summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ValueTracking.cpp1277
1 files changed, 975 insertions, 302 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp
index 5d90917..c4f0463 100644
--- a/contrib/llvm/lib/Analysis/ValueTracking.cpp
+++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp
@@ -17,6 +17,7 @@
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
@@ -31,6 +32,7 @@
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
@@ -39,13 +41,41 @@ using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6;
+/// Enable an experimental feature to leverage information about dominating
+/// conditions to compute known bits. The individual options below control how
+/// hard we search. The defaults are choosen to be fairly aggressive. If you
+/// run into compile time problems when testing, scale them back and report
+/// your findings.
+static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
+ cl::Hidden, cl::init(false));
+
+// This is expensive, so we only do it for the top level query value.
+// (TODO: evaluate cost vs profit, consider higher thresholds)
+static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
+ cl::Hidden, cl::init(1));
+
+/// How many dominating blocks should be scanned looking for dominating
+/// conditions?
+static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
+ cl::Hidden,
+ cl::init(20000));
+
+// Controls the number of uses of the value searched for possible
+// dominating comparisons.
+static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
+ cl::Hidden, cl::init(2000));
+
+// If true, don't consider only compares whose only use is a branch.
+static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
+ cl::Hidden, cl::init(false));
+
/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
/// 0). For vector types, returns the element type's bitwidth.
-static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
+static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
- return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
+ return DL.getPointerTypeSizeInBits(Ty);
}
// Many of these functions have internal versions that take an assumption
@@ -97,73 +127,88 @@ static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
}
static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
+ ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
+bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ assert(LHS->getType() == RHS->getType() &&
+ "LHS and RHS should have the same type");
+ assert(LHS->getType()->isIntOrIntVectorTy() &&
+ "LHS and RHS should be integers");
+ IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
+ APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
+ APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
+ return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
+}
+
static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
+ ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q);
+ const Query &Q, const DataLayout &DL);
-bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
+bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
const DominatorTree *DT) {
return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
+ Query(AC, safeCxtI(V, CxtI), DT), DL);
}
-static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
const Query &Q);
-bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
}
-static bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q);
-bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT) {
- return ::MaskedValueIsZero(V, Mask, TD, Depth,
+ return ::MaskedValueIsZero(V, Mask, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
-static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
unsigned Depth, const Query &Q);
-unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
- return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
}
static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
const Query &Q) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
@@ -175,7 +220,7 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -194,8 +239,8 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// If an initial sequence of bits in the result is not needed, the
// corresponding bits in the operands are not needed.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Carry in a 1 for a subtract, rather than a 0.
APInt CarryIn(BitWidth, 0);
@@ -243,11 +288,11 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
const Query &Q) {
unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -268,9 +313,9 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, TD, Depth, Q)) ||
+ isKnownNonZero(Op0, DL, Depth, Q)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, TD, Depth, Q));
+ isKnownNonZero(Op1, DL, Depth, Q));
}
}
@@ -382,8 +427,7 @@ static bool isAssumeLikeIntrinsic(const Instruction *I) {
return false;
}
-static bool isValidAssumeForContext(Value *V, const Query &Q,
- const DataLayout *DL) {
+static bool isValidAssumeForContext(Value *V, const Query &Q) {
Instruction *Inv = cast<Instruction>(V);
// There are two restrictions on the use of an assume:
@@ -403,8 +447,7 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
for (BasicBlock::const_iterator I =
std::next(BasicBlock::const_iterator(Q.CxtI)),
IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
+ if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
return false;
return !isEphemeralValueOf(Inv, Q.CxtI);
@@ -428,8 +471,7 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
for (BasicBlock::const_iterator I =
std::next(BasicBlock::const_iterator(Q.CxtI)),
IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
+ if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
return false;
return !isEphemeralValueOf(Inv, Q.CxtI);
@@ -440,10 +482,9 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
bool llvm::isValidAssumeForContext(const Instruction *I,
const Instruction *CxtI,
- const DataLayout *DL,
const DominatorTree *DT) {
- return ::isValidAssumeForContext(const_cast<Instruction*>(I),
- Query(nullptr, CxtI, DT), DL);
+ return ::isValidAssumeForContext(const_cast<Instruction *>(I),
+ Query(nullptr, CxtI, DT));
}
template<typename LHS, typename RHS>
@@ -474,9 +515,181 @@ m_c_Xor(const LHS &L, const RHS &R) {
return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
}
+/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
+/// true (at the context instruction.) This is mostly a utility function for
+/// the prototype dominating conditions reasoning below.
+static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+ // TODO: We could potentially be more aggressive here. This would be worth
+ // evaluating. If we can, explore commoning this code with the assume
+ // handling logic.
