summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ValueTracking.cpp4219
1 files changed, 4219 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp
new file mode 100644
index 0000000..314ec9c
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp
@@ -0,0 +1,4219 @@
+//===- ValueTracking.cpp - Walk computations to compute properties --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains routines that help analyze properties that chains of
+// computations have.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstring>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+const unsigned MaxDepth = 6;
+
+/// Enable an experimental feature to leverage information about dominating
+/// conditions to compute known bits. The individual options below control how
+/// hard we search. The defaults are chosen to be fairly aggressive. If you
+/// run into compile time problems when testing, scale them back and report
+/// your findings.
+static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
+ cl::Hidden, cl::init(false));
+
+// This is expensive, so we only do it for the top level query value.
+// (TODO: evaluate cost vs profit, consider higher thresholds)
+static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
+ cl::Hidden, cl::init(1));
+
+/// How many dominating blocks should be scanned looking for dominating
+/// conditions?
+static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
+ cl::Hidden,
+ cl::init(20));
+
+// Controls the number of uses of the value searched for possible
+// dominating comparisons.
+static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
+ cl::Hidden, cl::init(20));
+
+// If true, don't consider only compares whose only use is a branch.
+static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
+ cl::Hidden, cl::init(false));
+
+/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
+/// 0). For vector types, returns the element type's bitwidth.
+static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
+ if (unsigned BitWidth = Ty->getScalarSizeInBits())
+ return BitWidth;
+
+ return DL.getPointerTypeSizeInBits(Ty);
+}
+
+// Many of these functions have internal versions that take an assumption
+// exclusion set. This is because of the potential for mutual recursion to
+// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
+// classic case of this is assume(x = y), which will attempt to determine
+// bits in x from bits in y, which will attempt to determine bits in y from
+// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
+// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
+// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
+typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
+
+namespace {
+// Simplifying using an assume can only be done in a particular control-flow
+// context (the context instruction provides that context). If an assume and
+// the context instruction are not in the same block then the DT helps in
+// figuring out if we can use it.
+struct Query {
+ ExclInvsSet ExclInvs;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
+ const DominatorTree *DT;
+
+ Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr)
+ : AC(AC), CxtI(CxtI), DT(DT) {}
+
+ Query(const Query &Q, const Value *NewExcl)
+ : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
+ ExclInvs.insert(NewExcl);
+ }
+};
+} // end anonymous namespace
+
+// Given the provided Value and, potentially, a context instruction, return
+// the preferred context instruction (if any).
+static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
+
+void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ assert(LHS->getType() == RHS->getType() &&
+ "LHS and RHS should have the same type");
+ assert(LHS->getType()->isIntOrIntVectorTy() &&
+ "LHS and RHS should be integers");
+ IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
+ APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
+ APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
+ return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
+}
+
+static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
+
+void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q, const DataLayout &DL);
+
+bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT), DL);
+}
+
+static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool NonNegative, Negative;
+ ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
+ return NonNegative;
+}
+
+static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
+ const Query &Q);
+
+bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownNonEqual(V1, V2, DL, Query(AC,
+ safeCxtI(V1, safeCxtI(V2, CxtI)),
+ DT));
+}
+
+static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q);
+
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT) {
+ return ::MaskedValueIsZero(V, Mask, DL, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
+ unsigned Depth, const Query &Q);
+
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ if (!Add) {
+ if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
+ // We know that the top bits of C-X are clear if X contains less bits
+ // than C (i.e. no wrap-around can happen). For example, 20-X is
+ // positive if we can prove that X is >= 0 and < 16.
+ if (!CLHS->getValue().isNegative()) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
+ // NLZ can't be BitWidth with no sign bit
+ APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // If all of the MaskV bits are known to be zero, then we know the
+ // output top bits are zero, because we now know that the output is
+ // from [0-C].
+ if ((KnownZero2 & MaskV) == MaskV) {
+ unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
+ // Top bits known zero.
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
+ }
+ }
+ }
+ }
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ // If an initial sequence of bits in the result is not needed, the
+ // corresponding bits in the operands are not needed.
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // Carry in a 1 for a subtract, rather than a 0.
+ APInt CarryIn(BitWidth, 0);
+ if (!Add) {
+ // Sum = LHS + ~RHS + 1
+ std::swap(KnownZero2, KnownOne2);
+ CarryIn.setBit(0);
+ }
+
+ APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
+ APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
+
+ // Compute known bits of the carry.
+ APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
+ APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
+
+ // Compute set of known bits (where all three relevant bits are known).
+ APInt LHSKnown = LHSKnownZero | LHSKnownOne;
+ APInt RHSKnown = KnownZero2 | KnownOne2;
+ APInt CarryKnown = CarryKnownZero | CarryKnownOne;
+ APInt Known = LHSKnown & RHSKnown & CarryKnown;
+
+ assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
+ "known bits of sum differ");
+
+ // Compute known bits of the result.
+ KnownZero = ~PossibleSumOne & Known;
+ KnownOne = PossibleSumOne & Known;
+
+ // Are we still trying to solve for the sign bit?
