOptionalAddrSpace +/// := /*empty*/ +/// := 'addrspace' '(' uint32 ')' +bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { + AddrSpace = 0; + if (!EatIfPresent(lltok::kw_addrspace)) + return false; + return ParseToken(lltok::lparen, "expected '(' in address space") || + ParseUInt32(AddrSpace) || + ParseToken(lltok::rparen, "expected ')' in address space"); +} + +/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind +/// indicates what kind of attribute list this is: 0: function arg, 1: result, +/// 2: function attr. +bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) { + Attrs = Attribute::None; + LocTy AttrLoc = Lex.getLoc(); + + while (1) { + switch (Lex.getKind()) { + default: // End of attributes. + if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) + return Error(AttrLoc, "invalid use of function-only attribute"); + + // As a hack, we allow "align 2" on functions as a synonym for + // "alignstack 2". + if (AttrKind == 2 && + (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) + return Error(AttrLoc, "invalid use of attribute on a function"); + + if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) + return Error(AttrLoc, "invalid use of parameter-only attribute"); + + return false; + case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; + case lltok::kw_signext: Attrs |= Attribute::SExt; break; + case lltok::kw_inreg: Attrs |= Attribute::InReg; break; + case lltok::kw_sret: Attrs |= Attribute::StructRet; break; + case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; + case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; + case lltok::kw_byval: Attrs |= Attribute::ByVal; break; + case lltok::kw_nest: Attrs |= Attribute::Nest; break; + + case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; + case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; + case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; + case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; + case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; + case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; + case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; + case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; + case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; + case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; + case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; + case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; + case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; + case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; + case lltok::kw_naked: Attrs |= Attribute::Naked; break; + case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; + case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break; + + case lltok::kw_alignstack: { + unsigned Alignment; + if (ParseOptionalStackAlignment(Alignment)) + return true; + Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); + continue; + } + + case lltok::kw_align: { + unsigned Alignment; + if (ParseOptionalAlignment(Alignment)) + return true; + Attrs |= Attribute::constructAlignmentFromInt(Alignment); + continue; + } + + } + Lex.Lex(); + } +} + +/// ParseOptionalLinkage +/// ::= /*empty*/ +/// ::= 'private' +/// ::= 'linker_private' +/// ::= 'linker_private_weak' +/// ::= 'linker_private_weak_def_auto' +/// ::= 'internal' +/// ::= 'weak' +/// ::= 'weak_odr' +/// ::= 'linkonce' +/// ::= 'linkonce_odr' +/// ::= 'available_externally' +/// ::= 'appending' +/// ::= 'dllexport' +/// ::= 'common' +/// ::= 'dllimport' +/// ::= 'extern_weak' +/// ::= 'external' +bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { + HasLinkage = false; + switch (Lex.getKind()) { + default: Res=GlobalValue::ExternalLinkage; return false; + case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; + case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; + case lltok::kw_linker_private_weak: + Res = GlobalValue::LinkerPrivateWeakLinkage; + break; + case lltok::kw_linker_private_weak_def_auto: + Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; + break; + case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; + case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; + case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; + case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; + case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; + case lltok::kw_available_externally: + Res = GlobalValue::AvailableExternallyLinkage; + break; + case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; + case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; + case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; + case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; + case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; + case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; + } + Lex.Lex(); + HasLinkage = true; + return false; +} + +/// ParseOptionalVisibility +/// ::= /*empty*/ +/// ::= 'default' +/// ::= 'hidden' +/// ::= 'protected' +/// +bool LLParser::ParseOptionalVisibility(unsigned &Res) { + switch (Lex.getKind()) { + default: Res = GlobalValue::DefaultVisibility; return false; + case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; + case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; + case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; + } + Lex.Lex(); + return false; +} + +/// ParseOptionalCallingConv +/// ::= /*empty*/ +/// ::= 'ccc' +/// ::= 'fastcc' +/// ::= 'coldcc' +/// ::= 'x86_stdcallcc' +/// ::= 'x86_fastcallcc' +/// ::= 'x86_thiscallcc' +/// ::= 'arm_apcscc' +/// ::= 'arm_aapcscc' +/// ::= 'arm_aapcs_vfpcc' +/// ::= 'msp430_intrcc' +/// ::= 'ptx_kernel' +/// ::= 'ptx_device' +/// ::= 'cc' UINT +/// +bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { + switch (Lex.getKind()) { + default: CC = CallingConv::C; return false; + case lltok::kw_ccc: CC = CallingConv::C; break; + case lltok::kw_fastcc: CC = CallingConv::Fast; break; + case lltok::kw_coldcc: CC = CallingConv::Cold; break; + case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; + case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; + case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; + case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; + case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; + case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; + case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; + case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; + case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; + case lltok::kw_cc: { + unsigned ArbitraryCC; + Lex.Lex(); + if (ParseUInt32(ArbitraryCC)) + return true; + CC = static_cast<CallingConv::ID>(ArbitraryCC); + return false; + } + } + + Lex.Lex(); + return false; +} + +/// ParseInstructionMetadata +/// ::= !dbg !42 (',' !dbg !57)* +bool LLParser::ParseInstructionMetadata(Instruction *Inst, + PerFunctionState *PFS) { + do { + if (Lex.getKind() != lltok::MetadataVar) + return TokError("expected metadata after comma"); + + std::string Name = Lex.getStrVal(); + unsigned MDK = M->getMDKindID(Name); + Lex.Lex(); + + MDNode *Node; + SMLoc Loc = Lex.getLoc(); + + if (ParseToken(lltok::exclaim, "expected '!' here")) + return true; + + // This code is similar to that of ParseMetadataValue, however it needs to + // have special-case code for a forward reference; see the comments on + // ForwardRefInstMetadata for details. Also, MDStrings are not supported + // at the top level here. + if (Lex.getKind() == lltok::lbrace) { + ValID ID; + if (ParseMetadataListValue(ID, PFS)) + return true; + assert(ID.Kind == ValID::t_MDNode); + Inst->setMetadata(MDK, ID.MDNodeVal); + } else { + unsigned NodeID = 0; + if (ParseMDNodeID(Node, NodeID)) + return true; + if (Node) { + // If we got the node, add it to the instruction. + Inst->setMetadata(MDK, Node); + } else { + MDRef R = { Loc, MDK, NodeID }; + // Otherwise, remember that this should be resolved later. + ForwardRefInstMetadata[Inst].push_back(R); + } + } + + // If this is the end of the list, we're done. + } while (EatIfPresent(lltok::comma)); + return false; +} + +/// ParseOptionalAlignment +/// ::= /* empty */ +/// ::= 'align' 4 +bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { + Alignment = 0; + if (!EatIfPresent(lltok::kw_align)) + return false; + LocTy AlignLoc = Lex.getLoc(); + if (ParseUInt32(Alignment)) return true; + if (!isPowerOf2_32(Alignment)) + return Error(AlignLoc, "alignment is not a power of two"); + if (Alignment > Value::MaximumAlignment) + return Error(AlignLoc, "huge alignments are not supported yet"); + return false; +} + +/// ParseOptionalCommaAlign +/// ::= +/// ::= ',' align 4 +/// +/// This returns with AteExtraComma set to true if it ate an excess comma at the +/// end. +bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, + bool &AteExtraComma) { + AteExtraComma = false; + while (EatIfPresent(lltok::comma)) { + // Metadata at the end is an early exit. + if (Lex.getKind() == lltok::MetadataVar) { + AteExtraComma = true; + return false; + } + + if (Lex.getKind() != lltok::kw_align) + return Error(Lex.getLoc(), "expected metadata or 'align'"); + + if (ParseOptionalAlignment(Alignment)) return true; + } + + return false; +} + +/// ParseScopeAndOrdering +/// if isAtomic: ::= 'singlethread'? AtomicOrdering +/// else: ::= +/// +/// This sets Scope and Ordering to the parsed values. +bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, + AtomicOrdering &Ordering) { + if (!isAtomic) + return false; + + Scope = CrossThread; + if (EatIfPresent(lltok::kw_singlethread)) + Scope = SingleThread; + switch (Lex.getKind()) { + default: return TokError("Expected ordering on atomic instruction"); + case lltok::kw_unordered: Ordering = Unordered; break; + case lltok::kw_monotonic: Ordering = Monotonic; break; + case lltok::kw_acquire: Ordering = Acquire; break; + case lltok::kw_release: Ordering = Release; break; + case lltok::kw_acq_rel: Ordering = AcquireRelease; break; + case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; + } + Lex.Lex(); + return false; +} + +/// ParseOptionalStackAlignment +/// ::= /* empty */ +/// ::= 'alignstack' '(' 4 ')' +bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { + Alignment = 0; + if (!EatIfPresent(lltok::kw_alignstack)) + return false; + LocTy ParenLoc = Lex.getLoc(); + if (!EatIfPresent(lltok::lparen)) + return Error(ParenLoc, "expected '('"); + LocTy AlignLoc = Lex.getLoc(); + if (ParseUInt32(Alignment)) return true; + ParenLoc = Lex.getLoc(); + if (!EatIfPresent(lltok::rparen)) + return Error(ParenLoc, "expected ')'"); + if (!isPowerOf2_32(Alignment)) + return Error(AlignLoc, "stack alignment is not a power of two"); + return false; +} + +/// ParseIndexList - This parses the index list for an insert/extractvalue +/// instruction. This sets AteExtraComma in the case where we eat an extra +/// comma at the end of the line and find that it is followed by metadata. +/// Clients that don't allow metadata can call the version of this function that +/// only takes one argument. +/// +/// ParseIndexList +/// ::= (',' uint32)+ +/// +bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, + bool &AteExtraComma) { + AteExtraComma = false; + + if (Lex.getKind() != lltok::comma) + return TokError("expected ',' as start of index list"); + + while (EatIfPresent(lltok::comma)) { + if (Lex.getKind() == lltok::MetadataVar) { + AteExtraComma = true; + return false; + } + unsigned Idx = 0; + if (ParseUInt32(Idx)) return true; + Indices.push_back(Idx); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Type Parsing. +//===----------------------------------------------------------------------===// + +/// ParseType - Parse a type. +bool LLParser::ParseType(Type *&Result, bool AllowVoid) { + SMLoc TypeLoc = Lex.getLoc(); + switch (Lex.getKind()) { + default: + return TokError("expected type"); + case lltok::Type: + // Type ::= 'float' | 'void' (etc) + Result = Lex.getTyVal(); + Lex.Lex(); + break; + case lltok::lbrace: + // Type ::= StructType + if (ParseAnonStructType(Result, false)) + return true; + break; + case lltok::lsquare: + // Type ::= '[' ... ']' + Lex.Lex(); // eat the lsquare. + if (ParseArrayVectorType(Result, false)) + return true; + break; + case lltok::less: // Either vector or packed struct. + // Type ::= '<' ... '>' + Lex.Lex(); + if (Lex.getKind() == lltok::lbrace) { + if (ParseAnonStructType(Result, true) || + ParseToken(lltok::greater, "expected '>' at end of packed struct")) + return true; + } else if (ParseArrayVectorType(Result, true)) + return true; + break; + case lltok::LocalVar: { + // Type ::= %foo + std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; + + // If the type hasn't been defined yet, create a forward definition and + // remember where that forward def'n was seen (in case it never is defined). + if (Entry.first == 0) { + Entry.first = StructType::create(Context, Lex.getStrVal()); + Entry.second = Lex.getLoc(); + } + Result = Entry.first; + Lex.Lex(); + break; + } + + case lltok::LocalVarID: { + // Type ::= %4 + if (Lex.getUIntVal() >= NumberedTypes.size()) + NumberedTypes.resize(Lex.getUIntVal()+1); + std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; + + // If the type hasn't been defined yet, create a forward definition and + // remember where that forward def'n was seen (in case it never is defined). + if (Entry.first == 0) { + Entry.first = StructType::create(Context); + Entry.second = Lex.getLoc(); + } + Result = Entry.first; + Lex.Lex(); + break; + } + } + + // Parse the type suffixes. + while (1) { + switch (Lex.getKind()) { + // End of type. + default: + if (!AllowVoid && Result->isVoidTy()) + return Error(TypeLoc, "void type only allowed for function results"); + return false; + + // Type ::= Type '*' + case lltok::star: + if (Result->isLabelTy()) + return TokError("basic block pointers are invalid"); + if (Result->isVoidTy()) + return TokError("pointers to void are invalid - use i8* instead"); + if (!PointerType::isValidElementType(Result)) + return TokError("pointer to this type is invalid"); + Result = PointerType::getUnqual(Result); + Lex.Lex(); + break; + + // Type ::= Type 'addrspace' '(' uint32 ')' '*' + case lltok::kw_addrspace: { + if (Result->isLabelTy()) + return TokError("basic block pointers are invalid"); + if (Result->isVoidTy()) + return TokError("pointers to void are invalid; use i8* instead"); + if (!PointerType::isValidElementType(Result)) + return TokError("pointer to this type is invalid"); + unsigned AddrSpace; + if (ParseOptionalAddrSpace(AddrSpace) || + ParseToken(lltok::star, "expected '*' in address space")) + return true; + + Result = PointerType::get(Result, AddrSpace); + break; + } + + /// Types '(' ArgTypeListI ')' OptFuncAttrs + case lltok::lparen: + if (ParseFunctionType(Result)) + return true; + break; + } + } +} + +/// ParseParameterList +/// ::= '(' ')' +/// ::= '(' Arg (',' Arg)* ')' +/// Arg +/// ::= Type OptionalAttributes Value OptionalAttributes +bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, + PerFunctionState &PFS) { + if (ParseToken(lltok::lparen, "expected '(' in call")) + return true; + + while (Lex.getKind() != lltok::rparen) { + // If this isn't the first argument, we need a comma. + if (!ArgList.empty() && + ParseToken(lltok::comma, "expected ',' in argument list")) + return true; + + // Parse the argument. + LocTy ArgLoc; + Type *ArgTy = 0; + Attributes ArgAttrs1; + Attributes ArgAttrs2; + Value *V; + if (ParseType(ArgTy, ArgLoc)) + return true; + + // Otherwise, handle normal operands. + if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) + return true; + ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); + } + + Lex.Lex(); // Lex the ')'. + return false; +} + + + +/// ParseArgumentList - Parse the argument list for a function type or function +/// prototype. +/// ::= '(' ArgTypeListI ')' +/// ArgTypeListI +/// ::= /*empty*/ +/// ::= '...' +/// ::= ArgTypeList ',' '...' +/// ::= ArgType (',' ArgType)* +/// +bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, + bool &isVarArg){ + isVarArg = false; + assert(Lex.getKind() == lltok::lparen); + Lex.Lex(); // eat the (. + + if (Lex.getKind() == lltok::rparen) { + // empty + } else if (Lex.getKind() == lltok::dotdotdot) { + isVarArg = true; + Lex.Lex(); + } else { + LocTy TypeLoc = Lex.getLoc(); + Type *ArgTy = 0; + Attributes Attrs; + std::string Name; + + if (ParseType(ArgTy) || + ParseOptionalAttrs(Attrs, 0)) return true; + + if (ArgTy->isVoidTy()) + return Error(TypeLoc, "argument can not have void type"); + + if (Lex.getKind() == lltok::LocalVar) { + Name = Lex.getStrVal(); + Lex.Lex(); + } + + if (!FunctionType::isValidArgumentType(ArgTy)) + return Error(TypeLoc, "invalid type for function argument"); + + ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); + + while (EatIfPresent(lltok::comma)) { + // Handle ... at end of arg list. + if (EatIfPresent(lltok::dotdotdot)) { + isVarArg = true; + break; + } + + // Otherwise must be an argument type. + TypeLoc = Lex.getLoc(); + if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; + + if (ArgTy->isVoidTy()) + return Error(TypeLoc, "argument can not have void type"); + + if (Lex.getKind() == lltok::LocalVar) { + Name = Lex.getStrVal(); + Lex.Lex(); + } else { + Name = ""; + } + + if (!ArgTy->isFirstClassType()) + return Error(TypeLoc, "invalid type for function argument"); + + ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); + } + } + + return ParseToken(lltok::rparen, "expected ')' at end of argument list"); +} + +/// ParseFunctionType +/// ::= Type ArgumentList OptionalAttrs +bool LLParser::ParseFunctionType(Type *&Result) { + assert(Lex.getKind() == lltok::lparen); + + if (!FunctionType::isValidReturnType(Result)) + return TokError("invalid function return type"); + + SmallVector<ArgInfo, 8> ArgList; + bool isVarArg; + if (ParseArgumentList(ArgList, isVarArg)) + return true; + + // Reject names on the arguments lists. + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + if (!ArgList[i].Name.empty()) + return Error(ArgList[i].Loc, "argument name invalid in function type"); + if (ArgList[i].Attrs) + return Error(ArgList[i].Loc, + "argument attributes invalid in function type"); + } + + SmallVector<Type*, 16> ArgListTy; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ArgListTy.push_back(ArgList[i].Ty); + + Result = FunctionType::get(Result, ArgListTy, isVarArg); + return false; +} + +/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into +/// other structs. +bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { + SmallVector<Type*, 8> Elts; + if (ParseStructBody(Elts)) return true; + + Result = StructType::get(Context, Elts, Packed); + return false; +} + +/// ParseStructDefinition - Parse a struct in a 'type' definition. +bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, + std::pair<Type*, LocTy> &Entry, + Type *&ResultTy) { + // If the type was already defined, diagnose the redefinition. + if (Entry.first && !Entry.second.isValid()) + return Error(TypeLoc, "redefinition of type"); + + // If we have opaque, just return without filling in the definition for the + // struct. This counts as a definition as far as the .ll file goes. + if (EatIfPresent(lltok::kw_opaque)) { + // This type is being defined, so clear the location to indicate this. + Entry.second = SMLoc(); + + // If this type number has never been uttered, create it. + if (Entry.first == 0) + Entry.first = StructType::create(Context, Name); + ResultTy = Entry.first; + return false; + } + + // If the type starts with '<', then it is either a packed struct or a vector. + bool isPacked = EatIfPresent(lltok::less); + + // If we don't have a struct, then we have a random type alias, which we + // accept for compatibility with old files. These types are not allowed to be + // forward referenced and not allowed to be recursive. + if (Lex.getKind() != lltok::lbrace) { + if (Entry.first) + return Error(TypeLoc, "forward references to non-struct type"); + + ResultTy = 0; + if (isPacked) + return ParseArrayVectorType(ResultTy, true); + return ParseType(ResultTy); + } + + // This type is being defined, so clear the location to indicate this. + Entry.second = SMLoc(); + + // If this type number has never been uttered, create it. + if (Entry.first == 0) + Entry.first = StructType::create(Context, Name); + + StructType *STy = cast<StructType>(Entry.first); + + SmallVector<Type*, 8> Body; + if (ParseStructBody(Body) || + (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) + return true; + + STy->setBody(Body, isPacked); + ResultTy = STy; + return false; +} + + +/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. +/// StructType +/// ::= '{' '}' +/// ::= '{' Type (',' Type)* '}' +/// ::= '<' '{' '}' '>' +/// ::= '<' '{' Type (',' Type)* '}' '>' +bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { + assert(Lex.getKind() == lltok::lbrace); + Lex.Lex(); // Consume the '{' + + // Handle the empty struct. + if (EatIfPresent(lltok::rbrace)) + return false; + + LocTy EltTyLoc = Lex.getLoc(); + Type *Ty = 0; + if (ParseType(Ty)) return true; + Body.push_back(Ty); + + if (!StructType::isValidElementType(Ty)) + return Error(EltTyLoc, "invalid element type for struct"); + + while (EatIfPresent(lltok::comma)) { + EltTyLoc = Lex.getLoc(); + if (ParseType(Ty)) return true; + + if (!StructType::isValidElementType(Ty)) + return Error(EltTyLoc, "invalid element type for struct"); + + Body.push_back(Ty); + } + + return ParseToken(lltok::rbrace, "expected '}' at end of struct"); +} + +/// ParseArrayVectorType - Parse an array or vector type, assuming the first +/// token has already been consumed. +/// Type +/// ::= '[' APSINTVAL 'x' Types ']' +/// ::= '<' APSINTVAL 'x' Types '>' +bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { + if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || + Lex.getAPSIntVal().getBitWidth() > 64) + return TokError("expected number in address space"); + + LocTy SizeLoc = Lex.getLoc(); + uint64_t Size = Lex.getAPSIntVal().getZExtValue(); + Lex.Lex(); + + if (ParseToken(lltok::kw_x, "expected 'x' after element count")) + return true; + + LocTy TypeLoc = Lex.getLoc(); + Type *EltTy = 0; + if (ParseType(EltTy)) return true; + + if (ParseToken(isVector ? lltok::greater : lltok::rsquare, + "expected end of sequential type")) + return true; + + if (isVector) { + if (Size == 0) + return Error(SizeLoc, "zero element vector is illegal"); + if ((unsigned)Size != Size) + return Error(SizeLoc, "size too large for vector"); + if (!VectorType::isValidElementType(EltTy)) + return Error(TypeLoc, + "vector element type must be fp, integer or a pointer to these types"); + Result = VectorType::get(EltTy, unsigned(Size)); + } else { + if (!ArrayType::isValidElementType(EltTy)) + return Error(TypeLoc, "invalid array element type"); + Result = ArrayType::get(EltTy, Size); + } + return false; +} + +//===----------------------------------------------------------------------===// +// Function Semantic Analysis. +//===----------------------------------------------------------------------===// + +LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, + int functionNumber) + : P(p), F(f), FunctionNumber(functionNumber) { + + // Insert unnamed arguments into the NumberedVals list. + for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); + AI != E; ++AI) + if (!AI->hasName()) + NumberedVals.push_back(AI); +} + +LLParser::PerFunctionState::~PerFunctionState() { + // If there were any forward referenced non-basicblock values, delete them. + for (std::map<std::string, std::pair<Value*, LocTy> >::iterator + I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) + if (!isa<BasicBlock>(I->second.first)) { + I->second.first->replaceAllUsesWith( + UndefValue::get(I->second.first->getType())); + delete I->second.first; + I->second.first = 0; + } + + for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator + I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) + if (!isa<BasicBlock>(I->second.first)) { + I->second.first->replaceAllUsesWith( + UndefValue::get(I->second.first->getType())); + delete I->second.first; + I->second.first = 0; + } +} + +bool LLParser::PerFunctionState::FinishFunction() { + // Check to see if someone took the address of labels in this block. + if (!P.ForwardRefBlockAddresses.empty()) { + ValID FunctionID; + if (!F.getName().empty()) { + FunctionID.Kind = ValID::t_GlobalName; + FunctionID.StrVal = F.getName(); + } else { + FunctionID.Kind = ValID::t_GlobalID; + FunctionID.UIntVal = FunctionNumber; + } + + std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator + FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); + if (FRBAI != P.ForwardRefBlockAddresses.end()) { + // Resolve all these references. + if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) + return true; + + P.ForwardRefBlockAddresses.erase(FRBAI); + } + } + + if (!ForwardRefVals.empty()) + return P.Error(ForwardRefVals.begin()->second.second, + "use of undefined value '%" + ForwardRefVals.begin()->first + + "'"); + if (!ForwardRefValIDs.empty()) + return P.Error(ForwardRefValIDs.begin()->second.second, + "use of undefined value '%" + + Twine(ForwardRefValIDs.begin()->first) + "'"); + return false; +} + + +/// GetVal - Get a value with the specified name or ID, creating a +/// forward reference record if needed. This can return null if the value +/// exists but does not have the right type. +Value *LLParser::PerFunctionState::GetVal(const std::string &Name, + Type *Ty, LocTy Loc) { + // Look this name up in the normal function symbol table. + Value *Val = F.getValueSymbolTable().lookup(Name); + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<std::string, std::pair<Value*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I != ForwardRefVals.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + if (Ty->isLabelTy()) + P.Error(Loc, "'%" + Name + "' is not a basic block"); + else + P.Error(Loc, "'%" + Name + "' defined with type '" + + getTypeString(Val->getType()) + "'"); + return 0; + } + + // Don't make placeholders with invalid type. + if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { + P.Error(Loc, "invalid use of a non-first-class type"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + Value *FwdVal; + if (Ty->isLabelTy()) + FwdVal = BasicBlock::Create(F.getContext(), Name, &F); + else + FwdVal = new Argument(Ty, Name); + + ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, + LocTy Loc) { + // Look this name up in the normal function symbol table. + Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<unsigned, std::pair<Value*, LocTy> >::iterator + I = ForwardRefValIDs.find(ID); + if (I != ForwardRefValIDs.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + if (Ty->isLabelTy()) + P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); + else + P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + + getTypeString(Val->getType()) + "'"); + return 0; + } + + if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { + P.Error(Loc, "invalid use of a non-first-class type"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + Value *FwdVal; + if (Ty->isLabelTy()) + FwdVal = BasicBlock::Create(F.getContext(), "", &F); + else + FwdVal = new Argument(Ty); + + ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +/// SetInstName - After an instruction is parsed and inserted into its +/// basic block, this installs its name. +bool LLParser::PerFunctionState::SetInstName(int NameID, + const std::string &NameStr, + LocTy NameLoc, Instruction *Inst) { + // If this instruction has void type, it cannot have a name or ID specified. + if (Inst->getType()->isVoidTy()) { + if (NameID != -1 || !NameStr.empty()) + return P.Error(NameLoc, "instructions returning void cannot have a name"); + return false; + } + + // If this was a numbered instruction, verify that the instruction is the + // expected value and resolve any forward references. + if (NameStr.empty()) { + // If neither a name nor an ID was specified, just use the next ID. + if (NameID == -1) + NameID = NumberedVals.size(); + + if (unsigned(NameID) != NumberedVals.size()) + return P.Error(NameLoc, "instruction expected to be numbered '%" + + Twine(NumberedVals.size()) + "'"); + + std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = + ForwardRefValIDs.find(NameID); + if (FI != ForwardRefValIDs.end()) { + if (FI->second.first->getType() != Inst->getType()) + return P.Error(NameLoc, "instruction forward referenced with type '" + + getTypeString(FI->second.first->getType()) + "'"); + FI->second.first->replaceAllUsesWith(Inst); + delete FI->second.first; + ForwardRefValIDs.erase(FI); + } + + NumberedVals.push_back(Inst); + return false; + } + + // Otherwise, the instruction had a name. Resolve forward refs and set it. + std::map<std::string, std::pair<Value*, LocTy> >::iterator + FI = ForwardRefVals.find(NameStr); + if (FI != ForwardRefVals.end()) { + if (FI->second.first->getType() != Inst->getType()) + return P.Error(NameLoc, "instruction forward referenced with type '" + + getTypeString(FI->second.first->getType()) + "'"); + FI->second.first->replaceAllUsesWith(Inst); + delete