summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/AsmParser/LLParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/AsmParser/LLParser.cpp')
-rw-r--r--contrib/llvm/lib/AsmParser/LLParser.cpp3981
1 files changed, 3981 insertions, 0 deletions
diff --git a/contrib/llvm/lib/AsmParser/LLParser.cpp b/contrib/llvm/lib/AsmParser/LLParser.cpp
new file mode 100644
index 0000000..f21a065
--- /dev/null
+++ b/contrib/llvm/lib/AsmParser/LLParser.cpp
@@ -0,0 +1,3981 @@
+//===-- LLParser.cpp - Parser Class ---------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the parser class for .ll files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LLParser.h"
+#include "llvm/AutoUpgrade.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// Run: module ::= toplevelentity*
+bool LLParser::Run() {
+ // Prime the lexer.
+ Lex.Lex();
+
+ return ParseTopLevelEntities() ||
+ ValidateEndOfModule();
+}
+
+/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
+/// module.
+bool LLParser::ValidateEndOfModule() {
+ // Handle any instruction metadata forward references.
+ if (!ForwardRefInstMetadata.empty()) {
+ for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
+ I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
+ I != E; ++I) {
+ Instruction *Inst = I->first;
+ const std::vector<MDRef> &MDList = I->second;
+
+ for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
+ unsigned SlotNo = MDList[i].MDSlot;
+
+ if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
+ return Error(MDList[i].Loc, "use of undefined metadata '!" +
+ utostr(SlotNo) + "'");
+ Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
+ }
+ }
+ ForwardRefInstMetadata.clear();
+ }
+
+
+ // Update auto-upgraded malloc calls to "malloc".
+ // FIXME: Remove in LLVM 3.0.
+ if (MallocF) {
+ MallocF->setName("malloc");
+ // If setName() does not set the name to "malloc", then there is already a
+ // declaration of "malloc". In that case, iterate over all calls to MallocF
+ // and get them to call the declared "malloc" instead.
+ if (MallocF->getName() != "malloc") {
+ Constant *RealMallocF = M->getFunction("malloc");
+ if (RealMallocF->getType() != MallocF->getType())
+ RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
+ MallocF->replaceAllUsesWith(RealMallocF);
+ MallocF->eraseFromParent();
+ MallocF = NULL;
+ }
+ }
+
+
+ // If there are entries in ForwardRefBlockAddresses at this point, they are
+ // references after the function was defined. Resolve those now.
+ while (!ForwardRefBlockAddresses.empty()) {
+ // Okay, we are referencing an already-parsed function, resolve them now.
+ Function *TheFn = 0;
+ const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
+ if (Fn.Kind == ValID::t_GlobalName)
+ TheFn = M->getFunction(Fn.StrVal);
+ else if (Fn.UIntVal < NumberedVals.size())
+ TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
+
+ if (TheFn == 0)
+ return Error(Fn.Loc, "unknown function referenced by blockaddress");
+
+ // Resolve all these references.
+ if (ResolveForwardRefBlockAddresses(TheFn,
+ ForwardRefBlockAddresses.begin()->second,
+ 0))
+ return true;
+
+ ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
+ }
+
+
+ if (!ForwardRefTypes.empty())
+ return Error(ForwardRefTypes.begin()->second.second,
+ "use of undefined type named '" +
+ ForwardRefTypes.begin()->first + "'");
+ if (!ForwardRefTypeIDs.empty())
+ return Error(ForwardRefTypeIDs.begin()->second.second,
+ "use of undefined type '%" +
+ utostr(ForwardRefTypeIDs.begin()->first) + "'");
+
+ if (!ForwardRefVals.empty())
+ return Error(ForwardRefVals.begin()->second.second,
+ "use of undefined value '@" + ForwardRefVals.begin()->first +
+ "'");
+
+ if (!ForwardRefValIDs.empty())
+ return Error(ForwardRefValIDs.begin()->second.second,
+ "use of undefined value '@" +
+ utostr(ForwardRefValIDs.begin()->first) + "'");
+
+ if (!ForwardRefMDNodes.empty())
+ return Error(ForwardRefMDNodes.begin()->second.second,
+ "use of undefined metadata '!" +
+ utostr(ForwardRefMDNodes.begin()->first) + "'");
+
+
+ // Look for intrinsic functions and CallInst that need to be upgraded
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
+ UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
+
+ // Check debug info intrinsics.
+ CheckDebugInfoIntrinsics(M);
+ return false;
+}
+
+bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
+ std::vector<std::pair<ValID, GlobalValue*> > &Refs,
+ PerFunctionState *PFS) {
+ // Loop over all the references, resolving them.
+ for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
+ BasicBlock *Res;
+ if (PFS) {
+ if (Refs[i].first.Kind == ValID::t_LocalName)
+ Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
+ else
+ Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
+ } else if (Refs[i].first.Kind == ValID::t_LocalID) {
+ return Error(Refs[i].first.Loc,
+ "cannot take address of numeric label after the function is defined");
+ } else {
+ Res = dyn_cast_or_null<BasicBlock>(
+ TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
+ }
+
+ if (Res == 0)
+ return Error(Refs[i].first.Loc,
+ "referenced value is not a basic block");
+
+ // Get the BlockAddress for this and update references to use it.
+ BlockAddress *BA = BlockAddress::get(TheFn, Res);
+ Refs[i].second->replaceAllUsesWith(BA);
+ Refs[i].second->eraseFromParent();
+ }
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Top-Level Entities
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ParseTopLevelEntities() {
+ while (1) {
+ switch (Lex.getKind()) {
+ default: return TokError("expected top-level entity");
+ case lltok::Eof: return false;
+ //case lltok::kw_define:
+ case lltok::kw_declare: if (ParseDeclare()) return true; break;
+ case lltok::kw_define: if (ParseDefine()) return true; break;
+ case lltok::kw_module: if (ParseModuleAsm()) return true; break;
+ case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
+ case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
+ case lltok::kw_type: if (ParseUnnamedType()) return true; break;
+ case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
+ case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
+ case lltok::LocalVar: if (ParseNamedType()) return true; break;
+ case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
+ case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
+ case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
+ case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
+
+ // The Global variable production with no name can have many different
+ // optional leading prefixes, the production is:
+ // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
+ // OptionalAddrSpace ('constant'|'global') ...
+ case lltok::kw_private: // OptionalLinkage
+ case lltok::kw_linker_private: // OptionalLinkage
+ case lltok::kw_linker_private_weak: // OptionalLinkage
+ case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
+ case lltok::kw_internal: // OptionalLinkage
+ case lltok::kw_weak: // OptionalLinkage
+ case lltok::kw_weak_odr: // OptionalLinkage
+ case lltok::kw_linkonce: // OptionalLinkage
+ case lltok::kw_linkonce_odr: // OptionalLinkage
+ case lltok::kw_appending: // OptionalLinkage
+ case lltok::kw_dllexport: // OptionalLinkage
+ case lltok::kw_common: // OptionalLinkage
+ case lltok::kw_dllimport: // OptionalLinkage
+ case lltok::kw_extern_weak: // OptionalLinkage
+ case lltok::kw_external: { // OptionalLinkage
+ unsigned Linkage, Visibility;
+ if (ParseOptionalLinkage(Linkage) ||
+ ParseOptionalVisibility(Visibility) ||
+ ParseGlobal("", SMLoc(), Linkage, true, Visibility))
+ return true;
+ break;
+ }
+ case lltok::kw_default: // OptionalVisibility
+ case lltok::kw_hidden: // OptionalVisibility
+ case lltok::kw_protected: { // OptionalVisibility
+ unsigned Visibility;
+ if (ParseOptionalVisibility(Visibility) ||
+ ParseGlobal("", SMLoc(), 0, false, Visibility))
+ return true;
+ break;
+ }
+
+ case lltok::kw_thread_local: // OptionalThreadLocal
+ case lltok::kw_addrspace: // OptionalAddrSpace
+ case lltok::kw_constant: // GlobalType
+ case lltok::kw_global: // GlobalType
+ if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
+ break;
+ }
+ }
+}
+
+
+/// toplevelentity
+/// ::= 'module' 'asm' STRINGCONSTANT
+bool LLParser::ParseModuleAsm() {
+ assert(Lex.getKind() == lltok::kw_module);
+ Lex.Lex();
+
+ std::string AsmStr;
+ if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
+ ParseStringConstant(AsmStr)) return true;
+
+ const std::string &AsmSoFar = M->getModuleInlineAsm();
+ if (AsmSoFar.empty())
+ M->setModuleInlineAsm(AsmStr);
+ else
+ M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
+ return false;
+}
+
+/// toplevelentity
+/// ::= 'target' 'triple' '=' STRINGCONSTANT
+/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
+bool LLParser::ParseTargetDefinition() {
+ assert(Lex.getKind() == lltok::kw_target);
+ std::string Str;
+ switch (Lex.Lex()) {
+ default: return TokError("unknown target property");
+ case lltok::kw_triple:
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after target triple") ||
+ ParseStringConstant(Str))
+ return true;
+ M->setTargetTriple(Str);
+ return false;
+ case lltok::kw_datalayout:
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
+ ParseStringConstant(Str))
+ return true;
+ M->setDataLayout(Str);
+ return false;
+ }
+}
+
+/// toplevelentity
+/// ::= 'deplibs' '=' '[' ']'
+/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
+bool LLParser::ParseDepLibs() {
+ assert(Lex.getKind() == lltok::kw_deplibs);
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
+ ParseToken(lltok::lsquare, "expected '=' after deplibs"))
+ return true;
+
+ if (EatIfPresent(lltok::rsquare))
+ return false;
+
+ std::string Str;
+ if (ParseStringConstant(Str)) return true;
+ M->addLibrary(Str);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseStringConstant(Str)) return true;
+ M->addLibrary(Str);
+ }
+
+ return ParseToken(lltok::rsquare, "expected ']' at end of list");
+}
+
+/// ParseUnnamedType:
+/// ::= 'type' type
+/// ::= LocalVarID '=' 'type' type
+bool LLParser::ParseUnnamedType() {
+ unsigned TypeID = NumberedTypes.size();
+
+ // Handle the LocalVarID form.
+ if (Lex.getKind() == lltok::LocalVarID) {
+ if (Lex.getUIntVal() != TypeID)
+ return Error(Lex.getLoc(), "type expected to be numbered '%" +
+ utostr(TypeID) + "'");
+ Lex.Lex(); // eat LocalVarID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name"))
+ return true;
+ }
+
+ LocTy TypeLoc = Lex.getLoc();
+ if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
+
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ if (ParseType(Ty)) return true;
+
+ // See if this type was previously referenced.
+ std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
+ FI = ForwardRefTypeIDs.find(TypeID);
+ if (FI != ForwardRefTypeIDs.end()) {
+ if (FI->second.first.get() == Ty)
+ return Error(TypeLoc, "self referential type is invalid");
+
+ cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
+ Ty = FI->second.first.get();
+ ForwardRefTypeIDs.erase(FI);
+ }
+
+ NumberedTypes.push_back(Ty);
+
+ return false;
+}
+
+/// toplevelentity
+/// ::= LocalVar '=' 'type' type
+bool LLParser::ParseNamedType() {
+ std::string Name = Lex.getStrVal();
+ LocTy NameLoc = Lex.getLoc();
+ Lex.Lex(); // eat LocalVar.
+
+ PATypeHolder Ty(Type::getVoidTy(Context));
+
+ if (ParseToken(lltok::equal, "expected '=' after name") ||
+ ParseToken(lltok::kw_type, "expected 'type' after name") ||
+ ParseType(Ty))
+ return true;
+
+ // Set the type name, checking for conflicts as we do so.
+ bool AlreadyExists = M->addTypeName(Name, Ty);
+ if (!AlreadyExists) return false;
+
+ // See if this type is a forward reference. We need to eagerly resolve
+ // types to allow recursive type redefinitions below.
+ std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
+ FI = ForwardRefTypes.find(Name);
+ if (FI != ForwardRefTypes.end()) {
+ if (FI->second.first.get() == Ty)
+ return Error(NameLoc, "self referential type is invalid");
+
+ cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
+ Ty = FI->second.first.get();
+ ForwardRefTypes.erase(FI);
+ }
+
+ // Inserting a name that is already defined, get the existing name.
+ const Type *Existing = M->getTypeByName(Name);
+ assert(Existing && "Conflict but no matching type?!");
+
+ // Otherwise, this is an attempt to redefine a type. That's okay if
+ // the redefinition is identical to the original.
+ // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
+ if (Existing == Ty) return false;
+
+ // Any other kind of (non-equivalent) redefinition is an error.
+ return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
+ Ty->getDescription() + "'");
+}
+
+
+/// toplevelentity
+/// ::= 'declare' FunctionHeader
+bool LLParser::ParseDeclare() {
+ assert(Lex.getKind() == lltok::kw_declare);
+ Lex.Lex();
+
+ Function *F;
+ return ParseFunctionHeader(F, false);
+}
+
+/// toplevelentity
+/// ::= 'define' FunctionHeader '{' ...
+bool LLParser::ParseDefine() {
+ assert(Lex.getKind() == lltok::kw_define);
+ Lex.Lex();
+
+ Function *F;
+ return ParseFunctionHeader(F, true) ||
+ ParseFunctionBody(*F);
+}
+
+/// ParseGlobalType
+/// ::= 'constant'
+/// ::= 'global'
+bool LLParser::ParseGlobalType(bool &IsConstant) {
+ if (Lex.getKind() == lltok::kw_constant)
+ IsConstant = true;
+ else if (Lex.getKind() == lltok::kw_global)
+ IsConstant = false;
+ else {
+ IsConstant = false;
+ return TokError("expected 'global' or 'constant'");
+ }
+ Lex.Lex();
+ return false;
+}
+
+/// ParseUnnamedGlobal:
+/// OptionalVisibility ALIAS ...
+/// OptionalLinkage OptionalVisibility ... -> global variable
+/// GlobalID '=' OptionalVisibility ALIAS ...
+/// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
+bool LLParser::ParseUnnamedGlobal() {
+ unsigned VarID = NumberedVals.size();
+ std::string Name;
+ LocTy NameLoc = Lex.getLoc();
+
+ // Handle the GlobalID form.