+ if (LHS != V && RHS != V)
+ return;
+
+ const unsigned BitWidth = KnownZero.getBitWidth();
+
+ switch (Cmp->getPredicate()) {
+ default:
+ // We know nothing from this condition
+ break;
+ // TODO: implement unsigned bound from below (known one bits)
+ // TODO: common condition check implementations with assumes
+ // TODO: implement other patterns from assume (e.g. V & B == A)
+ case ICmpInst::ICMP_SGT:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ }
+ break;
+ case ICmpInst::ICMP_EQ:
+ if (LHS == V)
+ computeKnownBits(RHS, KnownZero, KnownOne, DL, Depth + 1, Q);
+ else if (RHS == V)
+ computeKnownBits(LHS, KnownZero, KnownOne, DL, Depth + 1, Q);
+ else
+ llvm_unreachable("missing use?");
+ break;
+ case ICmpInst::ICMP_ULE:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ // The known zero bits carry over
+ unsigned SignBits = KnownZeroTemp.countLeadingOnes();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ // Whatever high bits in rhs are zero are known to be zero (if rhs is a
+ // power of 2, then one more).
+ unsigned SignBits = KnownZeroTemp.countLeadingOnes();
+ if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
+ SignBits++;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
+ }
+ break;
+ };
+}
+
+/// Compute known bits in 'V' from conditions which are known to be true along
+/// all paths leading to the context instruction. In particular, look for
+/// cases where one branch of an interesting condition dominates the context
+/// instruction. This does not do general dataflow.
+/// NOTE: This code is EXPERIMENTAL and currently off by default.
+static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout &DL,
+ unsigned Depth,
+ const Query &Q) {
+ // Need both the dominator tree and the query location to do anything useful
+ if (!Q.DT || !Q.CxtI)
+ return;
+ Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
+
+ // Avoid useless work
+ if (auto VI = dyn_cast<Instruction>(V))
+ if (VI->getParent() == Cxt->getParent())
+ return;
+
+ // Note: We currently implement two options. It's not clear which of these
+ // will survive long term, we need data for that.
+ // Option 1 - Try walking the dominator tree looking for conditions which
+ // might apply. This works well for local conditions (loop guards, etc..),
+ // but not as well for things far from the context instruction (presuming a
+ // low max blocks explored). If we can set an high enough limit, this would
+ // be all we need.
+ // Option 2 - We restrict out search to those conditions which are uses of
+ // the value we're interested in. This is independent of dom structure,
+ // but is slightly less powerful without looking through lots of use chains.
+ // It does handle conditions far from the context instruction (e.g. early
+ // function exits on entry) really well though.
+
+ // Option 1 - Search the dom tree
+ unsigned NumBlocksExplored = 0;
+ BasicBlock *Current = Cxt->getParent();
+ while (true) {
+ // Stop searching if we've gone too far up the chain
+ if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
+ break;
+ NumBlocksExplored++;
+
+ if (!Q.DT->getNode(Current)->getIDom())
+ break;
+ Current = Q.DT->getNode(Current)->getIDom()->getBlock();
+ if (!Current)
+ // found function entry
+ break;
+
+ BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
+ if (!BI || BI->isUnconditional())
+ continue;
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cmp)
+ continue;
+
+ // We're looking for conditions that are guaranteed to hold at the context
+ // instruction. Finding a condition where one path dominates the context
+ // isn't enough because both the true and false cases could merge before
+ // the context instruction we're actually interested in. Instead, we need
+ // to ensure that the taken *edge* dominates the context instruction.
+ BasicBlock *BB0 = BI->getSuccessor(0);
+ BasicBlockEdge Edge(BI->getParent(), BB0);
+ if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
+ continue;
+
+ computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
+ Q);
+ }
+
+ // Option 2 - Search the other uses of V
+ unsigned NumUsesExplored = 0;
+ for (auto U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+ // Consider only compare instructions uniquely controlling a branch
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
+ if (!Cmp)
+ continue;
+
+ if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
+ continue;
+
+ for (auto *CmpU : Cmp->users()) {
+ BranchInst *BI = dyn_cast<BranchInst>(CmpU);
+ if (!BI || BI->isUnconditional())
+ continue;
+ // We're looking for conditions that are guaranteed to hold at the
+ // context instruction. Finding a condition where one path dominates
+ // the context isn't enough because both the true and false cases could
+ // merge before the context instruction we're actually interested in.
+ // Instead, we need to ensure that the taken *edge* dominates the context
+ // instruction.