FI->second.first; + ForwardRefVals.erase(FI); + } + + // Set the name on the instruction. + Inst->setName(NameStr); + + if (Inst->getName() != NameStr) + return P.Error(NameLoc, "multiple definition of local value named '" + + NameStr + "'"); + return false; +} + +/// GetBB - Get a basic block with the specified name or ID, creating a +/// forward reference record if needed. +BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, + LocTy Loc) { + return cast_or_null<BasicBlock>(GetVal(Name, + Type::getLabelTy(F.getContext()), Loc)); +} + +BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { + return cast_or_null<BasicBlock>(GetVal(ID, + Type::getLabelTy(F.getContext()), Loc)); +} + +/// DefineBB - Define the specified basic block, which is either named or +/// unnamed. If there is an error, this returns null otherwise it returns +/// the block being defined. +BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, + LocTy Loc) { + BasicBlock *BB; + if (Name.empty()) + BB = GetBB(NumberedVals.size(), Loc); + else + BB = GetBB(Name, Loc); + if (BB == 0) return 0; // Already diagnosed error. + + // Move the block to the end of the function. Forward ref'd blocks are + // inserted wherever they happen to be referenced. + F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); + + // Remove the block from forward ref sets. + if (Name.empty()) { + ForwardRefValIDs.erase(NumberedVals.size()); + NumberedVals.push_back(BB); + } else { + // BB forward references are already in the function symbol table. + ForwardRefVals.erase(Name); + } + + return BB; +} + +//===----------------------------------------------------------------------===// +// Constants. +//===----------------------------------------------------------------------===// + +/// ParseValID - Parse an abstract value that doesn't necessarily have a +/// type implied. For example, if we parse "4" we don't know what integer type +/// it has. The value will later be combined with its type and checked for +/// sanity. PFS is used to convert function-local operands of metadata (since +/// metadata operands are not just parsed here but also converted to values). +/// PFS can be null when we are not parsing metadata values inside a function. +bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { + ID.Loc = Lex.getLoc(); + switch (Lex.getKind()) { + default: return TokError("expected value token"); + case lltok::GlobalID: // @42 + ID.UIntVal = Lex.getUIntVal(); + ID.Kind = ValID::t_GlobalID; + break; + case lltok::GlobalVar: // @foo + ID.StrVal = Lex.getStrVal(); + ID.Kind = ValID::t_GlobalName; + break; + case lltok::LocalVarID: // %42 + ID.UIntVal = Lex.getUIntVal(); + ID.Kind = ValID::t_LocalID; + break; + case lltok::LocalVar: // %foo + ID.StrVal = Lex.getStrVal(); + ID.Kind = ValID::t_LocalName; + break; + case lltok::exclaim: // !42, !{...}, or !"foo" + return ParseMetadataValue(ID, PFS); + case lltok::APSInt: + ID.APSIntVal = Lex.getAPSIntVal(); + ID.Kind = ValID::t_APSInt; + break; + case lltok::APFloat: + ID.APFloatVal = Lex.getAPFloatVal(); + ID.Kind = ValID::t_APFloat; + break; + case lltok::kw_true: + ID.ConstantVal = ConstantInt::getTrue(Context); + ID.Kind = ValID::t_Constant; + break; + case lltok::kw_false: + ID.ConstantVal = ConstantInt::getFalse(Context); + ID.Kind = ValID::t_Constant; + break; + case lltok::kw_null: ID.Kind = ValID::t_Null; break; + case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; + case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; + + case lltok::lbrace: { + // ValID ::= '{' ConstVector '}' + Lex.Lex(); + SmallVector<Constant*, 16> Elts; + if (ParseGlobalValueVector(Elts) || + ParseToken(lltok::rbrace, "expected end of struct constant")) + return true; + + ID.ConstantStructElts = new Constant*[Elts.size()]; + ID.UIntVal = Elts.size(); + memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); + ID.Kind = ValID::t_ConstantStruct; + return false; + } + case lltok::less: { + // ValID ::= '<' ConstVector '>' --> Vector. + // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. + Lex.Lex(); + bool isPackedStruct = EatIfPresent(lltok::lbrace); + + SmallVector<Constant*, 16> Elts; + LocTy FirstEltLoc = Lex.getLoc(); + if (ParseGlobalValueVector(Elts) || + (isPackedStruct && + ParseToken(lltok::rbrace, "expected end of packed struct")) || + ParseToken(lltok::greater, "expected end of constant")) + return true; + + if (isPackedStruct) { + ID.ConstantStructElts = new Constant*[Elts.size()]; + memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); + ID.UIntVal = Elts.size(); + ID.Kind = ValID::t_PackedConstantStruct; + return false; + } + + if (Elts.empty()) + return Error(ID.Loc, "constant vector must not be empty"); + + if (!Elts[0]->getType()->isIntegerTy() && + !Elts[0]->getType()->isFloatingPointTy() && + !Elts[0]->getType()->isPointerTy()) + return Error(FirstEltLoc, + "vector elements must have integer, pointer or floating point type"); + + // Verify that all the vector elements have the same type. + for (unsigned i = 1, e = Elts.size(); i != e; ++i) + if (Elts[i]->getType() != Elts[0]->getType()) + return Error(FirstEltLoc, + "vector element #" + Twine(i) + + " is not of type '" + getTypeString(Elts[0]->getType())); + + ID.ConstantVal = ConstantVector::get(Elts); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::lsquare: { // Array Constant + Lex.Lex(); + SmallVector<Constant*, 16> Elts; + LocTy FirstEltLoc = Lex.getLoc(); + if (ParseGlobalValueVector(Elts) || + ParseToken(lltok::rsquare, "expected end of array constant")) + return true; + + // Handle empty element. + if (Elts.empty()) { + // Use undef instead of an array because it's inconvenient to determine + // the element type at this point, there being no elements to examine. + ID.Kind = ValID::t_EmptyArray; + return false; + } + + if (!Elts[0]->getType()->isFirstClassType()) + return Error(FirstEltLoc, "invalid array element type: " + + getTypeString(Elts[0]->getType())); + + ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); + + // Verify all elements are correct type! + for (unsigned i = 0, e = Elts.size(); i != e; ++i) { + if (Elts[i]->getType() != Elts[0]->getType()) + return Error(FirstEltLoc, + "array element #" + Twine(i) + + " is not of type '" + getTypeString(Elts[0]->getType())); + } + + ID.ConstantVal = ConstantArray::get(ATy, Elts); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_c: // c "foo" + Lex.Lex(); + ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), + false); + if (ParseToken(lltok::StringConstant, "expected string")) return true; + ID.Kind = ValID::t_Constant; + return false; + + case lltok::kw_asm: { + // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT + bool HasSideEffect, AlignStack; + Lex.Lex(); + if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || + ParseOptionalToken(lltok::kw_alignstack, AlignStack) || + ParseStringConstant(ID.StrVal) || + ParseToken(lltok::comma, "expected comma in inline asm expression") || + ParseToken(lltok::StringConstant, "expected constraint string")) + return true; + ID.StrVal2 = Lex.getStrVal(); + ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); + ID.Kind = ValID::t_InlineAsm; + return false; + } + + case lltok::kw_blockaddress: { + // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' + Lex.Lex(); + + ValID Fn, Label; + LocTy FnLoc, LabelLoc; + + if (ParseToken(lltok::lparen, "expected '(' in block address expression") || + ParseValID(Fn) || + ParseToken(lltok::comma, "expected comma in block address expression")|| + ParseValID(Label) || + ParseToken(lltok::rparen, "expected ')' in block address expression")) + return true; + + if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) + return Error(Fn.Loc, "expected function name in blockaddress"); + if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) + return Error(Label.Loc, "expected basic block name in blockaddress"); + + // Make a global variable as a placeholder for this reference. + GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), + false, GlobalValue::InternalLinkage, + 0, ""); + ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); + ID.ConstantVal = FwdRef; + ID.Kind = ValID::t_Constant; + return false; + } + + case lltok::kw_trunc: + case lltok::kw_zext: + case lltok::kw_sext: + case lltok::kw_fptrunc: + case lltok::kw_fpext: + case lltok::kw_bitcast: + case lltok::kw_uitofp: + case lltok::kw_sitofp: + case lltok::kw_fptoui: + case lltok::kw_fptosi: + case lltok::kw_inttoptr: + case lltok::kw_ptrtoint: { + unsigned Opc = Lex.getUIntVal(); + Type *DestTy = 0; + Constant *SrcVal; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || + ParseGlobalTypeAndValue(SrcVal) || + ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || + ParseType(DestTy) || + ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) + return true; + if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) + return Error(ID.Loc, "invalid cast opcode for cast from '" + + getTypeString(SrcVal->getType()) + "' to '" + + getTypeString(DestTy) + "'"); + ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, + SrcVal, DestTy); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_extractvalue: { + Lex.Lex(); + Constant *Val; + SmallVector<unsigned, 4> Indices; + if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| + ParseGlobalTypeAndValue(Val) || + ParseIndexList(Indices) || + ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) + return true; + + if (!Val->getType()->isAggregateType()) + return Error(ID.Loc, "extractvalue operand must be aggregate type"); + if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) + return Error(ID.Loc, "invalid indices for extractvalue"); + ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_insertvalue: { + Lex.Lex(); + Constant *Val0, *Val1; + SmallVector<unsigned, 4> Indices; + if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| + ParseGlobalTypeAndValue(Val1) || + ParseIndexList(Indices) || + ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) + return true; + if (!Val0->getType()->isAggregateType()) + return Error(ID.Loc, "insertvalue operand must be aggregate type"); + if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) + return Error(ID.Loc, "invalid indices for insertvalue"); + ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_icmp: + case lltok::kw_fcmp: { + unsigned PredVal, Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + if (ParseCmpPredicate(PredVal, Opc) || + ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in compare constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) + return true; + + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "compare operands must have the same type"); + + CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; + + if (Opc == Instruction::FCmp) { + if (!Val0->getType()->isFPOrFPVectorTy()) + return Error(ID.Loc, "fcmp requires floating point operands"); + ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); + } else { + assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); + if (!Val0->getType()->isIntOrIntVectorTy() && + !Val0->getType()->getScalarType()->isPointerTy()) + return Error(ID.Loc, "icmp requires pointer or integer operands"); + ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); + } + ID.Kind = ValID::t_Constant; + return false; + } + + // Binary Operators. + case lltok::kw_add: + case lltok::kw_fadd: + case lltok::kw_sub: + case lltok::kw_fsub: + case lltok::kw_mul: + case lltok::kw_fmul: + case lltok::kw_udiv: + case lltok::kw_sdiv: + case lltok::kw_fdiv: + case lltok::kw_urem: + case lltok::kw_srem: + case lltok::kw_frem: + case lltok::kw_shl: + case lltok::kw_lshr: + case lltok::kw_ashr: { + bool NUW = false; + bool NSW = false; + bool Exact = false; + unsigned Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + LocTy ModifierLoc = Lex.getLoc(); + if (Opc == Instruction::Add || Opc == Instruction::Sub || + Opc == Instruction::Mul || Opc == Instruction::Shl) { + if (EatIfPresent(lltok::kw_nuw)) + NUW = true; + if (EatIfPresent(lltok::kw_nsw)) { + NSW = true; + if (EatIfPresent(lltok::kw_nuw)) + NUW = true; + } + } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || + Opc == Instruction::LShr || Opc == Instruction::AShr) { + if (EatIfPresent(lltok::kw_exact)) + Exact = true; + } + if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in binary constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) + return true; + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "operands of constexpr must have same type"); + if (!Val0->getType()->isIntOrIntVectorTy()) { + if (NUW) + return Error(ModifierLoc, "nuw only applies to integer operations"); + if (NSW) + return Error(ModifierLoc, "nsw only applies to integer operations"); + } + // Check that the type is valid for the operator. + switch (Opc) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::Shl: + case Instruction::AShr: + case Instruction::LShr: + if (!Val0->getType()->isIntOrIntVectorTy()) + return Error(ID.Loc, "constexpr requires integer operands"); + break; + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + if (!Val0->getType()->isFPOrFPVectorTy()) + return Error(ID.Loc, "constexpr requires fp operands"); + break; + default: llvm_unreachable("Unknown binary operator!"); + } + unsigned Flags = 0; + if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; + if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; + if (Exact) Flags |= PossiblyExactOperator::IsExact; + Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); + ID.ConstantVal = C; + ID.Kind = ValID::t_Constant; + return false; + } + + // Logical Operations + case lltok::kw_and: + case lltok::kw_or: + case lltok::kw_xor: { + unsigned Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in logical constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) + return true; + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "operands of constexpr must have same type"); + if (!Val0->getType()->isIntOrIntVectorTy()) + return Error(ID.Loc, + "constexpr requires integer or integer vector operands"); + ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); + ID.Kind = ValID::t_Constant; + return false; + } + + case lltok::kw_getelementptr: + case lltok::kw_shufflevector: + case lltok::kw_insertelement: + case lltok::kw_extractelement: + case lltok::kw_select: { + unsigned Opc = Lex.getUIntVal(); + SmallVector<Constant*, 16> Elts; + bool InBounds = false; + Lex.Lex(); + if (Opc == Instruction::GetElementPtr) + InBounds = EatIfPresent(lltok::kw_inbounds); + if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || + ParseGlobalValueVector(Elts) || + ParseToken(lltok::rparen, "expected ')' in constantexpr")) + return true; + + if (Opc == Instruction::GetElementPtr) { + if (Elts.size() == 0 || + !Elts[0]->getType()->getScalarType()->isPointerTy()) + return Error(ID.Loc, "getelementptr requires pointer operand"); + + ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); + if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) + return Error(ID.Loc, "invalid indices for getelementptr"); + ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, + InBounds); + } else if (Opc == Instruction::Select) { + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to select"); + if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], + Elts[2])) + return Error(ID.Loc, Reason); + ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); + } else if (Opc == Instruction::ShuffleVector) { + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to shufflevector"); + if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) + return Error(ID.Loc, "invalid operands to shufflevector"); + ID.ConstantVal = + ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); + } else if (Opc == Instruction::ExtractElement) { + if (Elts.size() != 2) + return Error(ID.Loc, "expected two operands to extractelement"); + if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) + return Error(ID.Loc, "invalid extractelement operands"); + ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); + } else { + assert(Opc == Instruction::InsertElement && "Unknown opcode"); + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to insertelement"); + if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) + return Error(ID.Loc, "invalid insertelement operands"); + ID.ConstantVal = + ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); + } + + ID.Kind = ValID::t_Constant; + return false; + } + } + + Lex.Lex(); + return false; +} + +/// ParseGlobalValue - Parse a global value with the specified type. +bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { + C = 0; + ValID ID; + Value *V = NULL; + bool Parsed = ParseValID(ID) || + ConvertValIDToValue(Ty, ID, V, NULL); + if (V && !