+ if (Lex.getKind() == lltok::GlobalID) {
+ if (Lex.getUIntVal() != VarID)
+ return Error(Lex.getLoc(), "variable expected to be numbered '%" +
+ utostr(VarID) + "'");
+ Lex.Lex(); // eat GlobalID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name"))
+ return true;
+ }
+
+ bool HasLinkage;
+ unsigned Linkage, Visibility;
+ if (ParseOptionalLinkage(Linkage, HasLinkage) ||
+ ParseOptionalVisibility(Visibility))
+ return true;
+
+ if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+ return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
+ return ParseAlias(Name, NameLoc, Visibility);
+}
+
+/// ParseNamedGlobal:
+/// GlobalVar '=' OptionalVisibility ALIAS ...
+/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
+bool LLParser::ParseNamedGlobal() {
+ assert(Lex.getKind() == lltok::GlobalVar);
+ LocTy NameLoc = Lex.getLoc();
+ std::string Name = Lex.getStrVal();
+ Lex.Lex();
+
+ bool HasLinkage;
+ unsigned Linkage, Visibility;
+ if (ParseToken(lltok::equal, "expected '=' in global variable") ||
+ ParseOptionalLinkage(Linkage, HasLinkage) ||
+ ParseOptionalVisibility(Visibility))
+ return true;
+
+ if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+ return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
+ return ParseAlias(Name, NameLoc, Visibility);
+}
+
+// MDString:
+// ::= '!' STRINGCONSTANT
+bool LLParser::ParseMDString(MDString *&Result) {
+ std::string Str;
+ if (ParseStringConstant(Str)) return true;
+ Result = MDString::get(Context, Str);
+ return false;
+}
+
+// MDNode:
+// ::= '!' MDNodeNumber
+//
+/// This version of ParseMDNodeID returns the slot number and null in the case
+/// of a forward reference.
+bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
+ // !{ ..., !42, ... }
+ if (ParseUInt32(SlotNo)) return true;
+
+ // Check existing MDNode.
+ if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
+ Result = NumberedMetadata[SlotNo];
+ else
+ Result = 0;
+ return false;
+}
+
+bool LLParser::ParseMDNodeID(MDNode *&Result) {
+ // !{ ..., !42, ... }
+ unsigned MID = 0;
+ if (ParseMDNodeID(Result, MID)) return true;
+
+ // If not a forward reference, just return it now.
+ if (Result) return false;
+
+ // Otherwise, create MDNode forward reference.
+ MDNode *FwdNode = MDNode::getTemporary(Context, 0, 0);
+ ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
+
+ if (NumberedMetadata.size() <= MID)
+ NumberedMetadata.resize(MID+1);
+ NumberedMetadata[MID] = FwdNode;
+ Result = FwdNode;
+ return false;
+}
+
+/// ParseNamedMetadata:
+/// !foo = !{ !1, !2 }
+bool LLParser::ParseNamedMetadata() {
+ assert(Lex.getKind() == lltok::MetadataVar);
+ std::string Name = Lex.getStrVal();
+ Lex.Lex();
+
+ if (ParseToken(lltok::equal, "expected '=' here") ||
+ ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseToken(lltok::lbrace, "Expected '{' here"))
+ return true;
+
+ NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
+ if (Lex.getKind() != lltok::rbrace)
+ do {
+ if (ParseToken(lltok::exclaim, "Expected '!' here"))
+ return true;
+
+ MDNode *N = 0;
+ if (ParseMDNodeID(N)) return true;
+ NMD->addOperand(N);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rbrace, "expected end of metadata node"))
+ return true;
+
+ return false;
+}
+
+/// ParseStandaloneMetadata:
+/// !42 = !{...}
+bool LLParser::ParseStandaloneMetadata() {
+ assert(Lex.getKind() == lltok::exclaim);
+ Lex.Lex();
+ unsigned MetadataID = 0;
+
+ LocTy TyLoc;
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ SmallVector<Value *, 16> Elts;
+ if (ParseUInt32(MetadataID) ||
+ ParseToken(lltok::equal, "expected '=' here") ||
+ ParseType(Ty, TyLoc) ||
+ ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseToken(lltok::lbrace, "Expected '{' here") ||
+ ParseMDNodeVector(Elts, NULL) ||
+ ParseToken(lltok::rbrace, "expected end of metadata node"))
+ return true;
+
+ MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
+
+ // See if this was forward referenced, if so, handle it.
+ std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
+ FI = ForwardRefMDNodes.find(MetadataID);
+ if (FI != ForwardRefMDNodes.end()) {
+ MDNode *Temp = FI->second.first;
+ Temp->replaceAllUsesWith(Init);
+ MDNode::deleteTemporary(Temp);
+ ForwardRefMDNodes.erase(FI);
+
+ assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
+ } else {
+ if (MetadataID >= NumberedMetadata.size())
+ NumberedMetadata.resize(MetadataID+1);
+
+ if (NumberedMetadata[MetadataID] != 0)
+ return TokError("Metadata id is already used");
+ NumberedMetadata[MetadataID] = Init;
+ }
+
+ return false;
+}
+
+/// ParseAlias:
+/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
+/// Aliasee
+/// ::= TypeAndValue
+/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
+/// ::= 'getelementptr' 'inbounds'? '(' ... ')'
+///
+/// Everything through visibility has already been parsed.
+///
+bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
+ unsigned Visibility) {
+ assert(Lex.getKind() == lltok::kw_alias);
+ Lex.Lex();
+ unsigned Linkage;
+ LocTy LinkageLoc = Lex.getLoc();
+ if (ParseOptionalLinkage(Linkage))
+ return true;
+
+ if (Linkage != GlobalValue::ExternalLinkage &&
+ Linkage != GlobalValue::WeakAnyLinkage &&
+ Linkage != GlobalValue::WeakODRLinkage &&
+ Linkage != GlobalValue::InternalLinkage &&
+ Linkage != GlobalValue::PrivateLinkage &&
+ Linkage != GlobalValue::LinkerPrivateLinkage &&
+ Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
+ Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
+ return Error(LinkageLoc, "invalid linkage type for alias");
+
+ Constant *Aliasee;
+ LocTy AliaseeLoc = Lex.getLoc();
+ if (Lex.getKind() != lltok::kw_bitcast &&
+ Lex.getKind() != lltok::kw_getelementptr) {
+ if (ParseGlobalTypeAndValue(Aliasee)) return true;
+ } else {
+ // The bitcast dest type is not present, it is implied by the dest type.
+ ValID ID;
+ if (ParseValID(ID)) return true;
+ if (ID.Kind != ValID::t_Constant)
+ return Error(AliaseeLoc, "invalid aliasee");
+ Aliasee = ID.ConstantVal;
+ }
+
+ if (!Aliasee->getType()->isPointerTy())
+ return Error(AliaseeLoc, "alias must have pointer type");
+
+ // Okay, create the alias but do not insert it into the module yet.
+ GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
+ (GlobalValue::LinkageTypes)Linkage, Name,
+ Aliasee);
+ GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+
+ // See if this value already exists in the symbol table. If so, it is either
+ // a redefinition or a definition of a forward reference.
+ if (GlobalValue *Val = M->getNamedValue(Name)) {
+ // See if this was a redefinition. If so, there is no entry in
+ // ForwardRefVals.
+ std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
+ I = ForwardRefVals.find(Name);
+ if (I == ForwardRefVals.end())
+ return Error(NameLoc, "redefinition of global named '@" + Name + "'");
+
+ // Otherwise, this was a definition of forward ref. Verify that types
+ // agree.
+ if (Val->getType() != GA->getType())
+ return Error(NameLoc,
+ "forward reference and definition of alias have different types");
+
+ // If they agree, just RAUW the old value with the alias and remove the
+ // forward ref info.
+ Val->replaceAllUsesWith(GA);
+ Val->eraseFromParent();
+ ForwardRefVals.erase(I);
+ }
+
+ // Insert into the module, we know its name won't collide now.
+ M->getAliasList().push_back(GA);
+ assert(GA->getNameStr() == Name && "Should not be a name conflict!");
+
+ return false;
+}
+
+/// ParseGlobal
+/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
+/// OptionalAddrSpace GlobalType Type Const
+/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
+/// OptionalAddrSpace GlobalType Type Const
+///
+/// Everything through visibility has been parsed already.
+///
+bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
+ unsigned Linkage, bool HasLinkage,
+ unsigned Visibility) {
+ unsigned AddrSpace;
+ bool ThreadLocal, IsConstant;
+ LocTy TyLoc;
+
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
+ ParseOptionalAddrSpace(AddrSpace) ||
+ ParseGlobalType(IsConstant) ||
+ ParseType(Ty, TyLoc))
+ return true;
+
+ // If the linkage is specified and is external, then no initializer is
+ // present.
+ Constant *Init = 0;
+ if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
+ Linkage != GlobalValue::ExternalWeakLinkage &&
+ Linkage != GlobalValue::ExternalLinkage)) {
+ if (ParseGlobalValue(Ty, Init))
+ return true;
+ }
+
+ if (Ty->isFunctionTy() || Ty->isLabelTy())
+ return Error(TyLoc, "invalid type for global variable");
+
+ GlobalVariable *GV = 0;
+
+ // See if the global was forward referenced, if so, use the global.
+ if (!Name.empty()) {
+ if (GlobalValue *GVal = M->getNamedValue(Name)) {
+ if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
+ return Error(NameLoc, "redefinition of global '@" + Name + "'");
+ GV = cast<GlobalVariable>(GVal);
+ }
+ } else {
+ std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
+ I = ForwardRefValIDs.find(NumberedVals.size());
+ if (I != ForwardRefValIDs.end()) {
+ GV = cast<GlobalVariable>(I->second.first);
+ ForwardRefValIDs.erase(I);
+ }
+ }
+
+ if (GV == 0) {
+ GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
+ Name, 0, false, AddrSpace);
+ } else {
+ if (GV->getType()->getElementType() != Ty)
+ return Error(TyLoc,
+ "forward reference and definition of global have different types");
+
+ // Move the forward-reference to the correct spot in the module.
+ M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
+ }
+
+ if (Name.empty())
+ NumberedVals.push_back(GV);
+
+ // Set the parsed properties on the global.
+ if (Init)
+ GV->setInitializer(Init);
+ GV->setConstant(IsConstant);
+ GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
+ GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+ GV->setThreadLocal(ThreadLocal);
+
+ // Parse attributes on the global.
+ while (Lex.getKind() == lltok::comma) {
+ Lex.Lex();
+
+ if (Lex.getKind() == lltok::kw_section) {
+ Lex.Lex();
+ GV->setSection(Lex.getStrVal());
+ if (ParseToken(lltok::StringConstant, "expected global section string"))
+ return true;
+ } else if (Lex.getKind() == lltok::kw_align) {
+ unsigned Alignment;
+ if (ParseOptionalAlignment(Alignment)) return true;
+ GV->setAlignment(Alignment);
+ } else {
+ TokError("unknown global variable property!");
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// GlobalValue Reference/Resolution Routines.
+//===----------------------------------------------------------------------===//
+
+/// GetGlobalVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed. This can return null if the value
+/// exists but does not have the right type.
+GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
+ LocTy Loc) {
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (PTy == 0) {
+ Error(Loc, "global variable reference must have pointer type");
+ return 0;
+ }
+
+ // Look this name up in the normal function symbol table.
+ GlobalValue *Val =
+ cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (Val == 0) {
+ std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
+ I = ForwardRefVals.find(Name);
+ if (I != ForwardRefVals.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val) {
+ if (Val->getType() == Ty) return Val;
+ Error(Loc, "'@" + Name + "' defined with type '" +
+ Val->getType()->getDescription() + "'");
+ return 0;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ GlobalValue *FwdVal;
+ if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
+ // Function types can return opaque but functions can't.
+ if (FT->getReturnType()->isOpaqueTy()) {
+ Error(Loc, "function may not return opaque type");
+ return 0;
+ }
+
+ FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
+ } else {
+ FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, 0, Name);
+ }
+
+ ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (PTy == 0) {
+ Error(Loc, "global variable reference must have pointer type");
+ return 0;
+ }
+
+ GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (Val == 0) {
+ std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
+ I = ForwardRefValIDs.find(ID);
+ if (I != ForwardRefValIDs.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val) {
+ if (Val->getType() == Ty) return Val;
+ Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
+ Val->getType()->getDescription() + "'");
+ return 0;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ GlobalValue *FwdVal;
+ if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
+ // Function types can return opaque but functions can't.
+ if (FT->getReturnType()->isOpaqueTy()) {
+ Error(Loc, "function may not return opaque type");
+ return 0;
+ }
+ FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
+ } else {
+ FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, 0, "");
+ }
+
+ ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helper Routines.
+//===----------------------------------------------------------------------===//
+
+/// ParseToken - If the current token has the specified kind, eat it and return
+/// success. Otherwise, emit the specified error and return failure.
+bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
+ if (Lex.getKind() != T)
+ return TokError(ErrMsg);
+ Lex.Lex();
+ return false;
+}
+
+/// ParseStringConstant
+/// ::= StringConstant
+bool LLParser::ParseStringConstant(std::string &Result) {
+ if (Lex.getKind() != lltok::StringConstant)
+ return TokError("expected string constant");
+ Result = Lex.getStrVal();
+ Lex.Lex();
+ return false;
+}
+
+/// ParseUInt32
+/// ::= uint32
+bool LLParser::ParseUInt32(unsigned &Val) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected integer");
+ uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
+ if (Val64 != unsigned(Val64))
+ return TokError("expected 32-bit integer (too large)");
+ Val = Val64;
+ Lex.Lex();
+ return false;
+}
+
+
+/// ParseOptionalAddrSpace
+/// := /*empty*/
+/// := 'addrspace' '(' uint32 ')'
+bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
+ AddrSpace = 0;
+ if (!EatIfPresent(lltok::kw_addrspace))
+ return false;
+ return ParseToken(lltok::lparen, "expected '(' in address space") ||
+ ParseUInt32(AddrSpace) ||
+ ParseToken(lltok::rparen, "expected ')' in address space");
+}
+
+/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
+/// indicates what kind of attribute list this is: 0: function arg, 1: result,
+/// 2: function attr.