+ BasicBlock *BB0 = BI->getSuccessor(0);
+ BasicBlockEdge Edge(BI->getParent(), BB0);
+ if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
+ continue;
+
+ computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
+ Q);
+ }
+ }
+}
+
static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout *DL,
+ APInt &KnownOne, const DataLayout &DL,
unsigned Depth, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
@@ -498,14 +711,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
- assert(isa<IntrinsicInst>(I) &&
- dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
+ assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
-
+
Value *Arg = I->getArgOperand(0);
- if (Arg == V &&
- isValidAssumeForContext(I, Q, DL)) {
+ if (Arg == V && isValidAssumeForContext(I, Q)) {
assert(BitWidth == 1 && "assume operand is not i1?");
KnownZero.clearAllBits();
KnownOne.setAllBits();
@@ -525,15 +736,15 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
ConstantInt *C;
// assume(v = a)
if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
KnownZero |= RHSKnownZero;
KnownOne |= RHSKnownOne;
// assume(v & b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
@@ -546,7 +757,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v & b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
@@ -557,9 +768,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownZero |= RHSKnownOne & MaskKnownOne;
KnownOne |= RHSKnownZero & MaskKnownOne;
// assume(v | b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -572,7 +783,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v | b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -583,9 +794,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownZero |= RHSKnownOne & BKnownZero;
KnownOne |= RHSKnownZero & BKnownZero;
// assume(v ^ b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -601,7 +812,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v ^ b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -617,7 +828,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v << c = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
@@ -627,7 +838,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v << c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
@@ -637,10 +848,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v >> c = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V,
- m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ m_AShr(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
@@ -649,10 +859,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownOne |= RHSKnownOne << C->getZExtValue();
// assume(~(v >> c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
- m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V, m_ConstantInt(C)))),
+ m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C)))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
@@ -661,8 +871,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownOne |= RHSKnownZero << C->getZExtValue();
// assume(v >=_s c) where c is non-negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -672,8 +881,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v >_s c) where c is at least -1.
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -683,8 +891,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_s c) where c is negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -694,8 +901,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <_s c) where c is non-positive
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -705,8 +911,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -715,14 +920,13 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
// assume(v <_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
KnownZero |=
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
else
@@ -743,13 +947,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
-/// type (but only if TD is non-null), and vectors of integers. In the case
+/// type, and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
@@ -757,8 +960,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
assert((V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
"Not integer or pointer type!");
- assert((!TD ||
- TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
@@ -797,7 +999,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// The address of an aligned GlobalValue has trailing zeros.
if (auto *GO = dyn_cast<GlobalObject>(V)) {
unsigned Align = GO->getAlignment();
- if (Align == 0 && TD) {
+ if (Align == 0) {
if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Type *ObjectType = GVar->getType()->getElementType();
if (ObjectType->isSized()) {
@@ -805,9 +1007,9 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// it the preferred alignment. Otherwise, we have to assume that it
// may only have the minimum ABI alignment.
if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
- Align = TD->getPreferredAlignment(GVar);
+ Align = DL.getPreferredAlignment(GVar);
else
- Align = TD->getABITypeAlignment(ObjectType);
+ Align = DL.getABITypeAlignment(ObjectType);
}
}
}
@@ -823,11 +1025,11 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (Argument *A = dyn_cast<Argument>(V)) {
unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
- if (!Align && TD && A->hasStructRetAttr()) {
+ if (!Align && A->hasStructRetAttr()) {
// An sret parameter has at least the ABI alignment of the return type.
Type *EltTy = cast<PointerType>(A->getType())->getElementType();
if (EltTy->isSized())
- Align = TD->getABITypeAlignment(EltTy);
+ Align = DL.getABITypeAlignment(EltTy);
}
if (Align)
@@ -838,7 +1040,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Don't give up yet... there might be an assumption that provides more
// information...
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
+
+ // Or a dominating condition for that matter
+ if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
+ computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL,
+ Depth, Q);
return;
}
@@ -854,12 +1061,18 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// the bits of its aliasee.
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden())
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
return;
}
// Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
+
+ // Check whether there's a dominating condition which implies something about
+ // this value at the given context.
+ if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
+ computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
+ Q);
Operator *I = dyn_cast<Operator>(V);
if (!I) return;
@@ -873,8 +1086,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
@@ -883,8 +1096,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
@@ -893,8 +1106,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
@@ -905,21 +1118,20 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
}
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
@@ -929,8 +1141,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
@@ -946,8 +1158,6 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::AddrSpaceCast: // Pointers could be different sizes.
- // We can't handle these if we don't know the pointer size.
