diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/VectorUtils.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/VectorUtils.cpp | 567 |
1 files changed, 567 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/VectorUtils.cpp b/contrib/llvm/lib/Analysis/VectorUtils.cpp new file mode 100644 index 0000000..4b244ec --- /dev/null +++ b/contrib/llvm/lib/Analysis/VectorUtils.cpp @@ -0,0 +1,567 @@ +//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines vectorizer utilities. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Constants.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +/// \brief Identify if the intrinsic is trivially vectorizable. +/// This method returns true if the intrinsic's argument types are all +/// scalars for the scalar form of the intrinsic and all vectors for +/// the vector form of the intrinsic. +bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { + switch (ID) { + case Intrinsic::sqrt: + case Intrinsic::sin: + case Intrinsic::cos: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::log: + case Intrinsic::log10: + case Intrinsic::log2: + case Intrinsic::fabs: + case Intrinsic::minnum: + case Intrinsic::maxnum: + case Intrinsic::copysign: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::bswap: + case Intrinsic::ctpop: + case Intrinsic::pow: + case Intrinsic::fma: + case Intrinsic::fmuladd: + case Intrinsic::ctlz: + case Intrinsic::cttz: + case Intrinsic::powi: + return true; + default: + return false; + } +} + +/// \brief Identifies if the intrinsic has a scalar operand. It check for +/// ctlz,cttz and powi special intrinsics whose argument is scalar. +bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, + unsigned ScalarOpdIdx) { + switch (ID) { + case Intrinsic::ctlz: + case Intrinsic::cttz: + case Intrinsic::powi: + return (ScalarOpdIdx == 1); + default: + return false; + } +} + +/// \brief Check call has a unary float signature +/// It checks following: +/// a) call should have a single argument +/// b) argument type should be floating point type +/// c) call instruction type and argument type should be same +/// d) call should only reads memory. +/// If all these condition is met then return ValidIntrinsicID +/// else return not_intrinsic. +Intrinsic::ID +llvm::checkUnaryFloatSignature(const CallInst &I, + Intrinsic::ID ValidIntrinsicID) { + if (I.getNumArgOperands() != 1 || + !I.getArgOperand(0)->getType()->isFloatingPointTy() || + I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory()) + return Intrinsic::not_intrinsic; + + return ValidIntrinsicID; +} + +/// \brief Check call has a binary float signature +/// It checks following: +/// a) call should have 2 arguments. +/// b) arguments type should be floating point type +/// c) call instruction type and arguments type should be same +/// d) call should only reads memory. +/// If all these condition is met then return ValidIntrinsicID +/// else return not_intrinsic. +Intrinsic::ID +llvm::checkBinaryFloatSignature(const CallInst &I, + Intrinsic::ID ValidIntrinsicID) { + if (I.getNumArgOperands() != 2 || + !I.getArgOperand(0)->getType()->isFloatingPointTy() || + !I.getArgOperand(1)->getType()->isFloatingPointTy() || + I.getType() != I.getArgOperand(0)->getType() || + I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory()) + return Intrinsic::not_intrinsic; + + return ValidIntrinsicID; +} + +/// \brief Returns intrinsic ID for call. +/// For the input call instruction it finds mapping intrinsic and returns +/// its ID, in case it does not found it return not_intrinsic. +Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI, + const TargetLibraryInfo *TLI) { + // If we have an intrinsic call, check if it is trivially vectorizable. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { + Intrinsic::ID ID = II->getIntrinsicID(); + if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || + ID == Intrinsic::lifetime_end || ID == Intrinsic::assume) + return ID; + return Intrinsic::not_intrinsic; + } + + if (!TLI) + return Intrinsic::not_intrinsic; + + LibFunc::Func Func; + Function *F = CI->getCalledFunction(); + // We're going to make assumptions on the semantics of the functions, check + // that the target knows that it's available in this environment and it does + // not have local linkage. + if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) + return Intrinsic::not_intrinsic; + + // Otherwise check if we have a call to a function that can be turned into a + // vector intrinsic. + switch (Func) { + default: + break; + case LibFunc::sin: + case LibFunc::sinf: + case LibFunc::sinl: + return checkUnaryFloatSignature(*CI, Intrinsic::sin); + case LibFunc::cos: + case LibFunc::cosf: + case LibFunc::cosl: + return checkUnaryFloatSignature(*CI, Intrinsic::cos); + case LibFunc::exp: + case LibFunc::expf: + case LibFunc::expl: + return checkUnaryFloatSignature(*CI, Intrinsic::exp); + case LibFunc::exp2: + case LibFunc::exp2f: + case LibFunc::exp2l: + return checkUnaryFloatSignature(*CI, Intrinsic::exp2); + case LibFunc::log: + case LibFunc::logf: + case LibFunc::logl: + return checkUnaryFloatSignature(*CI, Intrinsic::log); + case LibFunc::log10: + case LibFunc::log10f: + case LibFunc::log10l: + return checkUnaryFloatSignature(*CI, Intrinsic::log10); + case LibFunc::log2: + case LibFunc::log2f: + case LibFunc::log2l: + return checkUnaryFloatSignature(*CI, Intrinsic::log2); + case LibFunc::fabs: + case LibFunc::fabsf: + case LibFunc::fabsl: + return checkUnaryFloatSignature(*CI, Intrinsic::fabs); + case LibFunc::fmin: + case LibFunc::fminf: + case LibFunc::fminl: + return checkBinaryFloatSignature(*CI, Intrinsic::minnum); + case LibFunc::fmax: + case LibFunc::fmaxf: + case LibFunc::fmaxl: + return checkBinaryFloatSignature(*CI, Intrinsic::maxnum); + case LibFunc::copysign: + case LibFunc::copysignf: + case LibFunc::copysignl: + return checkBinaryFloatSignature(*CI, Intrinsic::copysign); + case LibFunc::floor: + case LibFunc::floorf: + case LibFunc::floorl: + return checkUnaryFloatSignature(*CI, Intrinsic::floor); + case LibFunc::ceil: + case LibFunc::ceilf: + case LibFunc::ceill: + return checkUnaryFloatSignature(*CI, Intrinsic::ceil); + case LibFunc::trunc: + case LibFunc::truncf: + case LibFunc::truncl: + return checkUnaryFloatSignature(*CI, Intrinsic::trunc); + case LibFunc::rint: + case LibFunc::rintf: + case LibFunc::rintl: + return checkUnaryFloatSignature(*CI, Intrinsic::rint); + case LibFunc::nearbyint: + case LibFunc::nearbyintf: + case LibFunc::nearbyintl: + return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); + case LibFunc::round: + case LibFunc::roundf: + case LibFunc::roundl: + return checkUnaryFloatSignature(*CI, Intrinsic::round); + case LibFunc::pow: + case LibFunc::powf: + case LibFunc::powl: + return checkBinaryFloatSignature(*CI, Intrinsic::pow); + } + + return Intrinsic::not_intrinsic; +} + +/// \brief Find the operand of the GEP that should be checked for consecutive +/// stores. This ignores trailing indices that have no effect on the final +/// pointer. +unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { + const DataLayout &DL = Gep->getModule()->getDataLayout(); + unsigned LastOperand = Gep->getNumOperands() - 1; + unsigned GEPAllocSize = DL.getTypeAllocSize( + cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); + + // Walk backwards and try to peel off zeros. + while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { + // Find the type we're currently indexing into. + gep_type_iterator GEPTI = gep_type_begin(Gep); + std::advance(GEPTI, LastOperand - 1); + + // If it's a type with the same allocation size as the result of the GEP we + // can peel off the zero index. + if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) + break; + --LastOperand; + } + + return LastOperand; +} + +/// \brief If the argument is a GEP, then returns the operand identified by +/// getGEPInductionOperand. However, if there is some other non-loop-invariant +/// operand, it returns that instead. +Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { + GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); + if (!GEP) + return Ptr; + + unsigned InductionOperand = getGEPInductionOperand(GEP); + + // Check that all of the gep indices are uniform except for our induction + // operand. + for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) + if (i != InductionOperand && + !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) + return Ptr; + return GEP->getOperand(InductionOperand); +} + +/// \brief If a value has only one user that is a CastInst, return it. +Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { + Value *UniqueCast = nullptr; + for (User *U : Ptr->users()) { + CastInst *CI = dyn_cast<CastInst>(U); + if (CI && CI->getType() == Ty) { + if (!UniqueCast) + UniqueCast = CI; + else + return nullptr; + } + } + return UniqueCast; +} + +/// \brief Get the stride of a pointer access in a loop. Looks for symbolic +/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. +Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { + auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); + if (!PtrTy || PtrTy->isAggregateType()) + return nullptr; + + // Try to remove a gep instruction to make the pointer (actually index at this + // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the + // pointer, otherwise, we are analyzing the index. + Value *OrigPtr = Ptr; + + // The size of the pointer access. + int64_t PtrAccessSize = 1; + + Ptr = stripGetElementPtr(Ptr, SE, Lp); + const SCEV *V = SE->getSCEV(Ptr); + + if (Ptr != OrigPtr) + // Strip off casts. + while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) + V = C->getOperand(); + + const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); + if (!S) + return nullptr; + + V = S->getStepRecurrence(*SE); + if (!V) + return nullptr; + + // Strip off the size of access multiplication if we are still analyzing the + // pointer. + if (OrigPtr == Ptr) { + const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); + DL.getTypeAllocSize(PtrTy->getElementType()); + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { + if (M->getOperand(0)->getSCEVType() != scConstant) + return nullptr; + + const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); + + // Huge step value - give up. + if (APStepVal.getBitWidth() > 64) + return nullptr; + + int64_t StepVal = APStepVal.getSExtValue(); + if (PtrAccessSize != StepVal) + return nullptr; + V = M->getOperand(1); + } + } + + // Strip off casts. + Type *StripedOffRecurrenceCast = nullptr; + if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { + StripedOffRecurrenceCast = C->getType(); + V = C->getOperand(); + } + + // Look for the loop invariant symbolic value. + const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); + if (!U) + return nullptr; + + Value *Stride = U->getValue(); + if (!Lp->isLoopInvariant(Stride)) + return nullptr; + + // If we have stripped off the recurrence cast we have to make sure that we + // return the value that is used in this loop so that we can replace it later. + if (StripedOffRecurrenceCast) + Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); + + return Stride; +} + +/// \brief Given a vector and an element number, see if the scalar value is +/// already around as a register, for example if it were inserted then extracted +/// from the vector. +Value *llvm::findScalarElement(Value *V, unsigned EltNo) { + assert(V->getType()->isVectorTy() && "Not looking at a vector?"); + VectorType *VTy = cast<VectorType>(V->getType()); + unsigned Width = VTy->getNumElements(); + if (EltNo >= Width) // Out of range access. + return UndefValue::get(VTy->getElementType()); + + if (Constant *C = dyn_cast<Constant>(V)) + return C->getAggregateElement(EltNo); + + if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { + // If this is an insert to a variable element, we don't know what it is. + if (!isa<ConstantInt>(III->getOperand(2))) + return nullptr; + unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); + + // If this is an insert to the element we are looking for, return the + // inserted value. + if (EltNo == IIElt) + return III->getOperand(1); + + // Otherwise, the insertelement doesn't modify the value, recurse on its + // vector input. + return findScalarElement(III->getOperand(0), EltNo); + } + + if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { + unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); + int InEl = SVI->getMaskValue(EltNo); + if (InEl < 0) + return UndefValue::get(VTy->getElementType()); + if (InEl < (int)LHSWidth) + return findScalarElement(SVI->getOperand(0), InEl); + return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); + } + + // Extract a value from a vector add operation with a constant zero. + Value *Val = nullptr; Constant *Con = nullptr; + if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) + if (Constant *Elt = Con->getAggregateElement(EltNo)) + if (Elt->isNullValue()) + return findScalarElement(Val, EltNo); + + // Otherwise, we don't know. + return nullptr; +} + +/// \brief Get splat value if the input is a splat vector or return nullptr. +/// This function is not fully general. It checks only 2 cases: +/// the input value is (1) a splat constants vector or (2) a sequence +/// of instructions that broadcast a single value into a vector. +/// +const llvm::Value *llvm::getSplatValue(const Value *V) { + + if (auto *C = dyn_cast<Constant>(V)) + if (isa<VectorType>(V->getType())) + return C->getSplatValue(); + + auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); + if (!ShuffleInst) + return nullptr; + // All-zero (or undef) shuffle mask elements. + for (int MaskElt : ShuffleInst->getShuffleMask()) + if (MaskElt != 0 && MaskElt != -1) + return nullptr; + // The first shuffle source is 'insertelement' with index 0. + auto *InsertEltInst = + dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); + if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || + !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue()) + return nullptr; + + return InsertEltInst->getOperand(1); +} + +MapVector<Instruction *, uint64_t> +llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, + const TargetTransformInfo *TTI) { + + // DemandedBits will give us every value's live-out bits. But we want + // to ensure no extra casts would need to be inserted, so every DAG + // of connected values must have the same minimum bitwidth. + EquivalenceClasses<Value *> ECs; + SmallVector<Value *, 16> Worklist; + SmallPtrSet<Value *, 4> Roots; + SmallPtrSet<Value *, 16> Visited; + DenseMap<Value *, uint64_t> DBits; + SmallPtrSet<Instruction *, 4> InstructionSet; + MapVector<Instruction *, uint64_t> MinBWs; + + // Determine the roots. We work bottom-up, from truncs or icmps. + bool SeenExtFromIllegalType = false; + for (auto *BB : Blocks) + for (auto &I : *BB) { + InstructionSet.insert(&I); + + if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && + !TTI->isTypeLegal(I.getOperand(0)->getType())) + SeenExtFromIllegalType = true; + + // Only deal with non-vector integers up to 64-bits wide. + if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && + !I.getType()->isVectorTy() && + I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { + // Don't make work for ourselves. If we know the loaded type is legal, + // don't add it to the worklist. + if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) + continue; + + Worklist.push_back(&I); + Roots.insert(&I); + } + } + // Early exit. + if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) + return MinBWs; + + // Now proceed breadth-first, unioning values together. + while (!Worklist.empty()) { + Value *Val = Worklist.pop_back_val(); + Value *Leader = ECs.getOrInsertLeaderValue(Val); + + if (Visited.count(Val)) + continue; + Visited.insert(Val); + + // Non-instructions terminate a chain successfully. + if (!isa<Instruction>(Val)) + continue; + Instruction *I = cast<Instruction>(Val); + + // If we encounter a type that is larger than 64 bits, we can't represent + // it so bail out. + if (DB.getDemandedBits(I).getBitWidth() > 64) + return MapVector<Instruction *, uint64_t>(); + + uint64_t V = DB.getDemandedBits(I).getZExtValue(); + DBits[Leader] |= V; + + // Casts, loads and instructions outside of our range terminate a chain + // successfully. + if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || + !InstructionSet.count(I)) + continue; + + // Unsafe casts terminate a chain unsuccessfully. We can't do anything + // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to + // transform anything that relies on them. + if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || + !I->getType()->isIntegerTy()) { + DBits[Leader] |= ~0ULL; + continue; + } + + // We don't modify the types of PHIs. Reductions will already have been + // truncated if possible, and inductions' sizes will have been chosen by + // indvars. + if (isa<PHINode>(I)) + continue; + + if (DBits[Leader] == ~0ULL) + // All bits demanded, no point continuing. + continue; + + for (Value *O : cast<User>(I)->operands()) { + ECs.unionSets(Leader, O); + Worklist.push_back(O); + } + } + + // Now we've discovered all values, walk them to see if there are + // any users we didn't see. If there are, we can't optimize that + // chain. + for (auto &I : DBits) + for (auto *U : I.first->users()) + if (U->getType()->isIntegerTy() && DBits.count(U) == 0) + DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; + + for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { + uint64_t LeaderDemandedBits = 0; + for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) + LeaderDemandedBits |= DBits[*MI]; + + uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - + llvm::countLeadingZeros(LeaderDemandedBits); + // Round up to a power of 2 + if (!isPowerOf2_64((uint64_t)MinBW)) + MinBW = NextPowerOf2(MinBW); + for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { + if (!isa<Instruction>(*MI)) + continue; + Type *Ty = (*MI)->getType(); + if (Roots.count(*MI)) + Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); + if (MinBW < Ty->getScalarSizeInBits()) + MinBWs[cast<Instruction>(*MI)] = MinBW; + } + } + + return MinBWs; +} |