+/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
+bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
+ Attrs = Attribute::None;
+ LocTy AttrLoc = Lex.getLoc();
+
+ while (1) {
+ switch (Lex.getKind()) {
+ case lltok::kw_sext:
+ case lltok::kw_zext:
+ // Treat these as signext/zeroext if they occur in the argument list after
+ // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
+ // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
+ // expr.
+ // FIXME: REMOVE THIS IN LLVM 3.0
+ if (AttrKind == 3) {
+ if (Lex.getKind() == lltok::kw_sext)
+ Attrs |= Attribute::SExt;
+ else
+ Attrs |= Attribute::ZExt;
+ break;
+ }
+ // FALL THROUGH.
+ default: // End of attributes.
+ if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
+ return Error(AttrLoc, "invalid use of function-only attribute");
+
+ if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
+ return Error(AttrLoc, "invalid use of parameter-only attribute");
+
+ return false;
+ case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
+ case lltok::kw_signext: Attrs |= Attribute::SExt; break;
+ case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
+ case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
+ case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
+ case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
+ case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
+ case lltok::kw_nest: Attrs |= Attribute::Nest; break;
+
+ case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
+ case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
+ case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
+ case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
+ case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
+ case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
+ case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
+ case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
+ case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
+ case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
+ case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
+ case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
+ case lltok::kw_naked: Attrs |= Attribute::Naked; break;
+
+ case lltok::kw_alignstack: {
+ unsigned Alignment;
+ if (ParseOptionalStackAlignment(Alignment))
+ return true;
+ Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
+ continue;
+ }
+
+ case lltok::kw_align: {
+ unsigned Alignment;
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ Attrs |= Attribute::constructAlignmentFromInt(Alignment);
+ continue;
+ }
+
+ }
+ Lex.Lex();
+ }
+}
+
+/// ParseOptionalLinkage
+/// ::= /*empty*/
+/// ::= 'private'
+/// ::= 'linker_private'
+/// ::= 'linker_private_weak'
+/// ::= 'linker_private_weak_def_auto'
+/// ::= 'internal'
+/// ::= 'weak'
+/// ::= 'weak_odr'
+/// ::= 'linkonce'
+/// ::= 'linkonce_odr'
+/// ::= 'available_externally'
+/// ::= 'appending'
+/// ::= 'dllexport'
+/// ::= 'common'
+/// ::= 'dllimport'
+/// ::= 'extern_weak'
+/// ::= 'external'
+bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
+ HasLinkage = false;
+ switch (Lex.getKind()) {
+ default: Res=GlobalValue::ExternalLinkage; return false;
+ case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
+ case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
+ case lltok::kw_linker_private_weak:
+ Res = GlobalValue::LinkerPrivateWeakLinkage;
+ break;
+ case lltok::kw_linker_private_weak_def_auto:
+ Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
+ break;
+ case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
+ case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
+ case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
+ case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
+ case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
+ case lltok::kw_available_externally:
+ Res = GlobalValue::AvailableExternallyLinkage;
+ break;
+ case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
+ case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
+ case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
+ case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
+ case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
+ case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
+ }
+ Lex.Lex();
+ HasLinkage = true;
+ return false;
+}
+
+/// ParseOptionalVisibility
+/// ::= /*empty*/
+/// ::= 'default'
+/// ::= 'hidden'
+/// ::= 'protected'
+///
+bool LLParser::ParseOptionalVisibility(unsigned &Res) {
+ switch (Lex.getKind()) {
+ default: Res = GlobalValue::DefaultVisibility; return false;
+ case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
+ case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
+ case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
+ }
+ Lex.Lex();
+ return false;
+}
+
+/// ParseOptionalCallingConv
+/// ::= /*empty*/
+/// ::= 'ccc'
+/// ::= 'fastcc'
+/// ::= 'coldcc'
+/// ::= 'x86_stdcallcc'
+/// ::= 'x86_fastcallcc'
+/// ::= 'x86_thiscallcc'
+/// ::= 'arm_apcscc'
+/// ::= 'arm_aapcscc'
+/// ::= 'arm_aapcs_vfpcc'
+/// ::= 'msp430_intrcc'
+/// ::= 'cc' UINT
+///
+bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
+ switch (Lex.getKind()) {
+ default: CC = CallingConv::C; return false;
+ case lltok::kw_ccc: CC = CallingConv::C; break;
+ case lltok::kw_fastcc: CC = CallingConv::Fast; break;
+ case lltok::kw_coldcc: CC = CallingConv::Cold; break;
+ case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
+ case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
+ case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
+ case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
+ case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
+ case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
+ case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
+ case lltok::kw_cc: {
+ unsigned ArbitraryCC;
+ Lex.Lex();
+ if (ParseUInt32(ArbitraryCC)) {
+ return true;
+ } else
+ CC = static_cast<CallingConv::ID>(ArbitraryCC);
+ return false;
+ }
+ break;
+ }
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseInstructionMetadata
+/// ::= !dbg !42 (',' !dbg !57)*
+bool LLParser::ParseInstructionMetadata(Instruction *Inst,
+ PerFunctionState *PFS) {
+ do {
+ if (Lex.getKind() != lltok::MetadataVar)
+ return TokError("expected metadata after comma");
+
+ std::string Name = Lex.getStrVal();
+ unsigned MDK = M->getMDKindID(Name.c_str());
+ Lex.Lex();
+
+ MDNode *Node;
+ unsigned NodeID;
+ SMLoc Loc = Lex.getLoc();
+
+ if (ParseToken(lltok::exclaim, "expected '!' here"))
+ return true;
+
+ // This code is similar to that of ParseMetadataValue, however it needs to
+ // have special-case code for a forward reference; see the comments on
+ // ForwardRefInstMetadata for details. Also, MDStrings are not supported
+ // at the top level here.
+ if (Lex.getKind() == lltok::lbrace) {
+ ValID ID;
+ if (ParseMetadataListValue(ID, PFS))
+ return true;
+ assert(ID.Kind == ValID::t_MDNode);
+ Inst->setMetadata(MDK, ID.MDNodeVal);
+ } else {
+ if (ParseMDNodeID(Node, NodeID))
+ return true;
+ if (Node) {
+ // If we got the node, add it to the instruction.
+ Inst->setMetadata(MDK, Node);
+ } else {
+ MDRef R = { Loc, MDK, NodeID };
+ // Otherwise, remember that this should be resolved later.
+ ForwardRefInstMetadata[Inst].push_back(R);
+ }
+ }
+
+ // If this is the end of the list, we're done.
+ } while (EatIfPresent(lltok::comma));
+ return false;
+}
+
+/// ParseOptionalAlignment
+/// ::= /* empty */
+/// ::= 'align' 4
+bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
+ Alignment = 0;
+ if (!EatIfPresent(lltok::kw_align))
+ return false;
+ LocTy AlignLoc = Lex.getLoc();
+ if (ParseUInt32(Alignment)) return true;
+ if (!isPowerOf2_32(Alignment))
+ return Error(AlignLoc, "alignment is not a power of two");
+ if (Alignment > Value::MaximumAlignment)
+ return Error(AlignLoc, "huge alignments are not supported yet");
+ return false;
+}
+
+/// ParseOptionalCommaAlign
+/// ::=
+/// ::= ',' align 4
+///
+/// This returns with AteExtraComma set to true if it ate an excess comma at the
+/// end.
+bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
+ bool &AteExtraComma) {
+ AteExtraComma = false;
+ while (EatIfPresent(lltok::comma)) {
+ // Metadata at the end is an early exit.
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ return false;
+ }
+
+ if (Lex.getKind() != lltok::kw_align)
+ return Error(Lex.getLoc(), "expected metadata or 'align'");
+
+ LocTy AlignLoc = Lex.getLoc();
+ if (ParseOptionalAlignment(Alignment)) return true;
+ }
+
+ return false;
+}
+
+/// ParseOptionalStackAlignment
+/// ::= /* empty */
+/// ::= 'alignstack' '(' 4 ')'
+bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
+ Alignment = 0;
+ if (!EatIfPresent(lltok::kw_alignstack))
+ return false;
+ LocTy ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::lparen))
+ return Error(ParenLoc, "expected '('");
+ LocTy AlignLoc = Lex.getLoc();
+ if (ParseUInt32(Alignment)) return true;
+ ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::rparen))
+ return Error(ParenLoc, "expected ')'");
+ if (!isPowerOf2_32(Alignment))
+ return Error(AlignLoc, "stack alignment is not a power of two");
+ return false;
+}
+
+/// ParseIndexList - This parses the index list for an insert/extractvalue
+/// instruction. This sets AteExtraComma in the case where we eat an extra
+/// comma at the end of the line and find that it is followed by metadata.
+/// Clients that don't allow metadata can call the version of this function that
+/// only takes one argument.
+///
+/// ParseIndexList
+/// ::= (',' uint32)+
+///
+bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
+ bool &AteExtraComma) {
+ AteExtraComma = false;
+
+ if (Lex.getKind() != lltok::comma)
+ return TokError("expected ',' as start of index list");
+
+ while (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ return false;
+ }
+ unsigned Idx;
+ if (ParseUInt32(Idx)) return true;
+ Indices.push_back(Idx);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseType - Parse and resolve a full type.
+bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
+ LocTy TypeLoc = Lex.getLoc();
+ if (ParseTypeRec(Result)) return true;
+
+ // Verify no unresolved uprefs.
+ if (!UpRefs.empty())
+ return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
+
+ if (!AllowVoid && Result.get()->isVoidTy())
+ return Error(TypeLoc, "void type only allowed for function results");
+
+ return false;
+}
+
+/// HandleUpRefs - Every time we finish a new layer of types, this function is
+/// called. It loops through the UpRefs vector, which is a list of the
+/// currently active types. For each type, if the up-reference is contained in
+/// the newly completed type, we decrement the level count. When the level
+/// count reaches zero, the up-referenced type is the type that is passed in:
+/// thus we can complete the cycle.
+///
+PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
+ // If Ty isn't abstract, or if there are no up-references in it, then there is
+ // nothing to resolve here.
+ if (!ty->isAbstract() || UpRefs.empty()) return ty;
+
+ PATypeHolder Ty(ty);
+#if 0
+ dbgs() << "Type '" << Ty->getDescription()
+ << "' newly formed. Resolving upreferences.\n"
+ << UpRefs.size() << " upreferences active!\n";
+#endif
+
+ // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
+ // to zero), we resolve them all together before we resolve them to Ty. At
+ // the end of the loop, if there is anything to resolve to Ty, it will be in
+ // this variable.
+ OpaqueType *TypeToResolve = 0;
+
+ for (unsigned i = 0; i != UpRefs.size(); ++i) {
+ // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
+ bool ContainsType =
+ std::find(Ty->subtype_begin(), Ty->subtype_end(),
+ UpRefs[i].LastContainedTy) != Ty->subtype_end();
+
+#if 0
+ dbgs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
+ << UpRefs[i].LastContainedTy->getDescription() << ") = "
+ << (ContainsType ? "true" : "false")
+ << " level=" << UpRefs[i].NestingLevel << "\n";
+#endif
+ if (!ContainsType)
+ continue;
+
+ // Decrement level of upreference
+ unsigned Level = --UpRefs[i].NestingLevel;
+ UpRefs[i].LastContainedTy = Ty;
+
+ // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
+ if (Level != 0)
+ continue;
+
+#if 0
+ dbgs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
+#endif
+ if (!TypeToResolve)
+ TypeToResolve = UpRefs[i].UpRefTy;
+ else
+ UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
+ UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
+ --i; // Do not skip the next element.
+ }
+
+ if (TypeToResolve)
+ TypeToResolve->refineAbstractTypeTo(Ty);
+
+ return Ty;
+}
+
+
+/// ParseTypeRec - The recursive function used to process the internal
+/// implementation details of types.
+bool LLParser::ParseTypeRec(PATypeHolder &Result) {
+ switch (Lex.getKind()) {
+ default:
+ return TokError("expected type");
+ case lltok::Type:
+ // TypeRec ::= 'float' | 'void' (etc)
+ Result = Lex.getTyVal();
+ Lex.Lex();
+ break;
+ case lltok::kw_opaque:
+ // TypeRec ::= 'opaque'
+ Result = OpaqueType::get(Context);
+ Lex.Lex();
+ break;
+ case lltok::lbrace:
+ // TypeRec ::= '{' ... '}'
+ if (ParseStructType(Result, false))
+ return true;
+ break;
+ case lltok::lsquare:
+ // TypeRec ::= '[' ... ']'
+ Lex.Lex(); // eat the lsquare.
+ if (ParseArrayVectorType(Result, false))
+ return true;
+ break;
+ case lltok::less: // Either vector or packed struct.
+ // TypeRec ::= '<' ... '>'
+ Lex.Lex();
+ if (Lex.getKind() == lltok::lbrace) {
+ if (ParseStructType(Result, true) ||
+ ParseToken(lltok::greater, "expected '>' at end of packed struct"))
+ return true;
+ } else if (ParseArrayVectorType(Result, true))
+ return true;
+ break;
+ case lltok::LocalVar:
+ case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
+ // TypeRec ::= %foo
+ if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
+ Result = T;
+ } else {
+ Result = OpaqueType::get(Context);
+ ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
+ std::make_pair(Result,
+ Lex.getLoc())));
+ M->addTypeName(Lex.getStrVal(), Result.get());
+ }
+ Lex.Lex();
+ break;
+
+ case lltok::LocalVarID:
+ // TypeRec ::= %4
+ if (Lex.getUIntVal() < NumberedTypes.size())
+ Result = NumberedTypes[Lex.getUIntVal()];
+ else {
+ std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
+ I = ForwardRefTypeIDs.find(Lex.getUIntVal());
+ if (I != ForwardRefTypeIDs.end())
+ Result = I->second.first;
+ else {
+ Result = OpaqueType::get(Context);
+ ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
+ std::make_pair(Result,
+ Lex.getLoc())));
+ }
+ }
+ Lex.Lex();
+ break;
+ case lltok::backslash: {
+ // TypeRec ::= '\' 4
+ Lex.Lex();
+ unsigned Val;
+ if (ParseUInt32(Val)) return true;
+ OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
+ UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
+ Result = OT;
+ break;
+ }
+ }
+
+ // Parse the type suffixes.