- if (!TD) break;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
@@ -956,17 +1166,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
- if(TD) {
- SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
- } else {
- SrcBitWidth = SrcTy->getScalarSizeInBits();
- if (!SrcBitWidth) break;
- }
+ SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -980,7 +1185,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
break;
}
break;
@@ -991,7 +1196,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -1007,7 +1212,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
@@ -1020,7 +1225,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
@@ -1034,7 +1239,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -1048,15 +1253,15 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
case Instruction::SRem:
@@ -1064,8 +1269,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
+ Q);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -1089,8 +1294,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
+ Depth + 1, Q);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -1102,8 +1307,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -1112,8 +1317,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -1125,8 +1330,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Alloca: {
AllocaInst *AI = cast<AllocaInst>(V);
unsigned Align = AI->getAlignment();
- if (Align == 0 && TD)
- Align = TD->getABITypeAlignment(AI->getType()->getElementType());
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
@@ -1136,8 +1341,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
+ Depth + 1, Q);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -1145,10 +1350,6 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Value *Index = I->getOperand(i);
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
- if (!TD) {
- TrailZ = 0;
- break;
- }
// Handle case when index is vector zeroinitializer
Constant *CIndex = cast<Constant>(Index);
@@ -1159,7 +1360,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = TD->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min<unsigned>(TrailZ,
countTrailingZeros(Offset));
@@ -1171,9 +1372,10 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
+ uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
+ Q);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -1215,11 +1417,11 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
+ computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -1242,16 +1444,16 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = APInt::getAllOnesValue(BitWidth);
KnownOne = APInt::getAllOnesValue(BitWidth);
- for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
+ for (Value *IncValue : P->incoming_values()) {
// Skip direct self references.
- if (P->getIncomingValue(i) == P) continue;
+ if (IncValue == P) continue;
KnownZero2 = APInt(BitWidth, 0);
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1, Q);
+ computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
+ MaxDepth - 1, Q);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -1303,19 +1505,19 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth, Q);
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
}
@@ -1328,9 +1530,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
/// Determine whether the sign bit is known to be zero or one.
/// Convenience wrapper around computeKnownBits.
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = getBitWidth(V->getType(), TD);
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
+ unsigned BitWidth = getBitWidth(V->getType(), DL);
if (!BitWidth) {
KnownZero = false;
KnownOne = false;
@@ -1338,7 +1539,7 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
+ computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -1348,7 +1549,7 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q) {
+ const Query &Q, const DataLayout &DL) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return OrZero;
@@ -1375,20 +1576,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return
- isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
@@ -1403,19 +1603,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -1433,7 +1633,7 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q);
+ Depth, Q, DL);
}
return false;
@@ -1445,7 +1645,7 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
-static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
+static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
unsigned Depth, const Query &Q) {
if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
return false;
@@ -1458,10 +1658,6 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
return true;
- // Past this, if we don't have DataLayout, we can't do much.
- if (!DL)
- return false;
-
// Walk the GEP operands and see if any operand introduces a non-zero offset.
// If so, then the GEP cannot produce a null pointer, as doing so would
// inherently violate the inbounds contract within address space zero.
@@ -1471,7 +1667,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
@@ -1479,7 +1675,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
+ if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
@@ -1528,7 +1724,7 @@ static bool rangeMetadataExcludesValue(MDNode* Ranges,
/// For vectors return true if every element is known to be non-zero when
/// defined. Supports values with integer or pointer type and vectors of
/// integers.
-bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
@@ -1561,21 +1757,20 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
if (isKnownNonNull(V))
return true;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, TD, Depth, Q))
+ if (isGEPKnownNonNull(GEP, DL, Depth, Q))
return true;
}
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
@@ -1583,11 +1778,11 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// shl nuw can't remove any non-zero bits.
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
if (KnownOne[0])
return true;
}
@@ -1597,29 +1792,28 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// shr exact can only shift out zero bits.
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
if (XKnownNegative)
return true;
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
bool XKnownNonNegative, XKnownNegative;
bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q))
+ if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
@@ -1630,22 +1824,22 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnownNonNegative &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
return true;
if (YKnownNonNegative &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
return true;
}
// X * Y.
@@ -1654,21 +1848,20 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, TD, Depth, Q) &&
- isKnownNonZero(Y, TD, Depth, Q))
+ isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
+ if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
return true;
}
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
return KnownOne != 0;
}
@@ -1677,15 +1870,14 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
-/// type (but only if TD is non-null), and vectors of integers. In the case
+/// type, and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
+bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
return (KnownZero & Mask) == Mask;
}
@@ -1699,14 +1891,9 @@ bool MaskedValueIsZero(Value *V, const APInt &Mask,
///
/// 'Op' must have a scalar integer type.
///
-unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth, const Query &Q) {
- assert((TD || V->getType()->isIntOrIntVectorTy()) &&
- "ComputeNumSignBits requires a DataLayout object to operate "
- "on non-integer values!");
- Type *Ty = V->getType();
- unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
- Ty->getScalarSizeInBits();
+unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
@@ -1721,10 +1908,63 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
+ return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
+
+ case Instruction::SDiv: {
+ const APInt *Denominator;
+ // sdiv X, C -> adds log(C) sign bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits.
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+
+ // Add floor(log(C)) bits to the numerator bits.
+ return std::min(TyBits, NumBits + Denominator->logBase2());
+ }
+ break;
+ }
+
+ case Instruction::SRem: {
+ const APInt *Denominator;
+ // srem X, C -> we know that the result is within [-C+1,C) when C is a
+ // positive constant. This let us put a lower bound on the number of sign
+ // bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits. SRem by a positive constant
+ // can't lower the number of sign bits.