(C = dyn_cast<Constant>(V))) + return Error(ID.Loc, "global values must be constants"); + return Parsed; +} + +bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { + Type *Ty = 0; + return ParseType(Ty) || + ParseGlobalValue(Ty, V); +} + +/// ParseGlobalValueVector +/// ::= /*empty*/ +/// ::= TypeAndValue (',' TypeAndValue)* +bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { + // Empty list. + if (Lex.getKind() == lltok::rbrace || + Lex.getKind() == lltok::rsquare || + Lex.getKind() == lltok::greater || + Lex.getKind() == lltok::rparen) + return false; + + Constant *C; + if (ParseGlobalTypeAndValue(C)) return true; + Elts.push_back(C); + + while (EatIfPresent(lltok::comma)) { + if (ParseGlobalTypeAndValue(C)) return true; + Elts.push_back(C); + } + + return false; +} + +bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { + assert(Lex.getKind() == lltok::lbrace); + Lex.Lex(); + + SmallVector<Value*, 16> Elts; + if (ParseMDNodeVector(Elts, PFS) || + ParseToken(lltok::rbrace, "expected end of metadata node")) + return true; + + ID.MDNodeVal = MDNode::get(Context, Elts); + ID.Kind = ValID::t_MDNode; + return false; +} + +/// ParseMetadataValue +/// ::= !42 +/// ::= !{...} +/// ::= !"string" +bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { + assert(Lex.getKind() == lltok::exclaim); + Lex.Lex(); + + // MDNode: + // !{ ... } + if (Lex.getKind() == lltok::lbrace) + return ParseMetadataListValue(ID, PFS); + + // Standalone metadata reference + // !42 + if (Lex.getKind() == lltok::APSInt) { + if (ParseMDNodeID(ID.MDNodeVal)) return true; + ID.Kind = ValID::t_MDNode; + return false; + } + + // MDString: + // ::= '!' STRINGCONSTANT + if (ParseMDString(ID.MDStringVal)) return true; + ID.Kind = ValID::t_MDString; + return false; +} + + +//===----------------------------------------------------------------------===// +// Function Parsing. +//===----------------------------------------------------------------------===// + +bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, + PerFunctionState *PFS) { + if (Ty->isFunctionTy()) + return Error(ID.Loc, "functions are not values, refer to them as pointers"); + + switch (ID.Kind) { + case ValID::t_LocalID: + if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); + V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); + return (V == 0); + case ValID::t_LocalName: + if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); + V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); + return (V == 0); + case ValID::t_InlineAsm: { + PointerType *PTy = dyn_cast<PointerType>(Ty); + FunctionType *FTy = + PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; + if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) + return Error(ID.Loc, "invalid type for inline asm constraint string"); + V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); + return false; + } + case ValID::t_MDNode: + if (!Ty->isMetadataTy()) + return Error(ID.Loc, "metadata value must have metadata type"); + V = ID.MDNodeVal; + return false; + case ValID::t_MDString: + if (!Ty->isMetadataTy()) + return Error(ID.Loc, "metadata value must have metadata type"); + V = ID.MDStringVal; + return false; + case ValID::t_GlobalName: + V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); + return V == 0; + case ValID::t_GlobalID: + V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); + return V == 0; + case ValID::t_APSInt: + if (!Ty->isIntegerTy()) + return Error(ID.Loc, "integer constant must have integer type"); + ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); + V = ConstantInt::get(Context, ID.APSIntVal); + return false; + case ValID::t_APFloat: + if (!Ty->isFloatingPointTy() || + !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) + return Error(ID.Loc, "floating point constant invalid for type"); + + // The lexer has no type info, so builds all half, float, and double FP + // constants as double. Fix this here. Long double does not need this. + if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { + bool Ignored; + if (Ty->isHalfTy()) + ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, + &Ignored); + else if (Ty->isFloatTy()) + ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, + &Ignored); + } + V = ConstantFP::get(Context, ID.APFloatVal); + + if (V->getType() != Ty) + return Error(ID.Loc, "floating point constant does not have type '" + + getTypeString(Ty) + "'"); + + return false; + case ValID::t_Null: + if (!Ty->isPointerTy()) + return Error(ID.Loc, "null must be a pointer type"); + V = ConstantPointerNull::get(cast<PointerType>(Ty)); + return false; + case ValID::t_Undef: + // FIXME: LabelTy should not be a first-class type. + if (!Ty->isFirstClassType() || Ty->isLabelTy()) + return Error(ID.Loc, "invalid type for undef constant"); + V = UndefValue::get(Ty); + return false; + case ValID::t_EmptyArray: + if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) + return Error(ID.Loc, "invalid empty array initializer"); + V = UndefValue::get(Ty); + return false; + case ValID::t_Zero: + // FIXME: LabelTy should not be a first-class type. + if (!Ty->isFirstClassType() || Ty->isLabelTy()) + return Error(ID.Loc, "invalid type for null constant"); + V = Constant::getNullValue(Ty); + return false; + case ValID::t_Constant: + if (ID.ConstantVal->getType() != Ty) + return Error(ID.Loc, "constant expression type mismatch"); + + V = ID.ConstantVal; + return false; + case ValID::t_ConstantStruct: + case ValID::t_PackedConstantStruct: + if (StructType *ST = dyn_cast<StructType>(Ty)) { + if (ST->getNumElements() != ID.UIntVal) + return Error(ID.Loc, + "initializer with struct type has wrong # elements"); + if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) + return Error(ID.Loc, "packed'ness of initializer and type don't match"); + + // Verify that the elements are compatible with the structtype. + for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) + if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) + return Error(ID.Loc, "element " + Twine(i) + + " of struct initializer doesn't match struct element type"); + + V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, + ID.UIntVal)); + } else + return Error(ID.Loc, "constant expression type mismatch"); + return false; + } + llvm_unreachable("Invalid ValID"); +} + +bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { + V = 0; + ValID ID; + return ParseValID(ID, PFS) || + ConvertValIDToValue(Ty, ID, V, PFS); +} + +bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { + Type *Ty = 0; + return ParseType(Ty) || + ParseValue(Ty, V, PFS); +} + +bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, + PerFunctionState &PFS) { + Value *V; + Loc = Lex.getLoc(); + if (ParseTypeAndValue(V, PFS)) return true; + if (!isa<BasicBlock>(V)) + return Error(Loc, "expected a basic block"); + BB = cast<BasicBlock>(V); + return false; +} + + +/// FunctionHeader +/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs +/// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection +/// OptionalAlign OptGC +bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { + // Parse the linkage. + LocTy LinkageLoc = Lex.getLoc(); + unsigned Linkage; + + unsigned Visibility; + Attributes RetAttrs; + CallingConv::ID CC; + Type *RetType = 0; + LocTy RetTypeLoc = Lex.getLoc(); + if (ParseOptionalLinkage(Linkage) || + ParseOptionalVisibility(Visibility) || + ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/)) + return true; + + // Verify that the linkage is ok. + switch ((GlobalValue::LinkageTypes)Linkage) { + case GlobalValue::ExternalLinkage: + break; // always ok. + case GlobalValue::DLLImportLinkage: + case GlobalValue::ExternalWeakLinkage: + if (isDefine) + return Error(LinkageLoc, "invalid linkage for function definition"); + break; + case GlobalValue::PrivateLinkage: + case GlobalValue::LinkerPrivateLinkage: + case GlobalValue::LinkerPrivateWeakLinkage: + case GlobalValue::LinkerPrivateWeakDefAutoLinkage: + case GlobalValue::InternalLinkage: + case GlobalValue::AvailableExternallyLinkage: + case GlobalValue::LinkOnceAnyLinkage: + case GlobalValue::LinkOnceODRLinkage: + case GlobalValue::WeakAnyLinkage: + case GlobalValue::WeakODRLinkage: + case GlobalValue::DLLExportLinkage: + if (!isDefine) + return Error(LinkageLoc, "invalid linkage for function declaration"); + break; + case GlobalValue::AppendingLinkage: + case GlobalValue::CommonLinkage: + return Error(LinkageLoc, "invalid function linkage type"); + } + + if (!FunctionType::isValidReturnType(RetType)) + return Error(RetTypeLoc, "invalid function return type"); + + LocTy NameLoc = Lex.getLoc(); + + std::string FunctionName; + if (Lex.getKind() == lltok::GlobalVar) { + FunctionName = Lex.getStrVal(); + } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. + unsigned NameID = Lex.getUIntVal(); + + if (NameID != NumberedVals.size()) + return TokError("function expected to be numbered '%" + + Twine(NumberedVals.size()) + "'"); + } else { + return TokError("expected function name"); + } + + Lex.Lex(); + + if (Lex.getKind() != lltok::lparen) + return TokError("expected '(' in function argument list"); + + SmallVector<ArgInfo, 8> ArgList; + bool isVarArg; + Attributes FuncAttrs; + std::string Section; + unsigned Alignment; + std::string GC; + bool UnnamedAddr; + LocTy UnnamedAddrLoc; + + if (ParseArgumentList(ArgList, isVarArg) || + ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, + &UnnamedAddrLoc) || + ParseOptionalAttrs(FuncAttrs, 2) || + (EatIfPresent(lltok::kw_section) && + ParseStringConstant(Section)) || + ParseOptionalAlignment(Alignment) || + (EatIfPresent(lltok::kw_gc) && + ParseStringConstant(GC))) + return true; + + // If the alignment was parsed as an attribute, move to the alignment field. + if (FuncAttrs & Attribute::Alignment) { + Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); + FuncAttrs &= ~Attribute::Alignment; + } + + // Okay, if we got here, the function is syntactically valid. Convert types + // and do semantic checks. + std::vector<Type*> ParamTypeList; + SmallVector<AttributeWithIndex, 8> Attrs; + + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + ParamTypeList.push_back(ArgList[i].Ty); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (FuncAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); + + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) + return Error(RetTypeLoc, "functions with 'sret' argument must return void"); + + FunctionType *FT = + FunctionType::get(RetType, ParamTypeList, isVarArg); + PointerType *PFT = PointerType::getUnqual(FT); + + Fn = 0; + if (!FunctionName.empty()) { + // If this was a definition of a forward reference, remove the definition + // from the forward reference table and fill in the forward ref. + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = + ForwardRefVals.find(FunctionName); + if (FRVI != ForwardRefVals.end()) { + Fn = M->getFunction(FunctionName); + if (Fn->getType() != PFT) + return Error(FRVI->second.second, "invalid forward reference to " + "function '" + FunctionName + "' with wrong type!"); + + ForwardRefVals.erase(FRVI); + } else if ((Fn = M->getFunction(FunctionName))) { + // Reject redefinitions. + return Error(NameLoc, "invalid redefinition of function '" + + FunctionName + "'"); + } else if (M->getNamedValue(FunctionName)) { + return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); + } + + } else { + // If this is a definition of a forward referenced function, make sure the + // types agree. + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I + = ForwardRefValIDs.find(NumberedVals.size()); + if (I != ForwardRefValIDs.end()) { + Fn = cast<Function>(I->second.first); + if (Fn->getType() != PFT) + return Error(NameLoc, "type of definition and forward reference of '@" + + Twine(NumberedVals.size()) + "' disagree"); + ForwardRefValIDs.erase(I); + } + } + + if (Fn == 0) + Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); + else // Move the forward-reference to the correct spot in the module. + M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); + + if (FunctionName.empty()) + NumberedVals.push_back(Fn); + + Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); + Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); + Fn->setCallingConv(CC); + Fn->setAttributes(PAL); + Fn->setUnnamedAddr(UnnamedAddr); + Fn->setAlignment(Alignment); + Fn->setSection(Section); + if (!GC.empty()) Fn->setGC(GC.c_str()); + + // Add