+ while (1) {
+ switch (Lex.getKind()) {
+ // End of type.
+ default: return false;
+
+ // TypeRec ::= TypeRec '*'
+ case lltok::star:
+ if (Result.get()->isLabelTy())
+ return TokError("basic block pointers are invalid");
+ if (Result.get()->isVoidTy())
+ return TokError("pointers to void are invalid; use i8* instead");
+ if (!PointerType::isValidElementType(Result.get()))
+ return TokError("pointer to this type is invalid");
+ Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
+ Lex.Lex();
+ break;
+
+ // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
+ case lltok::kw_addrspace: {
+ if (Result.get()->isLabelTy())
+ return TokError("basic block pointers are invalid");
+ if (Result.get()->isVoidTy())
+ return TokError("pointers to void are invalid; use i8* instead");
+ if (!PointerType::isValidElementType(Result.get()))
+ return TokError("pointer to this type is invalid");
+ unsigned AddrSpace;
+ if (ParseOptionalAddrSpace(AddrSpace) ||
+ ParseToken(lltok::star, "expected '*' in address space"))
+ return true;
+
+ Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
+ break;
+ }
+
+ /// Types '(' ArgTypeListI ')' OptFuncAttrs
+ case lltok::lparen:
+ if (ParseFunctionType(Result))
+ return true;
+ break;
+ }
+ }
+}
+
+/// ParseParameterList
+/// ::= '(' ')'
+/// ::= '(' Arg (',' Arg)* ')'
+/// Arg
+/// ::= Type OptionalAttributes Value OptionalAttributes
+bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
+ PerFunctionState &PFS) {
+ if (ParseToken(lltok::lparen, "expected '(' in call"))
+ return true;
+
+ while (Lex.getKind() != lltok::rparen) {
+ // If this isn't the first argument, we need a comma.
+ if (!ArgList.empty() &&
+ ParseToken(lltok::comma, "expected ',' in argument list"))
+ return true;
+
+ // Parse the argument.
+ LocTy ArgLoc;
+ PATypeHolder ArgTy(Type::getVoidTy(Context));
+ unsigned ArgAttrs1 = Attribute::None;
+ unsigned ArgAttrs2 = Attribute::None;
+ Value *V;
+ if (ParseType(ArgTy, ArgLoc))
+ return true;
+
+ // Otherwise, handle normal operands.
+ if (ParseOptionalAttrs(ArgAttrs1, 0) ||
+ ParseValue(ArgTy, V, PFS) ||
+ // FIXME: Should not allow attributes after the argument, remove this
+ // in LLVM 3.0.
+ ParseOptionalAttrs(ArgAttrs2, 3))
+ return true;
+ ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
+ }
+
+ Lex.Lex(); // Lex the ')'.
+ return false;
+}
+
+
+
+/// ParseArgumentList - Parse the argument list for a function type or function
+/// prototype. If 'inType' is true then we are parsing a FunctionType.
+/// ::= '(' ArgTypeListI ')'
+/// ArgTypeListI
+/// ::= /*empty*/
+/// ::= '...'
+/// ::= ArgTypeList ',' '...'
+/// ::= ArgType (',' ArgType)*
+///
+bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
+ bool &isVarArg, bool inType) {
+ isVarArg = false;
+ assert(Lex.getKind() == lltok::lparen);
+ Lex.Lex(); // eat the (.
+
+ if (Lex.getKind() == lltok::rparen) {
+ // empty
+ } else if (Lex.getKind() == lltok::dotdotdot) {
+ isVarArg = true;
+ Lex.Lex();
+ } else {
+ LocTy TypeLoc = Lex.getLoc();
+ PATypeHolder ArgTy(Type::getVoidTy(Context));
+ unsigned Attrs;
+ std::string Name;
+
+ // If we're parsing a type, use ParseTypeRec, because we allow recursive
+ // types (such as a function returning a pointer to itself). If parsing a
+ // function prototype, we require fully resolved types.
+ if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
+ ParseOptionalAttrs(Attrs, 0)) return true;
+
+ if (ArgTy->isVoidTy())
+ return Error(TypeLoc, "argument can not have void type");
+
+ if (Lex.getKind() == lltok::LocalVar ||
+ Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ }
+
+ if (!FunctionType::isValidArgumentType(ArgTy))
+ return Error(TypeLoc, "invalid type for function argument");
+
+ ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
+
+ while (EatIfPresent(lltok::comma)) {
+ // Handle ... at end of arg list.
+ if (EatIfPresent(lltok::dotdotdot)) {
+ isVarArg = true;
+ break;
+ }
+
+ // Otherwise must be an argument type.
+ TypeLoc = Lex.getLoc();
+ if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
+ ParseOptionalAttrs(Attrs, 0)) return true;
+
+ if (ArgTy->isVoidTy())
+ return Error(TypeLoc, "argument can not have void type");
+
+ if (Lex.getKind() == lltok::LocalVar ||
+ Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ } else {
+ Name = "";
+ }
+
+ if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
+ return Error(TypeLoc, "invalid type for function argument");
+
+ ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
+ }
+ }
+
+ return ParseToken(lltok::rparen, "expected ')' at end of argument list");
+}
+
+/// ParseFunctionType
+/// ::= Type ArgumentList OptionalAttrs
+bool LLParser::ParseFunctionType(PATypeHolder &Result) {
+ assert(Lex.getKind() == lltok::lparen);
+
+ if (!FunctionType::isValidReturnType(Result))
+ return TokError("invalid function return type");
+
+ std::vector<ArgInfo> ArgList;
+ bool isVarArg;
+ unsigned Attrs;
+ if (ParseArgumentList(ArgList, isVarArg, true) ||
+ // FIXME: Allow, but ignore attributes on function types!
+ // FIXME: Remove in LLVM 3.0
+ ParseOptionalAttrs(Attrs, 2))
+ return true;
+
+ // Reject names on the arguments lists.
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ if (!ArgList[i].Name.empty())
+ return Error(ArgList[i].Loc, "argument name invalid in function type");
+ if (!ArgList[i].Attrs != 0) {
+ // Allow but ignore attributes on function types; this permits
+ // auto-upgrade.
+ // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
+ }
+ }
+
+ std::vector<const Type*> ArgListTy;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ArgListTy.push_back(ArgList[i].Type);
+
+ Result = HandleUpRefs(FunctionType::get(Result.get(),
+ ArgListTy, isVarArg));
+ return false;
+}
+
+/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
+/// TypeRec
+/// ::= '{' '}'
+/// ::= '{' TypeRec (',' TypeRec)* '}'
+/// ::= '<' '{' '}' '>'
+/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
+bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
+ assert(Lex.getKind() == lltok::lbrace);
+ Lex.Lex(); // Consume the '{'
+
+ if (EatIfPresent(lltok::rbrace)) {
+ Result = StructType::get(Context, Packed);
+ return false;
+ }
+
+ std::vector<PATypeHolder> ParamsList;
+ LocTy EltTyLoc = Lex.getLoc();
+ if (ParseTypeRec(Result)) return true;
+ ParamsList.push_back(Result);
+
+ if (Result->isVoidTy())
+ return Error(EltTyLoc, "struct element can not have void type");
+ if (!StructType::isValidElementType(Result))
+ return Error(EltTyLoc, "invalid element type for struct");
+
+ while (EatIfPresent(lltok::comma)) {
+ EltTyLoc = Lex.getLoc();
+ if (ParseTypeRec(Result)) return true;
+
+ if (Result->isVoidTy())
+ return Error(EltTyLoc, "struct element can not have void type");
+ if (!StructType::isValidElementType(Result))
+ return Error(EltTyLoc, "invalid element type for struct");
+
+ ParamsList.push_back(Result);
+ }
+
+ if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
+ return true;
+
+ std::vector<const Type*> ParamsListTy;
+ for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
+ ParamsListTy.push_back(ParamsList[i].get());
+ Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
+ return false;
+}
+
+/// ParseArrayVectorType - Parse an array or vector type, assuming the first
+/// token has already been consumed.
+/// TypeRec
+/// ::= '[' APSINTVAL 'x' Types ']'
+/// ::= '<' APSINTVAL 'x' Types '>'
+bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
+ Lex.getAPSIntVal().getBitWidth() > 64)
+ return TokError("expected number in address space");
+
+ LocTy SizeLoc = Lex.getLoc();
+ uint64_t Size = Lex.getAPSIntVal().getZExtValue();
+ Lex.Lex();
+
+ if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
+ return true;
+
+ LocTy TypeLoc = Lex.getLoc();
+ PATypeHolder EltTy(Type::getVoidTy(Context));
+ if (ParseTypeRec(EltTy)) return true;
+
+ if (EltTy->isVoidTy())
+ return Error(TypeLoc, "array and vector element type cannot be void");
+
+ if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
+ "expected end of sequential type"))
+ return true;
+
+ if (isVector) {
+ if (Size == 0)
+ return Error(SizeLoc, "zero element vector is illegal");
+ if ((unsigned)Size != Size)
+ return Error(SizeLoc, "size too large for vector");
+ if (!VectorType::isValidElementType(EltTy))
+ return Error(TypeLoc, "vector element type must be fp or integer");
+ Result = VectorType::get(EltTy, unsigned(Size));
+ } else {
+ if (!ArrayType::isValidElementType(EltTy))
+ return Error(TypeLoc, "invalid array element type");
+ Result = HandleUpRefs(ArrayType::get(EltTy, Size));
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Semantic Analysis.
+//===----------------------------------------------------------------------===//
+
+LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
+ int functionNumber)
+ : P(p), F(f), FunctionNumber(functionNumber) {
+
+ // Insert unnamed arguments into the NumberedVals list.
+ for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
+ AI != E; ++AI)
+ if (!AI->hasName())
+ NumberedVals.push_back(AI);
+}
+
+LLParser::PerFunctionState::~PerFunctionState() {
+ // If there were any forward referenced non-basicblock values, delete them.
+ for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
+ I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
+ if (!isa<BasicBlock>(I->second.first)) {
+ I->second.first->replaceAllUsesWith(
+ UndefValue::get(I->second.first->getType()));
+ delete I->second.first;
+ I->second.first = 0;
+ }
+
+ for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
+ I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
+ if (!isa<BasicBlock>(I->second.first)) {
+ I->second.first->replaceAllUsesWith(
+ UndefValue::get(I->second.first->getType()));
+ delete I->second.first;
+ I->second.first = 0;
+ }
+}
+
+bool LLParser::PerFunctionState::FinishFunction() {
+ // Check to see if someone took the address of labels in this block.
+ if (!P.ForwardRefBlockAddresses.empty()) {
+ ValID FunctionID;
+ if (!F.getName().empty()) {
+ FunctionID.Kind = ValID::t_GlobalName;
+ FunctionID.StrVal = F.getName();
+ } else {
+ FunctionID.Kind = ValID::t_GlobalID;
+ FunctionID.UIntVal = FunctionNumber;
+ }
+
+ std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
+ FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
+ if (FRBAI != P.ForwardRefBlockAddresses.end()) {
+ // Resolve all these references.
+ if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
+ return true;
+
+ P.ForwardRefBlockAddresses.erase(FRBAI);
+ }
+ }
+
+ if (!ForwardRefVals.empty())
+ return P.Error(ForwardRefVals.begin()->second.second,
+ "use of undefined value '%" + ForwardRefVals.begin()->first +
+ "'");
+ if (!ForwardRefValIDs.empty())
+ return P.Error(ForwardRefValIDs.begin()->second.second,
+ "use of undefined value '%" +
+ utostr(ForwardRefValIDs.begin()->first) + "'");
+ return false;
+}
+
+
+/// GetVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed. This can return null if the value
+/// exists but does not have the right type.
+Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
+ const Type *Ty, LocTy Loc) {
+ // Look this name up in the normal function symbol table.
+ Value *Val = F.getValueSymbolTable().lookup(Name);
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (Val == 0) {
+ std::map<std::string, std::pair<Value*, LocTy> >::iterator
+ I = ForwardRefVals.find(Name);
+ if (I != ForwardRefVals.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val) {
+ if (Val->getType() == Ty) return Val;
+ if (Ty->isLabelTy())
+ P.Error(Loc, "'%" + Name + "' is not a basic block");
+ else
+ P.Error(Loc, "'%" + Name + "' defined with type '" +
+ Val->getType()->getDescription() + "'");
+ return 0;
+ }
+
+ // Don't make placeholders with invalid type.
+ if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
+ P.Error(Loc, "invalid use of a non-first-class type");
+ return 0;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ Value *FwdVal;
+ if (Ty->isLabelTy())
+ FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
+ else
+ FwdVal = new Argument(Ty, Name);
+
+ ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
+ LocTy Loc) {
+ // Look this name up in the normal function symbol table.
+ Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (Val == 0) {
+ std::map<unsigned, std::pair<Value*, LocTy> >::iterator
+ I = ForwardRefValIDs.find(ID);
+ if (I != ForwardRefValIDs.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val) {
+ if (Val->getType() == Ty) return Val;
+ if (Ty->isLabelTy())
+ P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
+ else
+ P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
+ Val->getType()->getDescription() + "'");
+ return 0;
+ }
+
+ if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
+ P.Error(Loc, "invalid use of a non-first-class type");
+ return 0;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ Value *FwdVal;
+ if (Ty->isLabelTy())
+ FwdVal = BasicBlock::Create(F.getContext(), "", &F);
+ else
+ FwdVal = new Argument(Ty);
+
+ ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+/// SetInstName - After an instruction is parsed and inserted into its
+/// basic block, this installs its name.
+bool LLParser::PerFunctionState::SetInstName(int NameID,
+ const std::string &NameStr,
+ LocTy NameLoc, Instruction *Inst) {
+ // If this instruction has void type, it cannot have a name or ID specified.
+ if (Inst->getType()->isVoidTy()) {
+ if (NameID != -1 || !NameStr.empty())
+ return P.Error(NameLoc, "instructions returning void cannot have a name");
+ return false;
+ }
+
+ // If this was a numbered instruction, verify that the instruction is the
+ // expected value and resolve any forward references.