+ unsigned NumrBits =
+ ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+
+ // Calculate the leading sign bit constraints by examining the
+ // denominator. Given that the denominator is positive, there are two
+ // cases:
+ //
+ // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
+ // (1 << ceilLogBase2(C)).
+ //
+ // 2. the numerator is negative. Then the result range is (-C,0] and
+ // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
+ //
+ // Thus a lower bound on the number of sign bits is `TyBits -
+ // ceilLogBase2(C)`.
+
+ unsigned ResBits = TyBits - Denominator->ceilLogBase2();
+ return std::max(NumrBits, ResBits);
+ }
+ break;
+ }
case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
@@ -1737,7 +1977,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Tmp2 = ShAmt->getZExtValue();
if (Tmp2 >= TyBits || // Bad shift.
Tmp2 >= Tmp) break; // Shifted all sign bits out.
@@ -1749,9 +1989,9 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
@@ -1760,22 +2000,23 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
break;
case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -1788,19 +2029,20 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
return Tmp;
}
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -1816,7 +2058,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
@@ -1830,12 +2072,11 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
- Tmp = std::min(Tmp,
- ComputeNumSignBits(PN->getIncomingValue(i), TD,
- Depth+1, Q));
+ Tmp = std::min(
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
}
return Tmp;
}
@@ -1850,7 +2091,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -2000,8 +2241,11 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
+ // FIXME: Magic number! At the least, this should be given a name because it's
+ // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
+ // expose it as a parameter, so it can be used for testing / experimenting.
if (Depth == 6)
- return 1; // Limit search depth.
+ return false; // Limit search depth.
const Operator *I = dyn_cast<Operator>(V);
if (!I) return false;
@@ -2044,6 +2288,62 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return false;
}
+bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
+
+ // FIXME: Magic number! At the least, this should be given a name because it's
+ // used similarly in CannotBeNegativeZero(). A better fix may be to
+ // expose it as a parameter, so it can be used for testing / experimenting.
+ if (Depth == 6)
+ return false; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::FMul:
+ // x*x is always non-negative or a NaN.
+ if (I->getOperand(0) == I->getOperand(1))
+ return true;
+ // Fall through
+ case Instruction::FAdd:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
+ case Instruction::FPExt:
+ case Instruction::FPTrunc:
+ // Widening/narrowing never change sign.
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ case Intrinsic::sqrt:
+ return true;
+ case Intrinsic::powi:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // powi(x,n) is non-negative if n is even.
+ if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
+ return true;
+ }
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // x*x+y is non-negative if y is non-negative.
+ return I->getOperand(0) == I->getOperand(1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
+ }
+ break;
+ }
+ return false;
+}
+
/// If the specified value can be set by repeating the same byte in memory,
/// return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
@@ -2068,26 +2368,14 @@ Value *llvm::isBytewiseValue(Value *V) {
// Don't handle long double formats, which have strange constraints.
}
- // We can handle constant integers that are power of two in size and a
- // multiple of 8 bits.
+ // We can handle constant integers that are multiple of 8 bits.
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- unsigned Width = CI->getBitWidth();
- if (isPowerOf2_32(Width) && Width > 8) {
- // We can handle this value if the recursive binary decomposition is the
- // same at all levels.
- APInt Val = CI->getValue();
- APInt Val2;
- while (Val.getBitWidth() != 8) {
- unsigned NextWidth = Val.getBitWidth()/2;
- Val2 = Val.lshr(NextWidth);
- Val2 = Val2.trunc(Val.getBitWidth()/2);
- Val = Val.trunc(Val.getBitWidth()/2);
-
- // If the top/bottom halves aren't the same, reject it.
- if (Val != Val2)
- return nullptr;
- }
- return ConstantInt::get(V->getContext(), Val);
+ if (CI->getBitWidth() % 8 == 0) {
+ assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
+
+ if (!CI->getValue().isSplat(8))
+ return nullptr;
+ return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
}
}
@@ -2286,23 +2574,19 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
/// Analyze the specified pointer to see if it can be expressed as a base
/// pointer plus a constant offset. Return the base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout *DL) {
- // Without DataLayout, conservatively assume 64-bit offsets, which is
- // the widest we support.
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
+ const DataLayout &DL) {
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
APInt ByteOffset(BitWidth, 0);
while (1) {
if (Ptr->getType()->isVectorTy())
break;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- if (DL) {
- APInt GEPOffset(BitWidth, 0);
- if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
- break;
+ APInt GEPOffset(BitWidth, 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ break;
- ByteOffset += GEPOffset;
- }
+ ByteOffset += GEPOffset;
Ptr = GEP->getPointerOperand();
} else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
@@ -2331,7 +2615,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Look through bitcast instructions and geps.