all of the arguments we parsed to the function. + Function::arg_iterator ArgIt = Fn->arg_begin(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { + // If the argument has a name, insert it into the argument symbol table. + if (ArgList[i].Name.empty()) continue; + + // Set the name, if it conflicted, it will be auto-renamed. + ArgIt->setName(ArgList[i].Name); + + if (ArgIt->getName() != ArgList[i].Name) + return Error(ArgList[i].Loc, "redefinition of argument '%" + + ArgList[i].Name + "'"); + } + + return false; +} + + +/// ParseFunctionBody +/// ::= '{' BasicBlock+ '}' +/// +bool LLParser::ParseFunctionBody(Function &Fn) { + if (Lex.getKind() != lltok::lbrace) + return TokError("expected '{' in function body"); + Lex.Lex(); // eat the {. + + int FunctionNumber = -1; + if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; + + PerFunctionState PFS(*this, Fn, FunctionNumber); + + // We need at least one basic block. + if (Lex.getKind() == lltok::rbrace) + return TokError("function body requires at least one basic block"); + + while (Lex.getKind() != lltok::rbrace) + if (ParseBasicBlock(PFS)) return true; + + // Eat the }. + Lex.Lex(); + + // Verify function is ok. + return PFS.FinishFunction(); +} + +/// ParseBasicBlock +/// ::= LabelStr? Instruction* +bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { + // If this basic block starts out with a name, remember it. + std::string Name; + LocTy NameLoc = Lex.getLoc(); + if (Lex.getKind() == lltok::LabelStr) { + Name = Lex.getStrVal(); + Lex.Lex(); + } + + BasicBlock *BB = PFS.DefineBB(Name, NameLoc); + if (BB == 0) return true; + + std::string NameStr; + + // Parse the instructions in this block until we get a terminator. + Instruction *Inst; + SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; + do { + // This instruction may have three possibilities for a name: a) none + // specified, b) name specified "%foo =", c) number specified: "%4 =". + LocTy NameLoc = Lex.getLoc(); + int NameID = -1; + NameStr = ""; + + if (Lex.getKind() == lltok::LocalVarID) { + NameID = Lex.getUIntVal(); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after instruction id")) + return true; + } else if (Lex.getKind() == lltok::LocalVar) { + NameStr = Lex.getStrVal(); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after instruction name")) + return true; + } + + switch (ParseInstruction(Inst, BB, PFS)) { + default: llvm_unreachable("Unknown ParseInstruction result!"); + case InstError: return true; + case InstNormal: + BB->getInstList().push_back(Inst); + + // With a normal result, we check to see if the instruction is followed by + // a comma and metadata. + if (EatIfPresent(lltok::comma)) + if (ParseInstructionMetadata(Inst, &PFS)) + return true; + break; + case InstExtraComma: + BB->getInstList().push_back(Inst); + + // If the instruction parser ate an extra comma at the end of it, it + // *must* be followed by metadata. + if (ParseInstructionMetadata(Inst, &PFS)) + return true; + break; + } + + // Set the name on the instruction. + if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; + } while (!isa<TerminatorInst>(Inst)); + + return false; +} + +//===----------------------------------------------------------------------===// +// Instruction Parsing. +//===----------------------------------------------------------------------===// + +/// ParseInstruction - Parse one of the many different instructions. +/// +int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, + PerFunctionState &PFS) { + lltok::Kind Token = Lex.getKind(); + if (Token == lltok::Eof) + return TokError("found end of file when expecting more instructions"); + LocTy Loc = Lex.getLoc(); + unsigned KeywordVal = Lex.getUIntVal(); + Lex.Lex(); // Eat the keyword. + + switch (Token) { + default: return Error(Loc, "expected instruction opcode"); + // Terminator Instructions. + case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; + case lltok::kw_ret: return ParseRet(Inst, BB, PFS); + case lltok::kw_br: return ParseBr(Inst, PFS); + case lltok::kw_switch: return ParseSwitch(Inst, PFS); + case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); + case lltok::kw_invoke: return ParseInvoke(Inst, PFS); + case lltok::kw_resume: return ParseResume(Inst, PFS); + // Binary Operators. + case lltok::kw_add: + case lltok::kw_sub: + case lltok::kw_mul: + case lltok::kw_shl: { + bool NUW = EatIfPresent(lltok::kw_nuw); + bool NSW = EatIfPresent(lltok::kw_nsw); + if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); + + if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; + + if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); + if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); + return false; + } + case lltok::kw_fadd: + case lltok::kw_fsub: + case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); + + case lltok::kw_sdiv: + case lltok::kw_udiv: + case lltok::kw_lshr: + case lltok::kw_ashr: { + bool Exact = EatIfPresent(lltok::kw_exact); + + if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; + if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); + return false; + } + + case lltok::kw_urem: + case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); + case lltok::kw_fdiv: + case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); + case lltok::kw_and: + case lltok::kw_or: + case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); + case lltok::kw_icmp: + case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); + // Casts. + case lltok::kw_trunc: + case lltok::kw_zext: + case lltok::kw_sext: + case lltok::kw_fptrunc: + case lltok::kw_fpext: + case lltok::kw_bitcast: + case lltok::kw_uitofp: + case lltok::kw_sitofp: + case lltok::kw_fptoui: + case lltok::kw_fptosi: + case lltok::kw_inttoptr: + case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); + // Other. + case lltok::kw_select: return ParseSelect(Inst, PFS); + case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); + case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); + case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); + case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); + case lltok::kw_phi: return ParsePHI(Inst, PFS); + case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); + case lltok::kw_call: return ParseCall(Inst, PFS, false); + case lltok::kw_tail: return ParseCall(Inst, PFS, true); + // Memory. + case lltok::kw_alloca: return ParseAlloc(Inst, PFS); + case lltok::kw_load: return ParseLoad(Inst, PFS); + case lltok::kw_store: return ParseStore(Inst, PFS); + case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); + case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); + case lltok::kw_fence: return ParseFence(Inst, PFS); + case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); + case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); + case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); + } +} + +/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. +bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { + if (Opc == Instruction::FCmp) { + switch (Lex.getKind()) { + default: TokError("expected fcmp predicate (e.g. 'oeq')"); + case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; + case lltok::kw_one: P = CmpInst::FCMP_ONE; break; + case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; + case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; + case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; + case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; + case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; + case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; + case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; + case lltok::kw_une: P = CmpInst::FCMP_UNE; break; + case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; + case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; + case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; + case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; + case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; + case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; + } + } else { + switch (Lex.getKind()) { + default: TokError("expected icmp predicate (e.g. 'eq')"); + case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; + case lltok::kw_ne: P = CmpInst::ICMP_NE; break; + case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; + case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; + case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; + case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; + case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; + case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; + case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; + case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; + } + } + Lex.Lex(); + return false; +} + +//===----------------------------------------------------------------------===// +// Terminator Instructions. +//===----------------------------------------------------------------------===// + +/// ParseRet - Parse a return instruction. +/// ::= 'ret' void (',' !dbg, !1)* +/// ::= 'ret' TypeAndValue (',' !dbg, !1)* +bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, + PerFunctionState &PFS) { + SMLoc TypeLoc = Lex.getLoc(); + Type *Ty = 0; + if (ParseType(Ty, true /*void allowed*/)) return true; + + Type *ResType = PFS.getFunction().getReturnType(); + + if (Ty->isVoidTy()) { + if (!ResType->isVoidTy()) + return Error(TypeLoc, "value doesn't match function result type '" + + getTypeString(ResType) + "'"); + + Inst = ReturnInst::Create(Context); + return false; + } + + Value *RV; + if (ParseValue(Ty, RV, PFS)) return true; + + if (ResType != RV->getType()) + return Error(TypeLoc, "value doesn't match function result type '" + + getTypeString(ResType) + "'"); + + Inst = ReturnInst::Create(Context, RV); + return false; +} + + +/// ParseBr +/// ::= 'br' TypeAndValue +/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc, Loc2; + Value *Op0; + BasicBlock *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS)) return true; + + if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { + Inst = BranchInst::Create(BB); + return false; + } + + if (Op0->getType() != Type::getInt1Ty(Context)) + return Error(Loc, "branch condition must have 'i1' type"); + + if (ParseToken(lltok::comma, "expected ',' after branch condition") || + ParseTypeAndBasicBlock(Op1, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after true destination") || + ParseTypeAndBasicBlock(Op2, Loc2, PFS)) + return true; + + Inst = BranchInst::Create(Op1, Op2, Op0); + return false; +} + +/// ParseSwitch +/// Instruction +/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' +/// JumpTable +/// ::= (TypeAndValue ',' TypeAndValue)* +bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { + LocTy CondLoc, BBLoc; + Value *Cond; + BasicBlock *DefaultBB; + if (ParseTypeAndValue(Cond, CondLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after switch condition") || + ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || + ParseToken(lltok::lsquare, "expected '[' with switch table")) + return true; + + if (!Cond->getType()->isIntegerTy()) + return Error(CondLoc, "switch condition must have integer type"); + + // Parse the jump table pairs. + SmallPtrSet<Value*, 32> SeenCases; + SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; + while (Lex.getKind() != lltok::rsquare) { + Value *Constant; + BasicBlock *DestBB; + + if (ParseTypeAndValue(Constant, CondLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after case value") || + ParseTypeAndBasicBlock(DestBB, PFS)) + return true; + + if (!SeenCases.insert(Constant)) + return Error(CondLoc, "duplicate case value in switch"); + if (!isa<ConstantInt>(Constant)) + return Error(CondLoc, "case value is not a constant integer"); + + Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); + } + + Lex.Lex(); // Eat the ']'. + + SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); + for (unsigned i = 0, e = Table.size(); i != e; ++i) + SI->addCase(Table[i].first, Table[i].second); + Inst = SI; + return false; +} + +/// ParseIndirectBr +/// Instruction +/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' +bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { + LocTy AddrLoc; + Value *Address; + if (ParseTypeAndValue(Address, AddrLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after indirectbr address") || + ParseToken(lltok::lsquare, "expected '[' with indirectbr")) + return true; + + if (!Address->getType()->isPointerTy()) + return Error(AddrLoc, "indirectbr address must have pointer type"); + + // Parse the destination list. + SmallVector<BasicBlock*, 16> DestList; + + if (Lex.getKind() != lltok::rsquare) { + BasicBlock *DestBB; + if (ParseTypeAndBasicBlock(DestBB, PFS)) + return true; + DestList.push_back(DestBB); + + while (EatIfPresent(lltok::comma)) { + if (ParseTypeAndBasicBlock(DestBB, PFS)) + return true; + DestList.push_back(DestBB); + } + } + + if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) + return true; + + IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); + for (unsigned i = 0, e = DestList.size(); i != e; ++i) + IBI->addDestination(DestList[i]); + Inst = IBI; + return false; +} + + +/// ParseInvoke +/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList +/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue +bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { + LocTy CallLoc = Lex.getLoc(); + Attributes RetAttrs, FnAttrs; + CallingConv::ID CC; + Type *RetType = 0; + LocTy RetTypeLoc; + ValID CalleeID; + SmallVector<ParamInfo, 16> ArgList; + + BasicBlock *NormalBB, *UnwindBB; + if (ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/) || + ParseValID(CalleeID) || + ParseParameterList(ArgList, PFS) || + ParseOptionalAttrs(FnAttrs, 2) || + ParseToken(lltok::kw_to, "expected 'to' in invoke") || + ParseTypeAndBasicBlock(NormalBB, PFS) || + ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || + ParseTypeAndBasicBlock(UnwindBB, PFS)) + return true; + + // If RetType is a non-function pointer type, then this is the short syntax + // for the call, which means that RetType is just the return type. Infer the + // rest of the function argument types from the arguments that are present. + PointerType *PFTy = 0; + FunctionType *Ty = 0; + if (!(PFTy = dyn_cast<PointerType>(RetType)) || + !