+ if (NameStr.empty()) {
+ // If neither a name nor an ID was specified, just use the next ID.
+ if (NameID == -1)
+ NameID = NumberedVals.size();
+
+ if (unsigned(NameID) != NumberedVals.size())
+ return P.Error(NameLoc, "instruction expected to be numbered '%" +
+ utostr(NumberedVals.size()) + "'");
+
+ std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
+ ForwardRefValIDs.find(NameID);
+ if (FI != ForwardRefValIDs.end()) {
+ if (FI->second.first->getType() != Inst->getType())
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
+ FI->second.first->getType()->getDescription() + "'");
+ FI->second.first->replaceAllUsesWith(Inst);
+ delete FI->second.first;
+ ForwardRefValIDs.erase(FI);
+ }
+
+ NumberedVals.push_back(Inst);
+ return false;
+ }
+
+ // Otherwise, the instruction had a name. Resolve forward refs and set it.
+ std::map<std::string, std::pair<Value*, LocTy> >::iterator
+ FI = ForwardRefVals.find(NameStr);
+ if (FI != ForwardRefVals.end()) {
+ if (FI->second.first->getType() != Inst->getType())
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
+ FI->second.first->getType()->getDescription() + "'");
+ FI->second.first->replaceAllUsesWith(Inst);
+ delete FI->second.first;
+ ForwardRefVals.erase(FI);
+ }
+
+ // Set the name on the instruction.
+ Inst->setName(NameStr);
+
+ if (Inst->getNameStr() != NameStr)
+ return P.Error(NameLoc, "multiple definition of local value named '" +
+ NameStr + "'");
+ return false;
+}
+
+/// GetBB - Get a basic block with the specified name or ID, creating a
+/// forward reference record if needed.
+BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
+ LocTy Loc) {
+ return cast_or_null<BasicBlock>(GetVal(Name,
+ Type::getLabelTy(F.getContext()), Loc));
+}
+
+BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
+ return cast_or_null<BasicBlock>(GetVal(ID,
+ Type::getLabelTy(F.getContext()), Loc));
+}
+
+/// DefineBB - Define the specified basic block, which is either named or
+/// unnamed. If there is an error, this returns null otherwise it returns
+/// the block being defined.
+BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
+ LocTy Loc) {
+ BasicBlock *BB;
+ if (Name.empty())
+ BB = GetBB(NumberedVals.size(), Loc);
+ else
+ BB = GetBB(Name, Loc);
+ if (BB == 0) return 0; // Already diagnosed error.
+
+ // Move the block to the end of the function. Forward ref'd blocks are
+ // inserted wherever they happen to be referenced.
+ F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
+
+ // Remove the block from forward ref sets.
+ if (Name.empty()) {
+ ForwardRefValIDs.erase(NumberedVals.size());
+ NumberedVals.push_back(BB);
+ } else {
+ // BB forward references are already in the function symbol table.
+ ForwardRefVals.erase(Name);
+ }
+
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Constants.
+//===----------------------------------------------------------------------===//
+
+/// ParseValID - Parse an abstract value that doesn't necessarily have a
+/// type implied. For example, if we parse "4" we don't know what integer type
+/// it has. The value will later be combined with its type and checked for
+/// sanity. PFS is used to convert function-local operands of metadata (since
+/// metadata operands are not just parsed here but also converted to values).
+/// PFS can be null when we are not parsing metadata values inside a function.
+bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
+ ID.Loc = Lex.getLoc();
+ switch (Lex.getKind()) {
+ default: return TokError("expected value token");
+ case lltok::GlobalID: // @42
+ ID.UIntVal = Lex.getUIntVal();
+ ID.Kind = ValID::t_GlobalID;
+ break;
+ case lltok::GlobalVar: // @foo
+ ID.StrVal = Lex.getStrVal();
+ ID.Kind = ValID::t_GlobalName;
+ break;
+ case lltok::LocalVarID: // %42
+ ID.UIntVal = Lex.getUIntVal();
+ ID.Kind = ValID::t_LocalID;
+ break;
+ case lltok::LocalVar: // %foo
+ case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
+ ID.StrVal = Lex.getStrVal();
+ ID.Kind = ValID::t_LocalName;
+ break;
+ case lltok::exclaim: // !42, !{...}, or !"foo"
+ return ParseMetadataValue(ID, PFS);
+ case lltok::APSInt:
+ ID.APSIntVal = Lex.getAPSIntVal();
+ ID.Kind = ValID::t_APSInt;
+ break;
+ case lltok::APFloat:
+ ID.APFloatVal = Lex.getAPFloatVal();
+ ID.Kind = ValID::t_APFloat;
+ break;
+ case lltok::kw_true:
+ ID.ConstantVal = ConstantInt::getTrue(Context);
+ ID.Kind = ValID::t_Constant;
+ break;
+ case lltok::kw_false:
+ ID.ConstantVal = ConstantInt::getFalse(Context);
+ ID.Kind = ValID::t_Constant;
+ break;
+ case lltok::kw_null: ID.Kind = ValID::t_Null; break;
+ case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
+ case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
+
+ case lltok::lbrace: {
+ // ValID ::= '{' ConstVector '}'
+ Lex.Lex();
+ SmallVector<Constant*, 16> Elts;
+ if (ParseGlobalValueVector(Elts) ||
+ ParseToken(lltok::rbrace, "expected end of struct constant"))
+ return true;
+
+ ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
+ Elts.size(), false);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::less: {
+ // ValID ::= '<' ConstVector '>' --> Vector.
+ // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
+ Lex.Lex();
+ bool isPackedStruct = EatIfPresent(lltok::lbrace);
+
+ SmallVector<Constant*, 16> Elts;
+ LocTy FirstEltLoc = Lex.getLoc();
+ if (ParseGlobalValueVector(Elts) ||
+ (isPackedStruct &&
+ ParseToken(lltok::rbrace, "expected end of packed struct")) ||
+ ParseToken(lltok::greater, "expected end of constant"))
+ return true;
+
+ if (isPackedStruct) {
+ ID.ConstantVal =
+ ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ if (Elts.empty())
+ return Error(ID.Loc, "constant vector must not be empty");
+
+ if (!Elts[0]->getType()->isIntegerTy() &&
+ !Elts[0]->getType()->isFloatingPointTy())
+ return Error(FirstEltLoc,
+ "vector elements must have integer or floating point type");
+
+ // Verify that all the vector elements have the same type.
+ for (unsigned i = 1, e = Elts.size(); i != e; ++i)
+ if (Elts[i]->getType() != Elts[0]->getType())
+ return Error(FirstEltLoc,
+ "vector element #" + utostr(i) +
+ " is not of type '" + Elts[0]->getType()->getDescription());
+
+ ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::lsquare: { // Array Constant
+ Lex.Lex();
+ SmallVector<Constant*, 16> Elts;
+ LocTy FirstEltLoc = Lex.getLoc();
+ if (ParseGlobalValueVector(Elts) ||
+ ParseToken(lltok::rsquare, "expected end of array constant"))
+ return true;
+
+ // Handle empty element.
+ if (Elts.empty()) {
+ // Use undef instead of an array because it's inconvenient to determine
+ // the element type at this point, there being no elements to examine.
+ ID.Kind = ValID::t_EmptyArray;
+ return false;
+ }
+
+ if (!Elts[0]->getType()->isFirstClassType())
+ return Error(FirstEltLoc, "invalid array element type: " +
+ Elts[0]->getType()->getDescription());
+
+ ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
+
+ // Verify all elements are correct type!
+ for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
+ if (Elts[i]->getType() != Elts[0]->getType())
+ return Error(FirstEltLoc,
+ "array element #" + utostr(i) +
+ " is not of type '" +Elts[0]->getType()->getDescription());
+ }
+
+ ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_c: // c "foo"
+ Lex.Lex();
+ ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
+ if (ParseToken(lltok::StringConstant, "expected string")) return true;
+ ID.Kind = ValID::t_Constant;
+ return false;
+
+ case lltok::kw_asm: {
+ // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
+ bool HasSideEffect, AlignStack;
+ Lex.Lex();
+ if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
+ ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
+ ParseStringConstant(ID.StrVal) ||
+ ParseToken(lltok::comma, "expected comma in inline asm expression") ||
+ ParseToken(lltok::StringConstant, "expected constraint string"))
+ return true;
+ ID.StrVal2 = Lex.getStrVal();
+ ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
+ ID.Kind = ValID::t_InlineAsm;
+ return false;
+ }
+
+ case lltok::kw_blockaddress: {
+ // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
+ Lex.Lex();
+
+ ValID Fn, Label;
+ LocTy FnLoc, LabelLoc;
+
+ if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
+ ParseValID(Fn) ||
+ ParseToken(lltok::comma, "expected comma in block address expression")||
+ ParseValID(Label) ||
+ ParseToken(lltok::rparen, "expected ')' in block address expression"))
+ return true;
+
+ if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
+ return Error(Fn.Loc, "expected function name in blockaddress");
+ if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
+ return Error(Label.Loc, "expected basic block name in blockaddress");
+
+ // Make a global variable as a placeholder for this reference.
+ GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
+ false, GlobalValue::InternalLinkage,
+ 0, "");
+ ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
+ ID.ConstantVal = FwdRef;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ case lltok::kw_trunc:
+ case lltok::kw_zext:
+ case lltok::kw_sext:
+ case lltok::kw_fptrunc:
+ case lltok::kw_fpext:
+ case lltok::kw_bitcast:
+ case lltok::kw_uitofp:
+ case lltok::kw_sitofp:
+ case lltok::kw_fptoui:
+ case lltok::kw_fptosi:
+ case lltok::kw_inttoptr:
+ case lltok::kw_ptrtoint: {
+ unsigned Opc = Lex.getUIntVal();
+ PATypeHolder DestTy(Type::getVoidTy(Context));
+ Constant *SrcVal;
+ Lex.Lex();
+ if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
+ ParseGlobalTypeAndValue(SrcVal) ||
+ ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
+ ParseType(DestTy) ||
+ ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
+ return true;
+ if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
+ return Error(ID.Loc, "invalid cast opcode for cast from '" +
+ SrcVal->getType()->getDescription() + "' to '" +
+ DestTy->getDescription() + "'");
+ ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
+ SrcVal, DestTy);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_extractvalue: {
+ Lex.Lex();
+ Constant *Val;
+ SmallVector<unsigned, 4> Indices;
+ if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val) ||
+ ParseIndexList(Indices) ||
+ ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
+ return true;
+
+ if (!Val->getType()->isAggregateType())
+ return Error(ID.Loc, "extractvalue operand must be aggregate type");
+ if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
+ Indices.end()))
+ return Error(ID.Loc, "invalid indices for extractvalue");
+ ID.ConstantVal =
+ ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_insertvalue: {
+ Lex.Lex();
+ Constant *Val0, *Val1;
+ SmallVector<unsigned, 4> Indices;
+ if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseIndexList(Indices) ||
+ ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
+ return true;
+ if (!Val0->getType()->isAggregateType())
+ return Error(ID.Loc, "insertvalue operand must be aggregate type");
+ if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
+ Indices.end()))
+ return Error(ID.Loc, "invalid indices for insertvalue");
+ ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
+ Indices.data(), Indices.size());
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_icmp:
+ case lltok::kw_fcmp: {
+ unsigned PredVal, Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ if (ParseCmpPredicate(PredVal, Opc) ||
+ ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
+ return true;
+
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "compare operands must have the same type");
+
+ CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
+
+ if (Opc == Instruction::FCmp) {
+ if (!Val0->getType()->isFPOrFPVectorTy())
+ return Error(ID.Loc, "fcmp requires floating point operands");
+ ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
+ } else {
+ assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
+ if (!Val0->getType()->isIntOrIntVectorTy() &&
+ !Val0->getType()->isPointerTy())
+ return Error(ID.Loc, "icmp requires pointer or integer operands");
+ ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
+ }
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // Binary Operators.
+ case lltok::kw_add:
+ case lltok::kw_fadd:
+ case lltok::kw_sub:
+ case lltok::kw_fsub:
+ case lltok::kw_mul:
+ case lltok::kw_fmul:
+ case lltok::kw_udiv:
+ case lltok::kw_sdiv:
+ case lltok::kw_fdiv:
+ case lltok::kw_urem:
+ case lltok::kw_srem:
+ case lltok::kw_frem: {
+ bool NUW = false;
+ bool NSW = false;
+ bool Exact = false;
+ unsigned Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ LocTy ModifierLoc = Lex.getLoc();
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul) {
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ if (EatIfPresent(lltok::kw_nsw)) {
+ NSW = true;
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ }
+ } else if (Opc == Instruction::SDiv) {
+ if (EatIfPresent(lltok::kw_exact))
+ Exact = true;
+ }
+ if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
+ return true;
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "operands of constexpr must have same type");
+ if (!Val0->getType()->isIntOrIntVectorTy()) {
+ if (NUW)
+ return Error(ModifierLoc, "nuw only applies to integer operations");
+ if (NSW)
+ return Error(ModifierLoc, "nsw only applies to integer operations");
+ }
+ // Check that the type is valid for the operator.