V = V->stripPointerCasts();
- // If the value is a GEP instructionor constant expression, treat it as an
+ // If the value is a GEP instruction or constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Make sure the GEP has exactly three arguments.
@@ -2358,7 +2642,8 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
StartIdx = CI->getZExtValue();
else
return false;
- return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
+ return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
+ TrimAtNul);
}
// The GEP instruction, constant or instruction, must reference a global
@@ -2421,8 +2706,8 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
+ for (Value *IncValue : PN->incoming_values()) {
+ uint64_t Len = GetStringLengthH(IncValue, PHIs);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
@@ -2468,8 +2753,34 @@ uint64_t llvm::GetStringLength(Value *V) {
return Len == ~0ULL ? 1 : Len;
}
-Value *
-llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
+/// \brief \p PN defines a loop-variant pointer to an object. Check if the
+/// previous iteration of the loop was referring to the same object as \p PN.
+static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
+ // Find the loop-defined value.
+ Loop *L = LI->getLoopFor(PN->getParent());
+ if (PN->getNumIncomingValues() != 2)
+ return true;
+
+ // Find the value from previous iteration.
+ auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ return true;
+
+ // If a new pointer is loaded in the loop, the pointer references a different
+ // object in every iteration. E.g.:
+ // for (i)
+ // int *p = a[i];
+ // ...
+ if (auto *Load = dyn_cast<LoadInst>(PrevValue))
+ if (!L->isLoopInvariant(Load->getPointerOperand()))
+ return false;
+ return true;
+}
+
+Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
+ unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
@@ -2486,7 +2797,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and AssumptionCache and use them.
- if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
+ if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
V = Simplified;
continue;
}
@@ -2498,17 +2809,15 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
return V;
}
-void
-llvm::GetUnderlyingObjects(Value *V,
- SmallVectorImpl<Value *> &Objects,
- const DataLayout *TD,
- unsigned MaxLookup) {
+void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
+ const DataLayout &DL, LoopInfo *LI,
+ unsigned MaxLookup) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
Worklist.push_back(V);
do {
Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObject(P, TD, MaxLookup);
+ P = GetUnderlyingObject(P, DL, MaxLookup);
if (!Visited.insert(P).second)
continue;
@@ -2520,8 +2829,20 @@ llvm::GetUnderlyingObjects(Value *V,
}
if (PHINode *PN = dyn_cast<PHINode>(P)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- Worklist.push_back(PN->getIncomingValue(i));
+ // If this PHI changes the underlying object in every iteration of the
+ // loop, don't look through it. Consider:
+ // int **A;
+ // for (i) {
+ // Prev = Curr; // Prev = PHI (Prev_0, Curr)
+ // Curr = A[i];
+ // *Prev, *Curr;
+ //
+ // Prev is tracking Curr one iteration behind so they refer to different
+ // underlying objects.
+ if (!LI || !LI->isLoopHeader(PN->getParent()) ||
+ isSameUnderlyingObjectInLoop(PN, LI))
+ for (Value *IncValue : PN->incoming_values())
+ Worklist.push_back(IncValue);
continue;
}
@@ -2542,8 +2863,175 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
return true;
}
+static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
+ Type *Ty, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ assert(Offset.isNonNegative() && "offset can't be negative");
+ assert(Ty->isSized() && "must be sized");
+
+ APInt DerefBytes(Offset.getBitWidth(), 0);
+ bool CheckForNonNull = false;
+ if (const Argument *A = dyn_cast<Argument>(BV)) {
+ DerefBytes = A->getDereferenceableBytes();
+ if (!DerefBytes.getBoolValue()) {
+ DerefBytes = A->getDereferenceableOrNullBytes();
+ CheckForNonNull = true;
+ }
+ } else if (auto CS = ImmutableCallSite(BV)) {
+ DerefBytes = CS.getDereferenceableBytes(0);
+ if (!DerefBytes.getBoolValue()) {
+ DerefBytes = CS.getDereferenceableOrNullBytes(0);
+ CheckForNonNull = true;
+ }
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
+ if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ if (!DerefBytes.getBoolValue()) {
+ if (MDNode *MD =
+ LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ CheckForNonNull = true;
+ }
+ }
+
+ if (DerefBytes.getBoolValue())
+ if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
+ if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
+ return true;
+
+ return false;
+}
+
+static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ Type *VTy = V->getType();
+ Type *Ty = VTy->getPointerElementType();
+ if (!Ty->isSized())
+ return false;
+
+ APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
+ return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
+}
+
+/// Return true if Value is always a dereferenceable pointer.
+///
+/// Test if V is always a pointer to allocated and suitably aligned memory for
+/// a simple load or store.
+static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI,
+ SmallPtrSetImpl<const Value *> &Visited) {
+ // Note that it is not safe to speculate into a malloc'd region because
+ // malloc may return null.