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { + // Pull out the types of all of the arguments... + std::vector<Type*> ParamTypes; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ParamTypes.push_back(ArgList[i].V->getType()); + + if (!FunctionType::isValidReturnType(RetType)) + return Error(RetTypeLoc, "Invalid result type for LLVM function"); + + Ty = FunctionType::get(RetType, ParamTypes, false); + PFTy = PointerType::getUnqual(Ty); + } + + // Look up the callee. + Value *Callee; + if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; + + // Set up the Attributes for the function. + SmallVector<AttributeWithIndex, 8> Attrs; + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + SmallVector<Value*, 8> Args; + + // Loop through FunctionType's arguments and ensure they are specified + // correctly. Also, gather any parameter attributes. + FunctionType::param_iterator I = Ty->param_begin(); + FunctionType::param_iterator E = Ty->param_end(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + Type *ExpectedTy = 0; + if (I != E) { + ExpectedTy = *I++; + } else if (!Ty->isVarArg()) { + return Error(ArgList[i].Loc, "too many arguments specified"); + } + + if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) + return Error(ArgList[i].Loc, "argument is not of expected type '" + + getTypeString(ExpectedTy) + "'"); + Args.push_back(ArgList[i].V); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (I != E) + return Error(CallLoc, "not enough parameters specified for call"); + + if (FnAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + // Finish off the Attributes and check them + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); + II->setCallingConv(CC); + II->setAttributes(PAL); + Inst = II; + return false; +} + +/// ParseResume +/// ::= 'resume' TypeAndValue +bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { + Value *Exn; LocTy ExnLoc; + if (ParseTypeAndValue(Exn, ExnLoc, PFS)) + return true; + + ResumeInst *RI = ResumeInst::Create(Exn); + Inst = RI; + return false; +} + +//===----------------------------------------------------------------------===// +// Binary Operators. +//===----------------------------------------------------------------------===// + +/// ParseArithmetic +/// ::= ArithmeticOps TypeAndValue ',' Value +/// +/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, +/// then any integer operand is allowed, if it is 2, any fp operand is allowed. +bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc, unsigned OperandType) { + LocTy Loc; Value *LHS, *RHS; + if (ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' in arithmetic operation") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + bool Valid; + switch (OperandType) { + default: llvm_unreachable("Unknown operand type!"); + case 0: // int or FP. + Valid = LHS->getType()->isIntOrIntVectorTy() || + LHS->getType()->isFPOrFPVectorTy(); + break; + case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; + case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; + } + + if (!Valid) + return Error(Loc, "invalid operand type for instruction"); + + Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + return false; +} + +/// ParseLogical +/// ::= ArithmeticOps TypeAndValue ',' Value { +bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + LocTy Loc; Value *LHS, *RHS; + if (ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' in logical operation") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + if (!LHS->getType()->isIntOrIntVectorTy()) + return Error(Loc,"instruction requires integer or integer vector operands"); + + Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + return false; +} + + +/// ParseCompare +/// ::= 'icmp' IPredicates TypeAndValue ',' Value +/// ::= 'fcmp' FPredicates TypeAndValue ',' Value +bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + // Parse the integer/fp comparison predicate. + LocTy Loc; + unsigned Pred; + Value *LHS, *RHS; + if (ParseCmpPredicate(Pred, Opc) || + ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after compare value") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + if (Opc == Instruction::FCmp) { + if (!LHS->getType()->isFPOrFPVectorTy()) + return Error(Loc, "fcmp requires floating point operands"); + Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } else { + assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); + if (!LHS->getType()->isIntOrIntVectorTy() && + !LHS->getType()->getScalarType()->isPointerTy()) + return Error(Loc, "icmp requires integer operands"); + Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } + return false; +} + +//===----------------------------------------------------------------------===// +// Other Instructions. +//===----------------------------------------------------------------------===// + + +/// ParseCast +/// ::= CastOpc TypeAndValue 'to' Type +bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + LocTy Loc; + Value *Op; + Type *DestTy = 0; + if (ParseTypeAndValue(Op, Loc, PFS) || + ParseToken(lltok::kw_to, "expected 'to' after cast value") || + ParseType(DestTy)) + return true; + + if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { + CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); + return Error(Loc, "invalid cast opcode for cast from '" + + getTypeString(Op->getType()) + "' to '" + + getTypeString(DestTy) + "'"); + } + Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); + return false; +} + +/// ParseSelect +/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after select condition") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after select value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) + return Error(Loc, Reason); + + Inst = SelectInst::Create(Op0, Op1, Op2); + return false; +} + +/// ParseVA_Arg +/// ::= 'va_arg' TypeAndValue ',' Type +bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { + Value *Op; + Type *EltTy = 0; + LocTy TypeLoc; + if (ParseTypeAndValue(Op, PFS) || + ParseToken(lltok::comma, "expected ',' after vaarg operand") || + ParseType(EltTy, TypeLoc)) + return true; + + if (!EltTy->isFirstClassType()) + return Error(TypeLoc, "va_arg requires operand with first class type"); + + Inst = new VAArgInst(Op, EltTy); + return false; +} + +/// ParseExtractElement +/// ::= 'extractelement' TypeAndValue ',' TypeAndValue +bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after extract value") || + ParseTypeAndValue(Op1, PFS)) + return true; + + if (!ExtractElementInst::isValidOperands(Op0, Op1)) + return Error(Loc, "invalid extractelement operands"); + + Inst = ExtractElementInst::Create(Op0, Op1); + return false; +} + +/// ParseInsertElement +/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) + return Error(Loc, "invalid insertelement operands"); + + Inst = InsertElementInst::Create(Op0, Op1, Op2); + return false; +} + +/// ParseShuffleVector +/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after shuffle mask") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after shuffle value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) + return Error(Loc, "invalid shufflevector operands"); + + Inst = new ShuffleVectorInst(Op0, Op1, Op2); + return false; +} + +/// ParsePHI +/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* +int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { + Type *Ty = 0; LocTy TypeLoc; + Value *Op0, *Op1; + + if (ParseType(Ty, TypeLoc) || + ParseToken(lltok::lsquare, "expected '[' in phi value list") || + ParseValue(Ty, Op0, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseValue(Type::getLabelTy(Context), Op1, PFS) || + ParseToken(lltok::rsquare, "expected ']' in phi value list")) + return true; + + bool AteExtraComma = false; + SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; + while (1) { + PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); + + if (!EatIfPresent(lltok::comma)) + break; + + if (Lex.getKind() == lltok::MetadataVar) { + AteExtraComma = true; + break; + } + + if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || + ParseValue(Ty, Op0, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseValue(Type::getLabelTy(Context), Op1, PFS) || + ParseToken(lltok::rsquare, "expected ']' in phi value list")) + return true; + } + + if (!Ty->isFirstClassType()) + return Error(TypeLoc, "phi node must have first class type"); + + PHINode *PN = PHINode::Create(Ty, PHIVals.size()); + for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) + PN->addIncoming(PHIVals[i].first, PHIVals[i].second); + Inst = PN; + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseLandingPad +/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ +/// Clause +/// ::= 'catch' TypeAndValue +/// ::= 'filter' +/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* +bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { + Type *Ty = 0; LocTy TyLoc; + Value *PersFn; LocTy PersFnLoc; + + if (ParseType(Ty, TyLoc) || + ParseToken(lltok::kw_personality, "expected 'personality'") || + ParseTypeAndValue(PersFn, PersFnLoc, PFS)) + return true; + + LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); + LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); + + while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ + LandingPadInst::ClauseType CT; + if (EatIfPresent(lltok::kw_catch)) + CT = LandingPadInst::Catch; + else if (EatIfPresent(lltok::kw_filter)) + CT = LandingPadInst::Filter; + else + return TokError("expected 'catch' or 'filter' clause type"); + + Value *V; LocTy VLoc; + if (ParseTypeAndValue(V, VLoc, PFS)) { + delete LP; + return true; + } + + // A 'catch' type expects a non-array constant. A filter clause expects an + // array constant. + if (CT == LandingPadInst::Catch) { + if (isa<ArrayType>(V->getType())) + Error(VLoc, "'catch' clause has an invalid type"); + } else { + if (!isa<ArrayType>(V->getType())) + Error(VLoc, "'filter' clause has an invalid type"); + } + + LP->addClause(V); + } + + Inst = LP; + return false; +} + +/// ParseCall +/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value +/// ParameterList OptionalAttrs +bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, + bool isTail) { + Attributes RetAttrs, FnAttrs; + CallingConv::ID CC; + Type *RetType = 0; + LocTy RetTypeLoc; + ValID CalleeID; + SmallVector<ParamInfo, 16> ArgList; + LocTy CallLoc = Lex.getLoc(); + + if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || + ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/) || + ParseValID(CalleeID) || + ParseParameterList(ArgList, PFS) || + ParseOptionalAttrs(FnAttrs, 2)) + return true; + + // If RetType is a non-function pointer type, then this is the short syntax + // for the call, which means that RetType is just the return type. Infer the + // rest of the function argument types from the arguments that are present. + PointerType *PFTy = 0; + FunctionType *Ty = 0; + if (!(PFTy = dyn_cast<PointerType>(RetType)) || + !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { + // Pull out the types of all of the arguments... + std::vector<Type*> ParamTypes; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ParamTypes.push_back(ArgList[i].V->getType()); + + if (!FunctionType::isValidReturnType(RetType)) + return Error(RetTypeLoc, "Invalid result type for LLVM function"); + + Ty = FunctionType::get(RetType, ParamTypes, false); + PFTy = PointerType::getUnqual(Ty); + } + + // Look up the callee. + Value *Callee; + if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; + + // Set up the Attributes for the function. + SmallVector<AttributeWithIndex, 8> Attrs; + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + SmallVector<Value*, 8> Args; + + // Loop through FunctionType's arguments and ensure they are specified + // correctly. Also, gather any parameter attributes. + FunctionType::param_iterator I = Ty->param_begin(); + FunctionType::param_iterator E = Ty->param_end(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + Type *ExpectedTy = 0; + if (I != E) { + ExpectedTy = *I++; + } else if (!Ty->isVarArg()) { + return Error(ArgList[i].Loc, "too many arguments specified"); + } + + if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) + return Error(ArgList[i].Loc, "argument is not of expected type '" + + getTypeString(ExpectedTy) + "'"); + Args.push_back(ArgList[i].V); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (I != E) + return Error(CallLoc, "not enough parameters specified for call"); + + if (FnAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + // Finish off the Attributes and check them + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + CallInst *CI = CallInst::Create(Callee, Args); + CI->setTailCall(isTail); + CI->setCallingConv(CC); + CI->setAttributes(PAL); + Inst = CI; + return false; +} + +//===----------------------------------------------------------------------===// +// Memory Instructions. +//===----------------------------------------------------------------------===// + +/// ParseAlloc +/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? +int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { + Value *Size = 0; + LocTy SizeLoc; + unsigned Alignment = 0; + Type *Ty = 0; + if (ParseType(Ty)) return true; + + bool AteExtraComma = false; + if (EatIfPresent(lltok::comma)) { + if (Lex.getKind() == lltok::kw_align) { + if (ParseOptionalAlignment(Alignment)) return true; + } else if (Lex.getKind() == lltok::MetadataVar) { + AteExtraComma = true; + } else { + if (ParseTypeAndValue(Size, SizeLoc, PFS) || + ParseOptionalCommaAlign(Alignment, AteExtraComma)) + return true; + } + } + + if (Size && !Size->getType()->isIntegerTy()) + return Error(SizeLoc, "element count must have integer type"); + + Inst = new AllocaInst(Ty, Size, Alignment); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseLoad +/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? +/// ::= 'load' 'atomic' 'volatile'? TypeAndValue +/// 'singlethread'? AtomicOrdering (',' 'align' i32)? +int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val; LocTy Loc; + unsigned Alignment = 0; + bool AteExtraComma = false; + bool isAtomic = false; + AtomicOrdering Ordering = NotAtomic; + SynchronizationScope Scope = CrossThread; + + if (Lex.getKind() == lltok::kw_atomic) { + isAtomic = true; + Lex.Lex(); + } + + bool isVolatile = false; + if (Lex.getKind() == lltok::kw_volatile) { + isVolatile = true; + Lex.Lex(); + } + + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseScopeAndOrdering(isAtomic, Scope, Ordering) || + ParseOptionalCommaAlign(Alignment, AteExtraComma)) + return true; + + if (!Val->getType()->isPointerTy() || + !