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ if (!Val0->getType()->isIntOrIntVectorTy())
+ return Error(ID.Loc, "constexpr requires integer operands");
+ break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ if (!Val0->getType()->isFPOrFPVectorTy())
+ return Error(ID.Loc, "constexpr requires fp operands");
+ break;
+ default: llvm_unreachable("Unknown binary operator!");
+ }
+ unsigned Flags = 0;
+ if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+ if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
+ if (Exact) Flags |= SDivOperator::IsExact;
+ Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
+ ID.ConstantVal = C;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // Logical Operations
+ case lltok::kw_shl:
+ case lltok::kw_lshr:
+ case lltok::kw_ashr:
+ case lltok::kw_and:
+ case lltok::kw_or:
+ case lltok::kw_xor: {
+ unsigned Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
+ return true;
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "operands of constexpr must have same type");
+ if (!Val0->getType()->isIntOrIntVectorTy())
+ return Error(ID.Loc,
+ "constexpr requires integer or integer vector operands");
+ ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ case lltok::kw_getelementptr:
+ case lltok::kw_shufflevector:
+ case lltok::kw_insertelement:
+ case lltok::kw_extractelement:
+ case lltok::kw_select: {
+ unsigned Opc = Lex.getUIntVal();
+ SmallVector<Constant*, 16> Elts;
+ bool InBounds = false;
+ Lex.Lex();
+ if (Opc == Instruction::GetElementPtr)
+ InBounds = EatIfPresent(lltok::kw_inbounds);
+ if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
+ ParseGlobalValueVector(Elts) ||
+ ParseToken(lltok::rparen, "expected ')' in constantexpr"))
+ return true;
+
+ if (Opc == Instruction::GetElementPtr) {
+ if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
+ return Error(ID.Loc, "getelementptr requires pointer operand");
+
+ if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
+ (Value**)(Elts.data() + 1),
+ Elts.size() - 1))
+ return Error(ID.Loc, "invalid indices for getelementptr");
+ ID.ConstantVal = InBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(Elts[0],
+ Elts.data() + 1,
+ Elts.size() - 1) :
+ ConstantExpr::getGetElementPtr(Elts[0],
+ Elts.data() + 1, Elts.size() - 1);
+ } else if (Opc == Instruction::Select) {
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to select");
+ if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
+ Elts[2]))
+ return Error(ID.Loc, Reason);
+ ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
+ } else if (Opc == Instruction::ShuffleVector) {
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to shufflevector");
+ if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+ return Error(ID.Loc, "invalid operands to shufflevector");
+ ID.ConstantVal =
+ ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
+ } else if (Opc == Instruction::ExtractElement) {
+ if (Elts.size() != 2)
+ return Error(ID.Loc, "expected two operands to extractelement");
+ if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
+ return Error(ID.Loc, "invalid extractelement operands");
+ ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
+ } else {
+ assert(Opc == Instruction::InsertElement && "Unknown opcode");
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to insertelement");
+ if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+ return Error(ID.Loc, "invalid insertelement operands");
+ ID.ConstantVal =
+ ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
+ }
+
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ }
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseGlobalValue - Parse a global value with the specified type.
+bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
+ C = 0;
+ ValID ID;
+ Value *V = NULL;
+ bool Parsed = ParseValID(ID) ||
+ ConvertValIDToValue(Ty, ID, V, NULL);
+ if (V && !(C = dyn_cast<Constant>(V)))
+ return Error(ID.Loc, "global values must be constants");
+ return Parsed;
+}
+
+bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
+ PATypeHolder Type(Type::getVoidTy(Context));
+ return ParseType(Type) ||
+ ParseGlobalValue(Type, V);
+}
+
+/// ParseGlobalValueVector
+/// ::= /*empty*/
+/// ::= TypeAndValue (',' TypeAndValue)*
+bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
+ // Empty list.
+ if (Lex.getKind() == lltok::rbrace ||
+ Lex.getKind() == lltok::rsquare ||
+ Lex.getKind() == lltok::greater ||
+ Lex.getKind() == lltok::rparen)
+ return false;
+
+ Constant *C;
+ if (ParseGlobalTypeAndValue(C)) return true;
+ Elts.push_back(C);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseGlobalTypeAndValue(C)) return true;
+ Elts.push_back(C);
+ }
+
+ return false;
+}
+
+bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
+ assert(Lex.getKind() == lltok::lbrace);
+ Lex.Lex();
+
+ SmallVector<Value*, 16> Elts;
+ if (ParseMDNodeVector(Elts, PFS) ||
+ ParseToken(lltok::rbrace, "expected end of metadata node"))
+ return true;
+
+ ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
+ ID.Kind = ValID::t_MDNode;
+ return false;
+}
+
+/// ParseMetadataValue
+/// ::= !42
+/// ::= !{...}
+/// ::= !"string"
+bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
+ assert(Lex.getKind() == lltok::exclaim);
+ Lex.Lex();
+
+ // MDNode:
+ // !{ ... }
+ if (Lex.getKind() == lltok::lbrace)
+ return ParseMetadataListValue(ID, PFS);
+
+ // Standalone metadata reference
+ // !42
+ if (Lex.getKind() == lltok::APSInt) {
+ if (ParseMDNodeID(ID.MDNodeVal)) return true;
+ ID.Kind = ValID::t_MDNode;
+ return false;
+ }
+
+ // MDString:
+ // ::= '!' STRINGCONSTANT
+ if (ParseMDString(ID.MDStringVal)) return true;
+ ID.Kind = ValID::t_MDString;
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Function Parsing.
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
+ PerFunctionState *PFS) {
+ if (Ty->isFunctionTy())
+ return Error(ID.Loc, "functions are not values, refer to them as pointers");
+
+ switch (ID.Kind) {
+ default: llvm_unreachable("Unknown ValID!");
+ case ValID::t_LocalID:
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
+ return (V == 0);
+ case ValID::t_LocalName:
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
+ return (V == 0);
+ case ValID::t_InlineAsm: {
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ const FunctionType *FTy =
+ PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
+ if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
+ return Error(ID.Loc, "invalid type for inline asm constraint string");
+ V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
+ return false;
+ }
+ case ValID::t_MDNode:
+ if (!Ty->isMetadataTy())
+ return Error(ID.Loc, "metadata value must have metadata type");
+ V = ID.MDNodeVal;
+ return false;
+ case ValID::t_MDString:
+ if (!Ty->isMetadataTy())
+ return Error(ID.Loc, "metadata value must have metadata type");
+ V = ID.MDStringVal;
+ return false;
+ case ValID::t_GlobalName:
+ V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
+ return V == 0;
+ case ValID::t_GlobalID:
+ V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
+ return V == 0;
+ case ValID::t_APSInt:
+ if (!Ty->isIntegerTy())
+ return Error(ID.Loc, "integer constant must have integer type");
+ ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
+ V = ConstantInt::get(Context, ID.APSIntVal);
+ return false;
+ case ValID::t_APFloat:
+ if (!Ty->isFloatingPointTy() ||
+ !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
+ return Error(ID.Loc, "floating point constant invalid for type");
+
+ // The lexer has no type info, so builds all float and double FP constants
+ // as double. Fix this here. Long double does not need this.
+ if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
+ Ty->isFloatTy()) {
+ bool Ignored;
+ ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+ &Ignored);
+ }
+ V = ConstantFP::get(Context, ID.APFloatVal);
+
+ if (V->getType() != Ty)
+ return Error(ID.Loc, "floating point constant does not have type '" +
+ Ty->getDescription() + "'");
+
+ return false;
+ case ValID::t_Null:
+ if (!Ty->isPointerTy())
+ return Error(ID.Loc, "null must be a pointer type");
+ V = ConstantPointerNull::get(cast<PointerType>(Ty));
+ return false;
+ case ValID::t_Undef:
+ // FIXME: LabelTy should not be a first-class type.
+ if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
+ !Ty->isOpaqueTy())
+ return Error(ID.Loc, "invalid type for undef constant");
+ V = UndefValue::get(Ty);
+ return false;
+ case ValID::t_EmptyArray:
+ if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
+ return Error(ID.Loc, "invalid empty array initializer");
+ V = UndefValue::get(Ty);
+ return false;
+ case ValID::t_Zero:
+ // FIXME: LabelTy should not be a first-class type.
+ if (!Ty->isFirstClassType() || Ty->isLabelTy())
+ return Error(ID.Loc, "invalid type for null constant");
+ V = Constant::getNullValue(Ty);
+ return false;
+ case ValID::t_Constant:
+ if (ID.ConstantVal->getType() != Ty)
+ return Error(ID.Loc, "constant expression type mismatch");
+
+ V = ID.ConstantVal;
+ return false;
+ }
+}
+
+bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
+ V = 0;
+ ValID ID;
+ return ParseValID(ID, &PFS) ||
+ ConvertValIDToValue(Ty, ID, V, &PFS);
+}
+
+bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
+ PATypeHolder T(Type::getVoidTy(Context));
+ return ParseType(T) ||
+ ParseValue(T, V, PFS);
+}
+
+bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
+ PerFunctionState &PFS) {
+ Value *V;
+ Loc = Lex.getLoc();
+ if (ParseTypeAndValue(V, PFS)) return true;
+ if (!isa<BasicBlock>(V))
+ return Error(Loc, "expected a basic block");
+ BB = cast<BasicBlock>(V);
+ return false;
+}
+
+
+/// FunctionHeader
+/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
+/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
+/// OptionalAlign OptGC
+bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
+ // Parse the linkage.
+ LocTy LinkageLoc = Lex.getLoc();
+ unsigned Linkage;
+
+ unsigned Visibility, RetAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
+ LocTy RetTypeLoc = Lex.getLoc();
+ if (ParseOptionalLinkage(Linkage) ||
+ ParseOptionalVisibility(Visibility) ||
+ ParseOptionalCallingConv(CC) ||
+ ParseOptionalAttrs(RetAttrs, 1) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/))
+ return true;
+
+ // Verify that the linkage is ok.
+ switch ((GlobalValue::LinkageTypes)Linkage) {
+ case GlobalValue::ExternalLinkage:
+ break; // always ok.
+ case GlobalValue::DLLImportLinkage:
+ case GlobalValue::ExternalWeakLinkage:
+ if (isDefine)
+ return Error(LinkageLoc, "invalid linkage for function definition");
+ break;
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
+ case GlobalValue::LinkerPrivateWeakLinkage:
+ case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
+ case GlobalValue::InternalLinkage:
+ case GlobalValue::AvailableExternallyLinkage:
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ case GlobalValue::DLLExportLinkage:
+ if (!isDefine)
+ return Error(LinkageLoc, "invalid linkage for function declaration");
+ break;
+ case GlobalValue::AppendingLinkage:
+ case GlobalValue::CommonLinkage:
+ return Error(LinkageLoc, "invalid function linkage type");
+ }
+
+ if (!FunctionType::isValidReturnType(RetType) ||
+ RetType->isOpaqueTy())
+ return Error(RetTypeLoc, "invalid function return type");
+
+ LocTy NameLoc = Lex.getLoc();
+
+ std::string FunctionName;
+ if (Lex.getKind() == lltok::GlobalVar) {
+ FunctionName = Lex.getStrVal();
+ } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
+ unsigned NameID = Lex.getUIntVal();
+
+ if (NameID != NumberedVals.size())
+ return TokError("function expected to be numbered '%" +
+ utostr(NumberedVals.size()) + "'");
+ } else {
+ return TokError("expected function name");
+ }
+
+ Lex.Lex();
+
+ if (Lex.getKind() != lltok::lparen)
+ return TokError("expected '(' in function argument list");
+
+ std::vector<ArgInfo> ArgList;
+ bool isVarArg;
+ unsigned FuncAttrs;
+ std::string Section;
+ unsigned Alignment;
+ std::string GC;
+
+ if (ParseArgumentList(ArgList, isVarArg, false) ||
+ ParseOptionalAttrs(FuncAttrs, 2) ||
+ (EatIfPresent(lltok::kw_section) &&
+ ParseStringConstant(Section)) ||
+ ParseOptionalAlignment(Alignment) ||
+ (EatIfPresent(lltok::kw_gc) &&
+ ParseStringConstant(GC)))
+ return true;
+
+ // If the alignment was parsed as an attribute, move to the alignment field.
+ if (FuncAttrs & Attribute::Alignment) {
+ Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
+ FuncAttrs &= ~Attribute::Alignment;
+ }
+
+ // Okay, if we got here, the function is syntactically valid. Convert types
+ // and do semantic checks.
+ std::vector<const Type*> ParamTypeList;
+ SmallVector<AttributeWithIndex, 8> Attrs;
+ // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
+ // attributes.
+ unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+ if (FuncAttrs & ObsoleteFuncAttrs) {
+ RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
+ FuncAttrs &= ~ObsoleteFuncAttrs;
+ }
+
+ if (RetAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ ParamTypeList.push_back(ArgList[i].Type);
+ if (ArgList[i].Attrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+ }
+
+ if (FuncAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
+
+ AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+ if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
+ return Error(RetTypeLoc, "functions with 'sret' argument must return void");
+
+ const FunctionType *FT =
+ FunctionType::get(RetType, ParamTypeList, isVarArg);
+ const PointerType *PFT = PointerType::getUnqual(FT);
+
+ Fn = 0;
+ if (!FunctionName.empty()) {
+ // If this was a definition of a forward reference, remove the definition
+ // from the forward reference table and fill in the forward ref.
+ std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
+ ForwardRefVals.find(FunctionName);
+ if (FRVI != ForwardRefVals.end()) {
+ Fn = M->getFunction(FunctionName);
+ if (Fn->getType() != PFT)
+ return Error(FRVI->second.second, "invalid forward reference to "
+ "function '" + FunctionName + "' with wrong type!");
+
+ ForwardRefVals.erase(FRVI);
+ } else if ((Fn = M->getFunction(FunctionName))) {
+ // If this function already exists in the symbol table, then it is
+ // multiply defined. We accept a few cases for old backwards compat.
+ // FIXME: Remove this stuff for LLVM 3.0.
+ if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
+ (!Fn->isDeclaration() && isDefine)) {
+ // If the redefinition has different type or different attributes,
+ // reject it. If both have bodies, reject it.
+ return Error(NameLoc, "invalid redefinition of function '" +
+ FunctionName + "'");
+ } else if (Fn->isDeclaration()) {
+ // Make sure to strip off any argument names so we can't get conflicts.
+ for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
+ AI != AE; ++AI)
+ AI->setName("");
+ }
+ } else if (M->getNamedValue(FunctionName)) {
+ return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
+ }
+
+ } else {
+ // If this is a definition of a forward referenced function, make sure the
+ // types agree.
+ std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
+ = ForwardRefValIDs.find(NumberedVals.size());
+ if (I != ForwardRefValIDs.end()) {
+ Fn = cast<Function>(I->second.first);
+ if (Fn->getType() != PFT)
+ return Error(NameLoc, "type of definition and forward reference of '@" +
+ utostr(NumberedVals.size()) +"' disagree");
+ ForwardRefValIDs.erase(I);
+ }
+ }
+
+ if (Fn == 0)
+ Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
+ else // Move the forward-reference to the correct spot in the module.