+
+ // These are obviously ok.
+ if (isa<AllocaInst>(V)) return true;
+
+ // It's not always safe to follow a bitcast, for example:
+ // bitcast i8* (alloca i8) to i32*
+ // would result in a 4-byte load from a 1-byte alloca. However,
+ // if we're casting from a pointer from a type of larger size
+ // to a type of smaller size (or the same size), and the alignment
+ // is at least as large as for the resulting pointer type, then
+ // we can look through the bitcast.
+ if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
+ Type *STy = BC->getSrcTy()->getPointerElementType(),
+ *DTy = BC->getDestTy()->getPointerElementType();
+ if (STy->isSized() && DTy->isSized() &&
+ (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
+ (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
+ return isDereferenceablePointer(BC->getOperand(0), DL, CtxI,
+ DT, TLI, Visited);
+ }
+
+ // Global variables which can't collapse to null are ok.
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return !GV->hasExternalWeakLinkage();
+
+ // byval arguments are okay.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ if (A->hasByValAttr())
+ return true;
+
+ if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
+ return true;
+
+ // For GEPs, determine if the indexing lands within the allocated object.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ Type *VTy = GEP->getType();
+ Type *Ty = VTy->getPointerElementType();
+ const Value *Base = GEP->getPointerOperand();
+
+ // Conservatively require that the base pointer be fully dereferenceable.
+ if (!Visited.insert(Base).second)
+ return false;
+ if (!isDereferenceablePointer(Base, DL, CtxI,
+ DT, TLI, Visited))
+ return false;
+
+ APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
+ if (!GEP->accumulateConstantOffset(DL, Offset))
+ return false;
+
+ // Check if the load is within the bounds of the underlying object.
+ uint64_t LoadSize = DL.getTypeStoreSize(Ty);
+ Type *BaseType = Base->getType()->getPointerElementType();
+ return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType));
+ }
+
+ // For gc.relocate, look through relocations
+ if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
+ if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
+ GCRelocateOperands RelocateInst(I);
+ return isDereferenceablePointer(RelocateInst.getDerivedPtr(), DL, CtxI,
+ DT, TLI, Visited);
+ }
+
+ if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
+ return isDereferenceablePointer(ASC->getOperand(0), DL, CtxI,
+ DT, TLI, Visited);
+
+ // If we don't know, assume the worst.
+ return false;
+}
+
+bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ // When dereferenceability information is provided by a dereferenceable
+ // attribute, we know exactly how many bytes are dereferenceable. If we can
+ // determine the exact offset to the attributed variable, we can use that
+ // information here.
+ Type *VTy = V->getType();
+ Type *Ty = VTy->getPointerElementType();
+ if (Ty->isSized()) {
+ APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
+ const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
+
+ if (Offset.isNonNegative())
+ if (isDereferenceableFromAttribute(BV, Offset, Ty, DL,
+ CtxI, DT, TLI))
+ return true;
+ }
+
+ SmallPtrSet<const Value *, 32> Visited;
+ return ::isDereferenceablePointer(V, DL, CtxI, DT, TLI, Visited);
+}
+
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const DataLayout *TD) {
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
@@ -2567,20 +3055,20 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
case Instruction::SDiv:
case Instruction::SRem: {
// x / y is undefined if y == 0 or x == INT_MIN and y == -1
- const APInt *X, *Y;
- if (match(Inst->getOperand(1), m_APInt(Y))) {
- if (*Y != 0) {
- if (*Y == -1) {
- // The numerator can't be MinSignedValue if the denominator is -1.
- if (match(Inst->getOperand(0), m_APInt(X)))
- return !Y->isMinSignedValue();
- // The numerator *might* be MinSignedValue.
- return false;
- }
- // The denominator is not 0 or -1, it's safe to proceed.
- return true;
- }
- }
+ const APInt *Numerator, *Denominator;
+ if (!match(Inst->getOperand(1), m_APInt(Denominator)))
+ return false;
+ // We cannot hoist this division if the denominator is 0.
+ if (*Denominator == 0)
+ return false;
+ // It's safe to hoist if the denominator is not 0 or -1.
+ if (*Denominator != -1)
+ return true;
+ // At this point we know that the denominator is -1. It is safe to hoist as
+ // long we know that the numerator is not INT_MIN.
+ if (match(Inst->getOperand(0), m_APInt(Numerator)))
+ return !Numerator->isMinSignedValue();
+ // The numerator *might* be MinSignedValue.
return false;
}
case Instruction::Load: {
@@ -2589,7 +3077,8 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
// Speculative load may create a race that did not exist in the source.
LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
return false;
- return LI->getPointerOperand()->isDereferenceablePointer(TD);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return isDereferenceablePointer(LI->getPointerOperand(), DL, CtxI, DT, TLI);
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
@@ -2669,7 +3158,7 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
return LI->getMetadata(LLVMContext::MD_nonnull);
- if (ImmutableCallSite CS = V)
+ if (auto CS = ImmutableCallSite(V))
if (CS.isReturnNonNull())
return true;
@@ -2680,8 +3169,62 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
return false;
}
+static bool isKnownNonNullFromDominatingCondition(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ unsigned NumUsesExplored = 0;
+ for (auto U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+ // Consider only compare instructions uniquely controlling a branch
+ const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
+ if (!Cmp)
+ continue;
+
+ if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
+ continue;
+
+ for (auto *CmpU : Cmp->users()) {
+ const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
+ if (!BI)
+ continue;
+
+ assert(BI->isConditional() && "uses a comparison!");
+
+ BasicBlock *NonNullSuccessor = nullptr;
+ CmpInst::Predicate Pred;
+
+ if (match(const_cast<ICmpInst*>(Cmp),
+ m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ NonNullSuccessor = BI->getSuccessor(1);
+ else if (Pred == ICmpInst::ICMP_NE)
+ NonNullSuccessor = BI->getSuccessor(0);
+ }
+
+ if (NonNullSuccessor) {
+ BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
+ if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
+ const DominatorTree *DT, const TargetLibraryInfo *TLI) {
+ if (isKnownNonNull(V, TLI))
+ return true;
+
+ return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
+}
+
OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const DataLayout *DL,
+ const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
@@ -2731,7 +3274,7 @@ OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
}
OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const DataLayout *DL,
+ const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
@@ -2758,3 +3301,133 @@ OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
return OverflowResult::MayOverflow;
}
+
+static SelectPatternFlavor matchSelectPattern(ICmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS) {
+ LHS = CmpLHS;
+ RHS = CmpRHS;
+
+ // (icmp X, Y) ? X : Y
+ if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
+ switch (Pred) {
+ default: return SPF_UNKNOWN; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return SPF_UMAX;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return SPF_SMAX;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return SPF_UMIN;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return SPF_SMIN;
+ }
+ }
+
+ // (icmp X, Y) ? Y : X
+ if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
+ switch (Pred) {
+ default: return SPF_UNKNOWN; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return SPF_UMIN;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return SPF_SMIN;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return SPF_UMAX;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return SPF_SMAX;
+ }
+ }
+
+ if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
+ if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
+ (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
+
+ // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
+ // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
+ if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
+ return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
+ }
+
+ // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
+ // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
+ if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
+ return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
+ }
+ }
+
+ // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
+ if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
+ if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
+ (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
+ match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
+ LHS = TrueVal;
+ RHS = FalseVal;
+ return SPF_SMIN;
+ }
+ }
+ }
+
+ // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
+
+ return SPF_UNKNOWN;
+}
+
+static Constant *lookThroughCast(ICmpInst *CmpI, Value *V1, Value *V2,
+ Instruction::CastOps *CastOp) {
+ CastInst *CI = dyn_cast<CastInst>(V1);
+ Constant *C = dyn_cast<Constant>(V2);
+ if (!CI || !C)
+ return nullptr;
+ *CastOp = CI->getOpcode();
+
+ if (isa<SExtInst>(CI) && CmpI->isSigned()) {
+ Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
+ // This is only valid if the truncated value can be sign-extended
+ // back to the original value.
+ if (ConstantExpr::getSExt(T, C->getType()) == C)
+ return T;
+ return nullptr;
+ }
+ if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
+ return ConstantExpr::getTrunc(C, CI->getSrcTy());
+
+ if (isa<TruncInst>(CI))
+ return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
+
+ return nullptr;
+}
+
+SelectPatternFlavor llvm::matchSelectPattern(Value *V,
+ Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp) {
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI) return SPF_UNKNOWN;
+
+ ICmpInst *CmpI = dyn_cast<ICmpInst>(SI->getCondition());
+ if (!CmpI) return SPF_UNKNOWN;
+
+ ICmpInst::Predicate Pred = CmpI->getPredicate();
+ Value *CmpLHS = CmpI->getOperand(0);
+ Value *CmpRHS = CmpI->getOperand(1);
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+
+ // Bail out early.
+ if (CmpI->isEquality())
+ return SPF_UNKNOWN;
+
+ // Deal with type mismatches.
+ if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
+ if (Constant *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
+ return ::matchSelectPattern(Pred, CmpLHS, CmpRHS,
+ cast<CastInst>(TrueVal)->getOperand(0), C,
+ LHS, RHS);
+ if (Constant *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
+ return ::matchSelectPattern(Pred, CmpLHS, CmpRHS,
+ C, cast<CastInst>(FalseVal)->getOperand(0),
+ LHS, RHS);
+ }
+ return ::matchSelectPattern(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal,
+ LHS, RHS);
+}
OpenPOWER on IntegriCloud