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) + return Error(Loc, "load operand must be a pointer to a first class type"); + if (isAtomic && !Alignment) + return Error(Loc, "atomic load must have explicit non-zero alignment"); + if (Ordering == Release || Ordering == AcquireRelease) + return Error(Loc, "atomic load cannot use Release ordering"); + + Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseStore + +/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? +/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue +/// 'singlethread'? AtomicOrdering (',' 'align' i32)? +int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val, *Ptr; LocTy Loc, PtrLoc; + unsigned Alignment = 0; + bool AteExtraComma = false; + bool isAtomic = false; + AtomicOrdering Ordering = NotAtomic; + SynchronizationScope Scope = CrossThread; + + if (Lex.getKind() == lltok::kw_atomic) { + isAtomic = true; + Lex.Lex(); + } + + bool isVolatile = false; + if (Lex.getKind() == lltok::kw_volatile) { + isVolatile = true; + Lex.Lex(); + } + + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after store operand") || + ParseTypeAndValue(Ptr, PtrLoc, PFS) || + ParseScopeAndOrdering(isAtomic, Scope, Ordering) || + ParseOptionalCommaAlign(Alignment, AteExtraComma)) + return true; + + if (!Ptr->getType()->isPointerTy()) + return Error(PtrLoc, "store operand must be a pointer"); + if (!Val->getType()->isFirstClassType()) + return Error(Loc, "store operand must be a first class value"); + if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) + return Error(Loc, "stored value and pointer type do not match"); + if (isAtomic && !Alignment) + return Error(Loc, "atomic store must have explicit non-zero alignment"); + if (Ordering == Acquire || Ordering == AcquireRelease) + return Error(Loc, "atomic store cannot use Acquire ordering"); + + Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseCmpXchg +/// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue +/// 'singlethread'? AtomicOrdering +int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { + Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; + bool AteExtraComma = false; + AtomicOrdering Ordering = NotAtomic; + SynchronizationScope Scope = CrossThread; + bool isVolatile = false; + + if (EatIfPresent(lltok::kw_volatile)) + isVolatile = true; + + if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after cmpxchg address") || + ParseTypeAndValue(Cmp, CmpLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || + ParseTypeAndValue(New, NewLoc, PFS) || + ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) + return true; + + if (Ordering == Unordered) + return TokError("cmpxchg cannot be unordered"); + if (!Ptr->getType()->isPointerTy()) + return Error(PtrLoc, "cmpxchg operand must be a pointer"); + if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) + return Error(CmpLoc, "compare value and pointer type do not match"); + if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) + return Error(NewLoc, "new value and pointer type do not match"); + if (!New->getType()->isIntegerTy()) + return Error(NewLoc, "cmpxchg operand must be an integer"); + unsigned Size = New->getType()->getPrimitiveSizeInBits(); + if (Size < 8 || (Size & (Size - 1))) + return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" + " integer"); + + AtomicCmpXchgInst *CXI = + new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); + CXI->setVolatile(isVolatile); + Inst = CXI; + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseAtomicRMW +/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue +/// 'singlethread'? AtomicOrdering +int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { + Value *Ptr, *Val; LocTy PtrLoc, ValLoc; + bool AteExtraComma = false; + AtomicOrdering Ordering = NotAtomic; + SynchronizationScope Scope = CrossThread; + bool isVolatile = false; + AtomicRMWInst::BinOp Operation; + + if (EatIfPresent(lltok::kw_volatile)) + isVolatile = true; + + switch (Lex.getKind()) { + default: return TokError("expected binary operation in atomicrmw"); + case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; + case lltok::kw_add: Operation = AtomicRMWInst::Add; break; + case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; + case lltok::kw_and: Operation = AtomicRMWInst::And; break; + case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; + case lltok::kw_or: Operation = AtomicRMWInst::Or; break; + case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; + case lltok::kw_max: Operation = AtomicRMWInst::Max; break; + case lltok::kw_min: Operation = AtomicRMWInst::Min; break; + case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; + case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; + } + Lex.Lex(); // Eat the operation. + + if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after atomicrmw address") || + ParseTypeAndValue(Val, ValLoc, PFS) || + ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) + return true; + + if (Ordering == Unordered) + return TokError("atomicrmw cannot be unordered"); + if (!Ptr->getType()->isPointerTy()) + return Error(PtrLoc, "atomicrmw operand must be a pointer"); + if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) + return Error(ValLoc, "atomicrmw value and pointer type do not match"); + if (!Val->getType()->isIntegerTy()) + return Error(ValLoc, "atomicrmw operand must be an integer"); + unsigned Size = Val->getType()->getPrimitiveSizeInBits(); + if (Size < 8 || (Size & (Size - 1))) + return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" + " integer"); + + AtomicRMWInst *RMWI = + new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); + RMWI->setVolatile(isVolatile); + Inst = RMWI; + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseFence +/// ::= 'fence' 'singlethread'? AtomicOrdering +int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { + AtomicOrdering Ordering = NotAtomic; + SynchronizationScope Scope = CrossThread; + if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) + return true; + + if (Ordering == Unordered) + return TokError("fence cannot be unordered"); + if (Ordering == Monotonic) + return TokError("fence cannot be monotonic"); + + Inst = new FenceInst(Context, Ordering, Scope); + return InstNormal; +} + +/// ParseGetElementPtr +/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* +int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { + Value *Ptr = 0; + Value *Val = 0; + LocTy Loc, EltLoc; + + bool InBounds = EatIfPresent(lltok::kw_inbounds); + + if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; + + if (!Ptr->getType()->getScalarType()->isPointerTy()) + return Error(Loc, "base of getelementptr must be a pointer"); + + SmallVector<Value*, 16> Indices; + bool AteExtraComma = false; + while (EatIfPresent(lltok::comma)) { + if (Lex.getKind() == lltok::MetadataVar) { + AteExtraComma = true; + break; + } + if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; + if (!Val->getType()->getScalarType()->isIntegerTy()) + return Error(EltLoc, "getelementptr index must be an integer"); + if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) + return Error(EltLoc, "getelementptr index type missmatch"); + if (Val->getType()->isVectorTy()) { + unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); + unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); + if (ValNumEl != PtrNumEl) + return Error(EltLoc, + "getelementptr vector index has a wrong number of elements"); + } + Indices.push_back(Val); + } + + if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) + return Error(EltLoc, "vector getelementptrs must have a single index"); + + if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) + return Error(Loc, "invalid getelementptr indices"); + Inst = GetElementPtrInst::Create(Ptr, Indices); + if (InBounds) + cast<GetElementPtrInst>(Inst)->setIsInBounds(true); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseExtractValue +/// ::= 'extractvalue' TypeAndValue (',' uint32)+ +int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val; LocTy Loc; + SmallVector<unsigned, 4> Indices; + bool AteExtraComma; + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseIndexList(Indices, AteExtraComma)) + return true; + + if (!Val->getType()->isAggregateType()) + return Error(Loc, "extractvalue operand must be aggregate type"); + + if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) + return Error(Loc, "invalid indices for extractvalue"); + Inst = ExtractValueInst::Create(Val, Indices); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +/// ParseInsertValue +/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ +int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val0, *Val1; LocTy Loc0, Loc1; + SmallVector<unsigned, 4> Indices; + bool AteExtraComma; + if (ParseTypeAndValue(Val0, Loc0, PFS) || + ParseToken(lltok::comma, "expected comma after insertvalue operand") || + ParseTypeAndValue(Val1, Loc1, PFS) || + ParseIndexList(Indices, AteExtraComma)) + return true; + + if (!Val0->getType()->isAggregateType()) + return Error(Loc0, "insertvalue operand must be aggregate type"); + + if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) + return Error(Loc0, "invalid indices for insertvalue"); + Inst = InsertValueInst::Create(Val0, Val1, Indices); + return AteExtraComma ? InstExtraComma : InstNormal; +} + +//===----------------------------------------------------------------------===// +// Embedded metadata. +//===----------------------------------------------------------------------===// + +/// ParseMDNodeVector +/// ::= Element (',' Element)* +/// Element +/// ::= 'null' | TypeAndValue +bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, + PerFunctionState *PFS) { + // Check for an empty list. + if (Lex.getKind() == lltok::rbrace) + return false; + + do { + // Null is a special case since it is typeless. + if (EatIfPresent(lltok::kw_null)) { + Elts.push_back(0); + continue; + } + + Value *V = 0; + if (ParseTypeAndValue(V, PFS)) return true; + Elts.push_back(V); + } while (EatIfPresent(lltok::comma)); + + return false; +} diff --git a/contrib/llvm/lib/AsmParser/LLParser.h b/contrib/llvm/lib/AsmParser/LLParser.h new file mode 100644 index 0000000..dda8808 --- /dev/null +++ b/contrib/llvm/lib/AsmParser/LLParser.h @@ -0,0 +1,382 @@ +//===-- LLParser.h - Parser Class -------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the parser class for .ll files. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ASMPARSER_LLPARSER_H +#define LLVM_ASMPARSER_LLPARSER_H + +#include "LLLexer.h" +#include "llvm/Attributes.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/Support/ValueHandle.h" +#include <map> + +namespace llvm { + class Module; + class OpaqueType; + class Function; + class Value; + class BasicBlock; + class Instruction; + class Constant; + class GlobalValue; + class MDString; + class MDNode; + class StructType; + + /// ValID - Represents a reference of a definition of some sort with no type. + /// There are several cases where we have to parse the value but where the + /// type can depend on later context. This may either be a numeric reference + /// or a symbolic (%var) reference. This is just a discriminated union. + struct ValID { + enum { + t_LocalID, t_GlobalID, // ID in UIntVal. + t_LocalName, t_GlobalName, // Name in StrVal. + t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal. + t_Null, t_Undef, t_Zero, // No value. + t_EmptyArray, // No value: [] + t_Constant, // Value in ConstantVal. + t_InlineAsm, // Value in StrVal/StrVal2/UIntVal. + t_MDNode, // Value in MDNodeVal. + t_MDString, // Value in MDStringVal. + t_ConstantStruct, // Value in ConstantStructElts. + t_PackedConstantStruct // Value in ConstantStructElts. + } Kind; + + LLLexer::LocTy Loc; + unsigned UIntVal; + std::string StrVal, StrVal2; + APSInt APSIntVal; + APFloat APFloatVal; + Constant *ConstantVal; + MDNode *MDNodeVal; + MDString *MDStringVal; + Constant **ConstantStructElts; + + ValID() : Kind(t_LocalID), APFloatVal(0.0) {} + ~ValID() { + if (Kind == t_ConstantStruct || Kind == t_PackedConstantStruct) + delete [] ConstantStructElts; + } + + bool operator<(const ValID &RHS) const { + if (Kind == t_LocalID || Kind == t_GlobalID) + return UIntVal < RHS.UIntVal; + assert((Kind == t_LocalName || Kind == t_GlobalName || + Kind == t_ConstantStruct || Kind == t_PackedConstantStruct) && + "Ordering not defined for this ValID kind yet"); + return StrVal < RHS.StrVal; + } + }; + + class LLParser { + public: + typedef LLLexer::LocTy LocTy; + private: + LLVMContext &Context; + LLLexer Lex; + Module *M; + + // Instruction metadata resolution. Each instruction can have a list of + // MDRef info associated with them. + // + // The simpler approach of just creating temporary MDNodes and then calling + // RAUW on them when the definition is processed doesn't work because some + // instruction metadata kinds, such as dbg, get stored in the IR in an + // "optimized" format which doesn't participate in the normal value use + // lists. This means that RAUW doesn't work, even on temporary MDNodes + // which otherwise support RAUW. Instead, we defer resolving MDNode + // references until the definitions have been processed. + struct MDRef { + SMLoc Loc; + unsigned MDKind, MDSlot; + }; + DenseMap<Instruction*, std::vector<MDRef> > ForwardRefInstMetadata; + + // Type resolution handling data structures. The location is set when we + // have processed a use of the type but not a definition yet. + StringMap<std::pair<Type*, LocTy> > NamedTypes; + std::vector<std::pair<Type*, LocTy> > NumberedTypes; + + std::vector<TrackingVH<MDNode> > NumberedMetadata; + std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> > ForwardRefMDNodes; + + // Global Value reference information. + std::map<std::string, std::pair<GlobalValue*, LocTy> > ForwardRefVals; + std::map<unsigned, std::pair<GlobalValue*, LocTy> > ForwardRefValIDs; + std::vector<GlobalValue*> NumberedVals; + + // References to blockaddress. The key is the function ValID, the value is + // a list of references to blocks in that function. + std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > > + ForwardRefBlockAddresses; + + public: + LLParser(MemoryBuffer *F, SourceMgr &SM, SMDiagnostic &Err, Module *m) : + Context(m->getContext()), Lex(F, SM, Err, m->getContext()), + M(m) {} + bool Run(); + + LLVMContext &getContext() { return Context; } + + private: + + bool Error(LocTy L, const Twine &Msg) const { + return Lex.Error(L, Msg); + } + bool TokError(const Twine &Msg) const { + return Error(Lex.getLoc(), Msg); + } + + /// GetGlobalVal - Get a value with the specified name or ID, creating a + /// forward reference record if needed. This can return null if the value + /// exists but does not have the right