+ M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
+
+ if (FunctionName.empty())
+ NumberedVals.push_back(Fn);
+
+ Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
+ Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+ Fn->setCallingConv(CC);
+ Fn->setAttributes(PAL);
+ Fn->setAlignment(Alignment);
+ Fn->setSection(Section);
+ if (!GC.empty()) Fn->setGC(GC.c_str());
+
+ // Add all of the arguments we parsed to the function.
+ Function::arg_iterator ArgIt = Fn->arg_begin();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
+ // If we run out of arguments in the Function prototype, exit early.
+ // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
+ if (ArgIt == Fn->arg_end()) break;
+
+ // If the argument has a name, insert it into the argument symbol table.
+ if (ArgList[i].Name.empty()) continue;
+
+ // Set the name, if it conflicted, it will be auto-renamed.
+ ArgIt->setName(ArgList[i].Name);
+
+ if (ArgIt->getNameStr() != ArgList[i].Name)
+ return Error(ArgList[i].Loc, "redefinition of argument '%" +
+ ArgList[i].Name + "'");
+ }
+
+ return false;
+}
+
+
+/// ParseFunctionBody
+/// ::= '{' BasicBlock+ '}'
+/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
+///
+bool LLParser::ParseFunctionBody(Function &Fn) {
+ if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
+ return TokError("expected '{' in function body");
+ Lex.Lex(); // eat the {.
+
+ int FunctionNumber = -1;
+ if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
+
+ PerFunctionState PFS(*this, Fn, FunctionNumber);
+
+ // We need at least one basic block.
+ if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
+ return TokError("function body requires at least one basic block");
+
+ while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
+ if (ParseBasicBlock(PFS)) return true;
+
+ // Eat the }.
+ Lex.Lex();
+
+ // Verify function is ok.
+ return PFS.FinishFunction();
+}
+
+/// ParseBasicBlock
+/// ::= LabelStr? Instruction*
+bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
+ // If this basic block starts out with a name, remember it.
+ std::string Name;
+ LocTy NameLoc = Lex.getLoc();
+ if (Lex.getKind() == lltok::LabelStr) {
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ }
+
+ BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
+ if (BB == 0) return true;
+
+ std::string NameStr;
+
+ // Parse the instructions in this block until we get a terminator.
+ Instruction *Inst;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
+ do {
+ // This instruction may have three possibilities for a name: a) none
+ // specified, b) name specified "%foo =", c) number specified: "%4 =".
+ LocTy NameLoc = Lex.getLoc();
+ int NameID = -1;
+ NameStr = "";
+
+ if (Lex.getKind() == lltok::LocalVarID) {
+ NameID = Lex.getUIntVal();
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after instruction id"))
+ return true;
+ } else if (Lex.getKind() == lltok::LocalVar ||
+ // FIXME: REMOVE IN LLVM 3.0
+ Lex.getKind() == lltok::StringConstant) {
+ NameStr = Lex.getStrVal();
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after instruction name"))
+ return true;
+ }
+
+ switch (ParseInstruction(Inst, BB, PFS)) {
+ default: assert(0 && "Unknown ParseInstruction result!");
+ case InstError: return true;
+ case InstNormal:
+ BB->getInstList().push_back(Inst);
+
+ // With a normal result, we check to see if the instruction is followed by
+ // a comma and metadata.
+ if (EatIfPresent(lltok::comma))
+ if (ParseInstructionMetadata(Inst, &PFS))
+ return true;
+ break;
+ case InstExtraComma:
+ BB->getInstList().push_back(Inst);
+
+ // If the instruction parser ate an extra comma at the end of it, it
+ // *must* be followed by metadata.
+ if (ParseInstructionMetadata(Inst, &PFS))
+ return true;
+ break;
+ }
+
+ // Set the name on the instruction.
+ if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
+ } while (!isa<TerminatorInst>(Inst));
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseInstruction - Parse one of the many different instructions.
+///
+int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
+ PerFunctionState &PFS) {
+ lltok::Kind Token = Lex.getKind();
+ if (Token == lltok::Eof)
+ return TokError("found end of file when expecting more instructions");
+ LocTy Loc = Lex.getLoc();
+ unsigned KeywordVal = Lex.getUIntVal();
+ Lex.Lex(); // Eat the keyword.
+
+ switch (Token) {
+ default: return Error(Loc, "expected instruction opcode");
+ // Terminator Instructions.
+ case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
+ case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
+ case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
+ case lltok::kw_br: return ParseBr(Inst, PFS);
+ case lltok::kw_switch: return ParseSwitch(Inst, PFS);
+ case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
+ case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
+ // Binary Operators.
+ case lltok::kw_add:
+ case lltok::kw_sub:
+ case lltok::kw_mul: {
+ bool NUW = false;
+ bool NSW = false;
+ LocTy ModifierLoc = Lex.getLoc();
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ if (EatIfPresent(lltok::kw_nsw)) {
+ NSW = true;
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ }
+ bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
+ if (!Result) {
+ if (!Inst->getType()->isIntOrIntVectorTy()) {
+ if (NUW)
+ return Error(ModifierLoc, "nuw only applies to integer operations");
+ if (NSW)
+ return Error(ModifierLoc, "nsw only applies to integer operations");
+ }
+ if (NUW)
+ cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
+ if (NSW)
+ cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
+ }
+ return Result;
+ }
+ case lltok::kw_fadd:
+ case lltok::kw_fsub:
+ case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
+
+ case lltok::kw_sdiv: {
+ bool Exact = false;
+ if (EatIfPresent(lltok::kw_exact))
+ Exact = true;
+ bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
+ if (!Result)
+ if (Exact)
+ cast<BinaryOperator>(Inst)->setIsExact(true);
+ return Result;
+ }
+
+ case lltok::kw_udiv:
+ case lltok::kw_urem:
+ case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
+ case lltok::kw_fdiv:
+ case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
+ case lltok::kw_shl:
+ case lltok::kw_lshr:
+ case lltok::kw_ashr:
+ case lltok::kw_and:
+ case lltok::kw_or:
+ case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
+ case lltok::kw_icmp:
+ case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
+ // Casts.
+ case lltok::kw_trunc:
+ case lltok::kw_zext:
+ case lltok::kw_sext:
+ case lltok::kw_fptrunc:
+ case lltok::kw_fpext:
+ case lltok::kw_bitcast:
+ case lltok::kw_uitofp:
+ case lltok::kw_sitofp:
+ case lltok::kw_fptoui:
+ case lltok::kw_fptosi:
+ case lltok::kw_inttoptr:
+ case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
+ // Other.
+ case lltok::kw_select: return ParseSelect(Inst, PFS);
+ case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
+ case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
+ case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
+ case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
+ case lltok::kw_phi: return ParsePHI(Inst, PFS);
+ case lltok::kw_call: return ParseCall(Inst, PFS, false);
+ case lltok::kw_tail: return ParseCall(Inst, PFS, true);
+ // Memory.
+ case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
+ case lltok::kw_malloc: return ParseAlloc(Inst, PFS, BB, false);
+ case lltok::kw_free: return ParseFree(Inst, PFS, BB);
+ case lltok::kw_load: return ParseLoad(Inst, PFS, false);
+ case lltok::kw_store: return ParseStore(Inst, PFS, false);
+ case lltok::kw_volatile:
+ if (EatIfPresent(lltok::kw_load))
+ return ParseLoad(Inst, PFS, true);
+ else if (EatIfPresent(lltok::kw_store))
+ return ParseStore(Inst, PFS, true);
+ else
+ return TokError("expected 'load' or 'store'");
+ case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
+ case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
+ case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
+ case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
+ }
+}
+
+/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
+bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
+ if (Opc == Instruction::FCmp) {
+ switch (Lex.getKind()) {
+ default: TokError("expected fcmp predicate (e.g. 'oeq')");
+ case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
+ case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
+ case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
+ case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
+ case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
+ case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
+ case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
+ case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
+ case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
+ case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
+ case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
+ case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
+ case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
+ case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
+ case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
+ case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
+ }
+ } else {
+ switch (Lex.getKind()) {
+ default: TokError("expected icmp predicate (e.g. 'eq')");
+ case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
+ case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
+ case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
+ case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
+ case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
+ case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
+ case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
+ case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
+ case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
+ case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
+ }
+ }
+ Lex.Lex();
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Terminator Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseRet - Parse a return instruction.
+/// ::= 'ret' void (',' !dbg, !1)*
+/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
+/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)*
+/// [[obsolete: LLVM 3.0]]
+int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
+ PerFunctionState &PFS) {
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ if (ParseType(Ty, true /*void allowed*/)) return true;
+
+ if (Ty->isVoidTy()) {
+ Inst = ReturnInst::Create(Context);
+ return false;
+ }
+
+ Value *RV;
+ if (ParseValue(Ty, RV, PFS)) return true;
+
+ bool ExtraComma = false;
+ if (EatIfPresent(lltok::comma)) {
+ // Parse optional custom metadata, e.g. !dbg
+ if (Lex.getKind() == lltok::MetadataVar) {
+ ExtraComma = true;
+ } else {
+ // The normal case is one return value.
+ // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
+ // use of 'ret {i32,i32} {i32 1, i32 2}'
+ SmallVector<Value*, 8> RVs;
+ RVs.push_back(RV);
+
+ do {
+ // If optional custom metadata, e.g. !dbg is seen then this is the
+ // end of MRV.
+ if (Lex.getKind() == lltok::MetadataVar)
+ break;
+ if (ParseTypeAndValue(RV, PFS)) return true;
+ RVs.push_back(RV);
+ } while (EatIfPresent(lltok::comma));
+
+ RV = UndefValue::get(PFS.getFunction().getReturnType());
+ for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
+ Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
+ BB->getInstList().push_back(I);
+ RV = I;
+ }
+ }
+ }
+
+ Inst = ReturnInst::Create(Context, RV);
+ return ExtraComma ? InstExtraComma : InstNormal;
+}
+
+
+/// ParseBr
+/// ::= 'br' TypeAndValue
+/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc, Loc2;
+ Value *Op0;
+ BasicBlock *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
+
+ if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
+ Inst = BranchInst::Create(BB);
+ return false;
+ }
+
+ if (Op0->getType() != Type::getInt1Ty(Context))
+ return Error(Loc, "branch condition must have 'i1' type");
+
+ if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
+ ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after true destination") ||
+ ParseTypeAndBasicBlock(Op2, Loc2, PFS))
+ return true;
+
+ Inst = BranchInst::Create(Op1, Op2, Op0);
+ return false;
+}
+
+/// ParseSwitch
+/// Instruction
+/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
+/// JumpTable
+/// ::= (TypeAndValue ',' TypeAndValue)*
+bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy CondLoc, BBLoc;
+ Value *Cond;
+ BasicBlock *DefaultBB;
+ if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after switch condition") ||
+ ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
+ ParseToken(lltok::lsquare, "expected '[' with switch table"))
+ return true;
+
+ if (!Cond->getType()->isIntegerTy())
+ return Error(CondLoc, "switch condition must have integer type");
+
+ // Parse the jump table pairs.
+ SmallPtrSet<Value*, 32> SeenCases;
+ SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
+ while (Lex.getKind() != lltok::rsquare) {
+ Value *Constant;
+ BasicBlock *DestBB;
+
+ if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after case value") ||
+ ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+
+ if (!SeenCases.insert(Constant))
+ return Error(CondLoc, "duplicate case value in switch");
+ if (!isa<ConstantInt>(Constant))
+ return Error(CondLoc, "case value is not a constant integer");
+
+ Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
+ }
+
+ Lex.Lex(); // Eat the ']'.
+
+ SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
+ for (unsigned i = 0, e = Table.size(); i != e; ++i)
+ SI->addCase(Table[i].first, Table[i].second);
+ Inst = SI;
+ return false;
+}
+
+/// ParseIndirectBr
+/// Instruction
+/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
+bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy AddrLoc;
+ Value *Address;
+ if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
+ ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
+ return true;
+
+ if (!Address->getType()->isPointerTy())
+ return Error(AddrLoc, "indirectbr address must have pointer type");
+
+ // Parse the destination list.
+ SmallVector<BasicBlock*, 16> DestList;
+
+ if (Lex.getKind() != lltok::rsquare) {
+ BasicBlock *DestBB;
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ DestList.push_back(DestBB);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ DestList.push_back(DestBB);
+ }
+ }
+
+ if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
+ return true;
+
+ IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
+ for (unsigned i = 0, e = DestList.size(); i != e; ++i)
+ IBI->addDestination(DestList[i]);
+ Inst = IBI;
+ return false;
+}
+
+
+/// ParseInvoke
+/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
+/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
+bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy CallLoc = Lex.getLoc();
+ unsigned RetAttrs, FnAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
+ LocTy RetTypeLoc;
+ ValID CalleeID;
+ SmallVector<ParamInfo, 16> ArgList;
+
+ BasicBlock *NormalBB, *UnwindBB;
+ if (ParseOptionalCallingConv(CC) ||
+ ParseOptionalAttrs(RetAttrs, 1) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+ ParseValID(CalleeID) ||
+ ParseParameterList(ArgList, PFS) ||
+ ParseOptionalAttrs(FnAttrs, 2) ||
+ ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
+ ParseTypeAndBasicBlock(NormalBB, PFS) ||
+ ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
+ ParseTypeAndBasicBlock(UnwindBB, PFS))
+ return true;
+
+ // If RetType is a non-function pointer type, then this is the short syntax
+ // for the call, which means that RetType is just the return type. Infer the
+ // rest of the function argument types from the arguments that are present.
+ const PointerType *PFTy = 0;
+ const FunctionType *Ty = 0;
+ if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
+ !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+ // Pull out the types of all of the arguments...
+ std::vector<const Type*> ParamTypes;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ParamTypes.push_back(ArgList[i].V->getType());
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ PFTy = PointerType::getUnqual(Ty);
+ }
+
+ // Look up the callee.
+ Value *Callee;
+ if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
+
+ // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
+ // function attributes.
+ unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+ if (FnAttrs & ObsoleteFuncAttrs) {
+ RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
+ FnAttrs &= ~ObsoleteFuncAttrs;
+ }
+
+ // Set up the Attributes for the function.
+ SmallVector<AttributeWithIndex, 8> Attrs;
+ if (RetAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+ SmallVector<Value*, 8> Args;
+
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly. Also, gather any parameter attributes.
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ const Type *ExpectedTy = 0;
+ if (I != E) {
+ ExpectedTy = *I++;
+ } else if (!Ty->isVarArg()) {
+ return Error(ArgList[i].Loc, "too many arguments specified");
+ }
+
+ if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+ return Error(ArgList[i].Loc, "argument is not of expected type '" +
+ ExpectedTy->getDescription() + "'");
+ Args.push_back(ArgList[i].V);
+ if (ArgList[i].Attrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+ }
+
+ if (I != E)
+ return Error(CallLoc, "not enough parameters specified for call");
+
+ if (FnAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+ // Finish off the Attributes and check them
+ AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+ InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
+ Args.begin(), Args.end());
+ II->setCallingConv(CC);
+ II->setAttributes(PAL);
+ Inst = II;
+ return false;
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Binary Operators.
+//===----------------------------------------------------------------------===//
+
+/// ParseArithmetic
+/// ::= ArithmeticOps TypeAndValue ',' Value
+///
+/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
+/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
+bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc, unsigned OperandType) {
+ LocTy Loc; Value *LHS, *RHS;
+ if (ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ bool Valid;
+ switch (OperandType) {
+ default: llvm_unreachable("Unknown operand type!");
+ case 0: // int or FP.
+ Valid = LHS->getType()->isIntOrIntVectorTy() ||
+ LHS->getType()->isFPOrFPVectorTy();
+ break;
+ case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
+ case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
+ }
+
+ if (!Valid)
+ return Error(Loc, "invalid operand type for instruction");
+
+ Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ return false;
+}
+
+/// ParseLogical
+/// ::= ArithmeticOps TypeAndValue ',' Value {
+bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ LocTy Loc; Value *LHS, *RHS;
+ if (ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' in logical operation") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ if (!LHS->getType()->isIntOrIntVectorTy())
+ return Error(Loc,"instruction requires integer or integer vector operands");
+
+ Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ return false;
+}
+
+
+/// ParseCompare
+/// ::= 'icmp' IPredicates TypeAndValue ',' Value
+/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
+bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ // Parse the integer/fp comparison predicate.
+ LocTy Loc;
+ unsigned Pred;
+ Value *LHS, *RHS;
+ if (ParseCmpPredicate(Pred, Opc) ||
+ ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after compare value") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ if (Opc == Instruction::FCmp) {
+ if (!LHS->getType()->isFPOrFPVectorTy())
+ return Error(Loc, "fcmp requires floating point operands");
+ Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+ } else {
+ assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
+ if (!LHS->getType()->isIntOrIntVectorTy() &&
+ !LHS->getType()->isPointerTy())
+ return Error(Loc, "icmp requires integer operands");
+ Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Other Instructions.
+//===----------------------------------------------------------------------===//
+
+
+/// ParseCast
+/// ::= CastOpc TypeAndValue 'to' Type
+bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ LocTy Loc; Value *Op;
+ PATypeHolder DestTy(Type::getVoidTy(Context));
+ if (ParseTypeAndValue(Op, Loc, PFS) ||
+ ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
+ ParseType(DestTy))
+ return true;
+
+ if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
+ CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
+ return Error(Loc, "invalid cast opcode for cast from '" +
+ Op->getType()->getDescription() + "' to '" +
+ DestTy->getDescription() + "'");
+ }
+ Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
+ return false;
+}
+
+/// ParseSelect
+/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after select condition") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after select value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
+ return Error(Loc, Reason);
+
+ Inst = SelectInst::Create(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParseVA_Arg
+/// ::= 'va_arg' TypeAndValue ',' Type
+bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Op;
+ PATypeHolder EltTy(Type::getVoidTy(Context));
+ LocTy TypeLoc;
+ if (ParseTypeAndValue(Op, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
+ ParseType(EltTy, TypeLoc))
+ return true;
+
+ if (!EltTy->isFirstClassType())
+ return Error(TypeLoc, "va_arg requires operand with first class type");
+
+ Inst = new VAArgInst(Op, EltTy);
+ return false;
+}
+
+/// ParseExtractElement
+/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after extract value") ||
+ ParseTypeAndValue(Op1, PFS))
+ return true;
+
+ if (!ExtractElementInst::isValidOperands(Op0, Op1))
+ return Error(Loc, "invalid extractelement operands");
+
+ Inst = ExtractElementInst::Create(Op0, Op1);
+ return false;
+}
+
+/// ParseInsertElement
+/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
+ return Error(Loc, "invalid insertelement operands");
+
+ Inst = InsertElementInst::Create(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParseShuffleVector
+/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after shuffle value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
+ return Error(Loc, "invalid extractelement operands");
+
+ Inst = new ShuffleVectorInst(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParsePHI
+/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
+int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ Value *Op0, *Op1;
+ LocTy TypeLoc = Lex.getLoc();
+
+ if (ParseType(Ty) ||
+ ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+ ParseValue(Ty, Op0, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+ ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+ return true;
+
+ bool AteExtraComma = false;
+ SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
+ while (1) {
+ PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
+
+ if (!EatIfPresent(lltok::comma))
+ break;
+
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ break;
+ }
+
+ if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+ ParseValue(Ty, Op0, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+ ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+ return true;
+ }
+
+ if (!Ty->isFirstClassType())
+ return Error(TypeLoc, "phi node must have first class type");
+
+ PHINode *PN = PHINode::Create(Ty);
+ PN->reserveOperandSpace(PHIVals.size());
+ for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
+ PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
+ Inst = PN;
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseCall
+/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
+/// ParameterList OptionalAttrs
+bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
+ bool isTail) {
+ unsigned RetAttrs, FnAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
+ LocTy RetTypeLoc;
+ ValID CalleeID;
+ SmallVector<ParamInfo, 16> ArgList;
+ LocTy CallLoc = Lex.getLoc();
+
+ if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
+ ParseOptionalCallingConv(CC) ||
+ ParseOptionalAttrs(RetAttrs, 1) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+ ParseValID(CalleeID) ||
+ ParseParameterList(ArgList, PFS) ||
+ ParseOptionalAttrs(FnAttrs, 2))
+ return true;
+
+ // If RetType is a non-function pointer type, then this is the short syntax
+ // for the call, which means that RetType is just the return type. Infer the
+ // rest of the function argument types from the arguments that are present.
+ const PointerType *PFTy = 0;
+ const FunctionType *Ty = 0;
+ if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
+ !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+ // Pull out the types of all of the arguments...
+ std::vector<const Type*> ParamTypes;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ParamTypes.push_back(ArgList[i].V->getType());
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ PFTy = PointerType::getUnqual(Ty);
+ }
+
+ // Look up the callee.
+ Value *Callee;
+ if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
+
+ // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
+ // function attributes.
+ unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+ if (FnAttrs & ObsoleteFuncAttrs) {
+ RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
+ FnAttrs &= ~ObsoleteFuncAttrs;
+ }
+
+ // Set up the Attributes for the function.
+ SmallVector<AttributeWithIndex, 8> Attrs;
+ if (RetAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+ SmallVector<Value*, 8> Args;
+
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly. Also, gather any parameter attributes.
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ const Type *ExpectedTy = 0;
+ if (I != E) {
+ ExpectedTy = *I++;
+ } else if (!Ty->isVarArg()) {
+ return Error(ArgList[i].Loc, "too many arguments specified");
+ }
+
+ if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+ return Error(ArgList[i].Loc, "argument is not of expected type '" +
+ ExpectedTy->getDescription() + "'");
+ Args.push_back(ArgList[i].V);
+ if (ArgList[i].Attrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+ }
+
+ if (I != E)
+ return Error(CallLoc, "not enough parameters specified for call");
+
+ if (FnAttrs != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+ // Finish off the Attributes and check them
+ AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+ CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
+ CI->setTailCall(isTail);
+ CI->setCallingConv(CC);
+ CI->setAttributes(PAL);
+ Inst = CI;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseAlloc
+/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
+/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
+int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
+ BasicBlock* BB, bool isAlloca) {
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ Value *Size = 0;
+ LocTy SizeLoc;
+ unsigned Alignment = 0;
+ if (ParseType(Ty)) return true;
+
+ bool AteExtraComma = false;
+ if (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::kw_align) {
+ if (ParseOptionalAlignment(Alignment)) return true;
+ } else if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ } else {
+ if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
+ ParseOptionalCommaAlign(Alignment, AteExtraComma))
+ return true;
+ }
+ }
+
+ if (Size && !Size->getType()->isIntegerTy())
+ return Error(SizeLoc, "element count must have integer type");
+
+ if (isAlloca) {
+ Inst = new AllocaInst(Ty, Size, Alignment);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+ }
+
+ // Autoupgrade old malloc instruction to malloc call.
+ // FIXME: Remove in LLVM 3.0.
+ if (Size && !Size->getType()->isIntegerTy(32))
+ return Error(SizeLoc, "element count must be i32");
+ const Type *IntPtrTy = Type::getInt32Ty(Context);
+ Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
+ AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
+ if (!MallocF)
+ // Prototype malloc as "void *(int32)".
+ // This function is renamed as "malloc" in ValidateEndOfModule().
+ MallocF = cast<Function>(
+ M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
+ Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
+return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseFree
+/// ::= 'free' TypeAndValue
+bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
+ BasicBlock* BB) {
+ Value *Val; LocTy Loc;
+ if (ParseTypeAndValue(Val, Loc, PFS)) return true;
+ if (!Val->getType()->isPointerTy())
+ return Error(Loc, "operand to free must be a pointer");
+ Inst = CallInst::CreateFree(Val, BB);
+ return false;
+}
+
+/// ParseLoad
+/// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
+int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
+ bool isVolatile) {
+ Value *Val; LocTy Loc;
+ unsigned Alignment = 0;
+ bool AteExtraComma = false;
+ if (ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseOptionalCommaAlign(Alignment, AteExtraComma))
+ return true;
+
+ if (!Val->getType()->isPointerTy() ||
+ !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
+ return Error(Loc, "load operand must be a pointer to a first class type");
+
+ Inst = new LoadInst(Val, "", isVolatile, Alignment);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseStore
+/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
+int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
+ bool isVolatile) {
+ Value *Val, *Ptr; LocTy Loc, PtrLoc;
+ unsigned Alignment = 0;
+ bool AteExtraComma = false;
+ if (ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after store operand") ||
+ ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
+ ParseOptionalCommaAlign(Alignment, AteExtraComma))
+ return true;
+
+ if (!Ptr->getType()->isPointerTy())
+ return Error(PtrLoc, "store operand must be a pointer");
+ if (!Val->getType()->isFirstClassType())
+ return Error(Loc, "store operand must be a first class value");
+ if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
+ return Error(Loc, "stored value and pointer type do not match");
+
+ Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseGetResult
+/// ::= 'getresult' TypeAndValue ',' i32
+/// FIXME: Remove support for getresult in LLVM 3.0
+bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val; LocTy ValLoc, EltLoc;
+ unsigned Element;
+ if (ParseTypeAndValue(Val, ValLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after getresult operand") ||
+ ParseUInt32(Element, EltLoc))
+ return true;
+
+ if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
+ return Error(ValLoc, "getresult inst requires an aggregate operand");
+ if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
+ return Error(EltLoc, "invalid getresult index for value");
+ Inst = ExtractValueInst::Create(Val, Element);
+ return false;
+}
+
+/// ParseGetElementPtr
+/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
+int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Ptr, *Val; LocTy Loc, EltLoc;
+
+ bool InBounds = EatIfPresent(lltok::kw_inbounds);
+
+ if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
+
+ if (!Ptr->getType()->isPointerTy())
+ return Error(Loc, "base of getelementptr must be a pointer");
+
+ SmallVector<Value*, 16> Indices;
+ bool AteExtraComma = false;
+ while (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ break;
+ }
+ if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
+ if (!Val->getType()->isIntegerTy())
+ return Error(EltLoc, "getelementptr index must be an integer");
+ Indices.push_back(Val);
+ }
+
+ if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
+ Indices.begin(), Indices.end()))
+ return Error(Loc, "invalid getelementptr indices");
+ Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
+ if (InBounds)
+ cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseExtractValue
+/// ::= 'extractvalue' TypeAndValue (',' uint32)+
+int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val; LocTy Loc;
+ SmallVector<unsigned, 4> Indices;
+ bool AteExtraComma;
+ if (ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseIndexList(Indices, AteExtraComma))
+ return true;
+
+ if (!Val->getType()->isAggregateType())
+ return Error(Loc, "extractvalue operand must be aggregate type");
+
+ if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
+ Indices.end()))
+ return Error(Loc, "invalid indices for extractvalue");
+ Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseInsertValue
+/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
+int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val0, *Val1; LocTy Loc0, Loc1;
+ SmallVector<unsigned, 4> Indices;
+ bool AteExtraComma;
+ if (ParseTypeAndValue(Val0, Loc0, PFS) ||
+ ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
+ ParseTypeAndValue(Val1, Loc1, PFS) ||
+ ParseIndexList(Indices, AteExtraComma))
+ return true;
+
+ if (!Val0->getType()->isAggregateType())
+ return Error(Loc0, "insertvalue operand must be aggregate type");
+
+ if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
+ Indices.end()))
+ return Error(Loc0, "invalid indices for insertvalue");
+ Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+//===----------------------------------------------------------------------===//
+// Embedded metadata.
+//===----------------------------------------------------------------------===//
+
+/// ParseMDNodeVector
+/// ::= Element (',' Element)*
+/// Element
+/// ::= 'null' | TypeAndValue
+bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
+ PerFunctionState *PFS) {
+ // Check for an empty list.
+ if (Lex.getKind() == lltok::rbrace)
+ return false;
+
+ do {
+ // Null is a special case since it is typeless.
+ if (EatIfPresent(lltok::kw_null)) {
+ Elts.push_back(0);
+ continue;
+ }
+
+ Value *V = 0;
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ ValID ID;
+ if (ParseType(Ty) || ParseValID(ID, PFS) ||
+ ConvertValIDToValue(Ty, ID, V, PFS))
+ return true;
+
+ Elts.push_back(V);
+ } while (EatIfPresent(lltok::comma));
+
+ return false;
+}
OpenPOWER on IntegriCloud