type. + GlobalValue *GetGlobalVal(const std::string &N, Type *Ty, LocTy Loc); + GlobalValue *GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc); + + // Helper Routines. + bool ParseToken(lltok::Kind T, const char *ErrMsg); + bool EatIfPresent(lltok::Kind T) { + if (Lex.getKind() != T) return false; + Lex.Lex(); + return true; + } + bool ParseOptionalToken(lltok::Kind T, bool &Present, LocTy *Loc = 0) { + if (Lex.getKind() != T) { + Present = false; + } else { + if (Loc) + *Loc = Lex.getLoc(); + Lex.Lex(); + Present = true; + } + return false; + } + bool ParseStringConstant(std::string &Result); + bool ParseUInt32(unsigned &Val); + bool ParseUInt32(unsigned &Val, LocTy &Loc) { + Loc = Lex.getLoc(); + return ParseUInt32(Val); + } + bool ParseOptionalAddrSpace(unsigned &AddrSpace); + bool ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind); + bool ParseOptionalLinkage(unsigned &Linkage, bool &HasLinkage); + bool ParseOptionalLinkage(unsigned &Linkage) { + bool HasLinkage; return ParseOptionalLinkage(Linkage, HasLinkage); + } + bool ParseOptionalVisibility(unsigned &Visibility); + bool ParseOptionalCallingConv(CallingConv::ID &CC); + bool ParseOptionalAlignment(unsigned &Alignment); + bool ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, + AtomicOrdering &Ordering); + bool ParseOptionalStackAlignment(unsigned &Alignment); + bool ParseOptionalCommaAlign(unsigned &Alignment, bool &AteExtraComma); + bool ParseIndexList(SmallVectorImpl<unsigned> &Indices,bool &AteExtraComma); + bool ParseIndexList(SmallVectorImpl<unsigned> &Indices) { + bool AteExtraComma; + if (ParseIndexList(Indices, AteExtraComma)) return true; + if (AteExtraComma) + return TokError("expected index"); + return false; + } + + // Top-Level Entities + bool ParseTopLevelEntities(); + bool ValidateEndOfModule(); + bool ParseTargetDefinition(); + bool ParseDepLibs(); + bool ParseModuleAsm(); + bool ParseUnnamedType(); + bool ParseNamedType(); + bool ParseDeclare(); + bool ParseDefine(); + + bool ParseGlobalType(bool &IsConstant); + bool ParseUnnamedGlobal(); + bool ParseNamedGlobal(); + bool ParseGlobal(const std::string &Name, LocTy Loc, unsigned Linkage, + bool HasLinkage, unsigned Visibility); + bool ParseAlias(const std::string &Name, LocTy Loc, unsigned Visibility); + bool ParseStandaloneMetadata(); + bool ParseNamedMetadata(); + bool ParseMDString(MDString *&Result); + bool ParseMDNodeID(MDNode *&Result); + bool ParseMDNodeID(MDNode *&Result, unsigned &SlotNo); + + // Type Parsing. + bool ParseType(Type *&Result, bool AllowVoid = false); + bool ParseType(Type *&Result, LocTy &Loc, bool AllowVoid = false) { + Loc = Lex.getLoc(); + return ParseType(Result, AllowVoid); + } + bool ParseAnonStructType(Type *&Result, bool Packed); + bool ParseStructBody(SmallVectorImpl<Type*> &Body); + bool ParseStructDefinition(SMLoc TypeLoc, StringRef Name, + std::pair<Type*, LocTy> &Entry, + Type *&ResultTy); + + bool ParseArrayVectorType(Type *&Result, bool isVector); + bool ParseFunctionType(Type *&Result); + + // Function Semantic Analysis. + class PerFunctionState { + LLParser &P; + Function &F; + std::map<std::string, std::pair<Value*, LocTy> > ForwardRefVals; + std::map<unsigned, std::pair<Value*, LocTy> > ForwardRefValIDs; + std::vector<Value*> NumberedVals; + + /// FunctionNumber - If this is an unnamed function, this is the slot + /// number of it, otherwise it is -1. + int FunctionNumber; + public: + PerFunctionState(LLParser &p, Function &f, int FunctionNumber); + ~PerFunctionState(); + + Function &getFunction() const { return F; } + + bool FinishFunction(); + + /// GetVal - Get a value with the specified name or ID, creating a + /// forward reference record if needed. This can return null if the value + /// exists but does not have the right type. + Value *GetVal(const std::string &Name, Type *Ty, LocTy Loc); + Value *GetVal(unsigned ID, Type *Ty, LocTy Loc); + + /// SetInstName - After an instruction is parsed and inserted into its + /// basic block, this installs its name. + bool SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc, + Instruction *Inst); + + /// GetBB - Get a basic block with the specified name or ID, creating a + /// forward reference record if needed. This can return null if the value + /// is not a BasicBlock. + BasicBlock *GetBB(const std::string &Name, LocTy Loc); + BasicBlock *GetBB(unsigned ID, LocTy Loc); + + /// DefineBB - Define the specified basic block, which is either named or + /// unnamed. If there is an error, this returns null otherwise it returns + /// the block being defined. + BasicBlock *DefineBB(const std::string &Name, LocTy Loc); + }; + + bool ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, + PerFunctionState *PFS); + + bool ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS); + bool ParseValue(Type *Ty, Value *&V, PerFunctionState &PFS) { + return ParseValue(Ty, V, &PFS); + } + bool ParseValue(Type *Ty, Value *&V, LocTy &Loc, + PerFunctionState &PFS) { + Loc = Lex.getLoc(); + return ParseValue(Ty, V, &PFS); + } + + bool ParseTypeAndValue(Value *&V, PerFunctionState *PFS); + bool ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { + return ParseTypeAndValue(V, &PFS); + } + bool ParseTypeAndValue(Value *&V, LocTy &Loc, PerFunctionState &PFS) { + Loc = Lex.getLoc(); + return ParseTypeAndValue(V, PFS); + } + bool ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, + PerFunctionState &PFS); + bool ParseTypeAndBasicBlock(BasicBlock *&BB, PerFunctionState &PFS) { + LocTy Loc; + return ParseTypeAndBasicBlock(BB, Loc, PFS); + } + + + struct ParamInfo { + LocTy Loc; + Value *V; + Attributes Attrs; + ParamInfo(LocTy loc, Value *v, Attributes attrs) + : Loc(loc), V(v), Attrs(attrs) {} + }; + bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, + PerFunctionState &PFS); + + // Constant Parsing. + bool ParseValID(ValID &ID, PerFunctionState *PFS = NULL); + bool ParseGlobalValue(Type *Ty, Constant *&V); + bool ParseGlobalTypeAndValue(Constant *&V); + bool ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts); + bool ParseMetadataListValue(ValID &ID, PerFunctionState *PFS); + bool ParseMetadataValue(ValID &ID, PerFunctionState *PFS); + bool ParseMDNodeVector(SmallVectorImpl<Value*> &, PerFunctionState *PFS); + bool ParseInstructionMetadata(Instruction *Inst, PerFunctionState *PFS); + + // Function Parsing. + struct ArgInfo { + LocTy Loc; + Type *Ty; + Attributes Attrs; + std::string Name; + ArgInfo(LocTy L, Type *ty, Attributes Attr, const std::string &N) + : Loc(L), Ty(ty), Attrs(Attr), Name(N) {} + }; + bool ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, bool &isVarArg); + bool ParseFunctionHeader(Function *&Fn, bool isDefine); + bool ParseFunctionBody(Function &Fn); + bool ParseBasicBlock(PerFunctionState &PFS); + + // Instruction Parsing. Each instruction parsing routine can return with a + // normal result, an error result, or return having eaten an extra comma. + enum InstResult { InstNormal = 0, InstError = 1, InstExtraComma = 2 }; + int ParseInstruction(Instruction *&Inst, BasicBlock *BB, + PerFunctionState &PFS); + bool ParseCmpPredicate(unsigned &Pred, unsigned Opc); + + bool ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS); + bool ParseBr(Instruction *&Inst, PerFunctionState &PFS); + bool ParseSwitch(Instruction *&Inst, PerFunctionState &PFS); + bool ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS); + bool ParseInvoke(Instruction *&Inst, PerFunctionState &PFS); + bool ParseResume(Instruction *&Inst, PerFunctionState &PFS); + + bool ParseArithmetic(Instruction *&I, PerFunctionState &PFS, unsigned Opc, + unsigned OperandType); + bool ParseLogical(Instruction *&I, PerFunctionState &PFS, unsigned Opc); + bool ParseCompare(Instruction *&I, PerFunctionState &PFS, unsigned Opc); + bool ParseCast(Instruction *&I, PerFunctionState &PFS, unsigned Opc); + bool ParseSelect(Instruction *&I, PerFunctionState &PFS); + bool ParseVA_Arg(Instruction *&I, PerFunctionState &PFS); + bool ParseExtractElement(Instruction *&I, PerFunctionState &PFS); + bool ParseInsertElement(Instruction *&I, PerFunctionState &PFS); + bool ParseShuffleVector(Instruction *&I, PerFunctionState &PFS); + int ParsePHI(Instruction *&I, PerFunctionState &PFS); + bool ParseLandingPad(Instruction *&I, PerFunctionState &PFS); + bool ParseCall(Instruction *&I, PerFunctionState &PFS, bool isTail); + int ParseAlloc(Instruction *&I, PerFunctionState &PFS); + int ParseLoad(Instruction *&I, PerFunctionState &PFS); + int ParseStore(Instruction *&I, PerFunctionState &PFS); + int ParseCmpXchg(Instruction *&I, PerFunctionState &PFS); + int ParseAtomicRMW(Instruction *&I, PerFunctionState &PFS); + int ParseFence(Instruction *&I, PerFunctionState &PFS); + int ParseGetElementPtr(Instruction *&I, PerFunctionState &PFS); + int ParseExtractValue(Instruction *&I, PerFunctionState &PFS); + int ParseInsertValue(Instruction *&I, PerFunctionState &PFS); + + bool ResolveForwardRefBlockAddresses(Function *TheFn, + std::vector<std::pair<ValID, GlobalValue*> > &Refs, + PerFunctionState *PFS); + }; +} // End llvm namespace + +#endif diff --git a/contrib/llvm/lib/AsmParser/LLToken.h b/contrib/llvm/lib/AsmParser/LLToken.h new file mode 100644 index 0000000..adf5d4f --- /dev/null +++ b/contrib/llvm/lib/AsmParser/LLToken.h @@ -0,0 +1,160 @@ +//===- LLToken.h - Token Codes for LLVM Assembly Files ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the enums for the .ll lexer. +// +//===----------------------------------------------------------------------===// + +#ifndef LIBS_ASMPARSER_LLTOKEN_H +#define LIBS_ASMPARSER_LLTOKEN_H + +namespace llvm { +namespace lltok { + enum Kind { + // Markers + Eof, Error, + + // Tokens with no info. + dotdotdot, // ... + equal, comma, // = , + star, // * + lsquare, rsquare, // [ ] + lbrace, rbrace, // { } + less, greater, // < > + lparen, rparen, // ( ) + backslash, // \ (not /) + exclaim, // ! + + kw_x, + kw_true, kw_false, + kw_declare, kw_define, + kw_global, kw_constant, + + kw_private, kw_linker_private, kw_linker_private_weak, + kw_linker_private_weak_def_auto, kw_internal, + kw_linkonce, kw_linkonce_odr, kw_weak, kw_weak_odr, kw_appending, + kw_dllimport, kw_dllexport, kw_common, kw_available_externally, + kw_default, kw_hidden, kw_protected, + kw_unnamed_addr, + kw_extern_weak, + kw_external, kw_thread_local, + kw_zeroinitializer, + kw_undef, kw_null, + kw_to, + kw_tail, + kw_target, + kw_triple, + kw_unwind, + kw_deplibs, + kw_datalayout, + kw_volatile, + kw_atomic, + kw_unordered, kw_monotonic, kw_acquire, kw_release, kw_acq_rel, kw_seq_cst, + kw_singlethread, + kw_nuw, + kw_nsw, + kw_exact, + kw_inbounds, + kw_align, + kw_addrspace, + kw_section, + kw_alias, + kw_module, + kw_asm, + kw_sideeffect, + kw_alignstack, + kw_gc, + kw_c, + + kw_cc, kw_ccc, kw_fastcc, kw_coldcc, + kw_x86_stdcallcc, kw_x86_fastcallcc, kw_x86_thiscallcc, + kw_arm_apcscc, kw_arm_aapcscc, kw_arm_aapcs_vfpcc, + kw_msp430_intrcc, + kw_ptx_kernel, kw_ptx_device, + + kw_signext, + kw_zeroext, + kw_inreg, + kw_sret, + kw_nounwind, + kw_noreturn, + kw_noalias, + kw_nocapture, + kw_byval, + kw_nest, + kw_readnone, + kw_readonly, + kw_uwtable, + kw_returns_twice, + + kw_inlinehint, + kw_noinline, + kw_alwaysinline, + kw_optsize, + kw_ssp, + kw_sspreq, + kw_noredzone, + kw_noimplicitfloat, + kw_naked, + kw_nonlazybind, + kw_address_safety, + + kw_type, + kw_opaque, + + kw_eq, kw_ne, kw_slt, kw_sgt, kw_sle, kw_sge, kw_ult, kw_ugt, kw_ule, + kw_uge, kw_oeq, kw_one, kw_olt, kw_ogt, kw_ole, kw_oge, kw_ord, kw_uno, + kw_ueq, kw_une, + + // atomicrmw operations that aren't also instruction keywords. + kw_xchg, kw_nand, kw_max, kw_min, kw_umax, kw_umin, + + // Instruction Opcodes (Opcode in UIntVal). + kw_add, kw_fadd, kw_sub, kw_fsub, kw_mul, kw_fmul, + kw_udiv, kw_sdiv, kw_fdiv, + kw_urem, kw_srem, kw_frem, kw_shl, kw_lshr, kw_ashr, + kw_and, kw_or, kw_xor, kw_icmp, kw_fcmp, + + kw_phi, kw_call, + kw_trunc, kw_zext, kw_sext, kw_fptrunc, kw_fpext, kw_uitofp, kw_sitofp, + kw_fptoui, kw_fptosi, kw_inttoptr, kw_ptrtoint, kw_bitcast, + kw_select, kw_va_arg, + + kw_landingpad, kw_personality, kw_cleanup, kw_catch, kw_filter, + + kw_ret, kw_br, kw_switch, kw_indirectbr, kw_invoke, kw_resume, + kw_unreachable, + + kw_alloca, kw_load, kw_store, kw_fence, kw_cmpxchg, kw_atomicrmw, + kw_getelementptr, + + kw_extractelement, kw_insertelement, kw_shufflevector, + kw_extractvalue, kw_insertvalue, kw_blockaddress, + + // Unsigned Valued tokens (UIntVal). + GlobalID, // @42 + LocalVarID, // %42 + + // String valued tokens (StrVal). + LabelStr, // foo: + GlobalVar, // @foo @"foo" + LocalVar, // %foo %"foo" + MetadataVar, // !foo + StringConstant, // "foo" + + // Type valued tokens (TyVal). + Type, + + APFloat, // APFloatVal + APSInt // APSInt + }; +} // end namespace lltok +} // end namespace llvm + +#endif diff --git a/contrib/llvm/lib/AsmParser/Parser.cpp b/contrib/llvm/lib/AsmParser/Parser.cpp new file mode 100644 index 0000000..21b7fd4 --- /dev/null +++ b/contrib/llvm/lib/AsmParser/Parser.cpp @@ -0,0 +1,62 @@ +//===- Parser.cpp - Main dispatch module for the Parser library -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library implements the functionality defined in llvm/Assembly/Parser.h +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/Parser.h" +#include "LLParser.h" +#include "llvm/Module.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/system_error.h" +#include <cstring> +using namespace llvm; + +Module *llvm::ParseAssembly(MemoryBuffer *F, + Module *M, + SMDiagnostic &Err, + LLVMContext &Context) { + SourceMgr SM; + SM.AddNewSourceBuffer(F, SMLoc()); + + // If we are parsing into an existing module, do it. + if (M) + return LLParser(F, SM, Err, M).Run() ? 0 : M; + + // Otherwise create a new module. + OwningPtr<Module> M2(new Module(F->getBufferIdentifier(), Context)); + if (LLParser(F, SM, Err, M2.get()).Run()) + return 0; + return M2.take(); +} + +Module *llvm::ParseAssemblyFile(const std::string &Filename, SMDiagnostic &Err, + LLVMContext &Context) { + OwningPtr<MemoryBuffer> File; + if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename.c_str(), File)) { + Err = SMDiagnostic(Filename, SourceMgr::DK_Error, + "Could not open input file: " + ec.message()); + return 0; + } + + return ParseAssembly(File.take(), 0, Err, Context); +} + +Module *llvm::ParseAssemblyString(const char *AsmString, Module *M, + SMDiagnostic &Err, LLVMContext &Context) { + MemoryBuffer *F = + MemoryBuffer::getMemBuffer(StringRef(AsmString, strlen(AsmString)), + "<string>"); + + return ParseAssembly(F, M, Err, Context); +} |