+ if (!Known.isNegative()) {
+ if (NSW) {
+ // Adding two non-negative numbers, or subtracting a negative number from
+ // a non-negative one, can't wrap into negative.
+ if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
+ KnownZero |= APInt::getSignBit(BitWidth);
+ // Adding two negative numbers, or subtracting a non-negative number from
+ // a negative one, can't wrap into non-negative.
+ else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ }
+}
+
+static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (NSW) {
+ if (Op0 == Op1) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegativeOp1 = KnownZero.isNegative();
+ bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
+ bool isKnownNegativeOp1 = KnownOne.isNegative();
+ bool isKnownNegativeOp0 = KnownOne2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
+ (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
+ isKnownNonZero(Op0, DL, Depth, Q)) ||
+ (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
+ isKnownNonZero(Op1, DL, Depth, Q));
+ }
+ }
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conservative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ KnownOne.clearAllBits();
+ unsigned TrailZ = KnownZero.countTrailingOnes() +
+ KnownZero2.countTrailingOnes();
+ unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
+ KnownZero2.countLeadingOnes(),
+ BitWidth) - BitWidth;
+
+ TrailZ = std::min(TrailZ, BitWidth);
+ LeadZ = std::min(LeadZ, BitWidth);
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+ APInt::getHighBitsSet(BitWidth, LeadZ);
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !KnownOne.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ else if (isKnownNegative && !KnownZero.isNegative())
+ KnownOne.setBit(BitWidth - 1);
+}
+
+void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
+ APInt &KnownZero,
+ APInt &KnownOne) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ KnownZero.setAllBits();
+ KnownOne.setAllBits();
+
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+
+ // The first CommonPrefixBits of all values in Range are equal.
+ unsigned CommonPrefixBits =
+ (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
+
+ APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
+ KnownOne &= Range.getUnsignedMax() & Mask;
+ KnownZero &= ~Range.getUnsignedMax() & Mask;
+ }
+}
+
+static bool isEphemeralValueOf(Instruction *I, const Value *E) {
+ SmallVector<const Value *, 16> WorkSet(1, I);
+ SmallPtrSet<const Value *, 32> Visited;
+ SmallPtrSet<const Value *, 16> EphValues;
+
+ // The instruction defining an assumption's condition itself is always
+ // considered ephemeral to that assumption (even if it has other
+ // non-ephemeral users). See r246696's test case for an example.
+ if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
+ return true;
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ if (std::all_of(V->user_begin(), V->user_end(),
+ [&](const User *U) { return EphValues.count(U); })) {
+ if (V == E)
+ return true;
+
+ EphValues.insert(V);
+ if (const User *U = dyn_cast<User>(V))
+ for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
+ J != JE; ++J) {
+ if (isSafeToSpeculativelyExecute(*J))
+ WorkSet.push_back(*J);
+ }
+ }
+ }
+
+ return false;
+}
+
+// Is this an intrinsic that cannot be speculated but also cannot trap?
+static bool isAssumeLikeIntrinsic(const Instruction *I) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ default: break;
+ // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
+ case Intrinsic::assume:
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ return true;
+ }
+
+ return false;
+}
+
+static bool isValidAssumeForContext(Value *V, const Query &Q) {
+ Instruction *Inv = cast<Instruction>(V);
+
+ // There are two restrictions on the use of an assume:
+ // 1. The assume must dominate the context (or the control flow must
+ // reach the assume whenever it reaches the context).
+ // 2. The context must not be in the assume's set of ephemeral values
+ // (otherwise we will use the assume to prove that the condition
+ // feeding the assume is trivially true, thus causing the removal of
+ // the assume).
+
+ if (Q.DT) {
+ if (Q.DT->dominates(Inv, Q.CxtI)) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // The context comes first, but they're both in the same block. Make sure
+ // there is nothing in between that might interrupt the control flow.
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+ }
+
+ // When we don't have a DT, we do a limited search...
+ if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // Search forward from the assume until we reach the context (or the end
+ // of the block); the common case is that the assume will come first.
+ for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
+ IE = Inv->getParent()->end(); I != IE; ++I)
+ if (&*I == Q.CxtI)
+ return true;
+
+ // The context must come first...
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+}
+
+bool llvm::isValidAssumeForContext(const Instruction *I,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isValidAssumeForContext(const_cast<Instruction *>(I),
+ Query(nullptr, CxtI, DT));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
+ CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
+m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
+ BinaryOp_match<RHS, LHS, Instruction::And>>
+m_c_And(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_And(L, R), m_And(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
+ BinaryOp_match<RHS, LHS, Instruction::Or>>
+m_c_Or(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Or(L, R), m_Or(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
+ BinaryOp_match<RHS, LHS, Instruction::Xor>>
+m_c_Xor(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
+}
+
+/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
+/// true (at the context instruction.) This is mostly a utility function for
+/// the prototype dominating conditions reasoning below.
+static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+ // TODO: We could potentially be more aggressive here. This would be worth
+ // evaluating. If we can, explore commoning this code with the assume
+ // handling logic.
+ if (LHS != V && RHS != V)
+ return;
+
+ const unsigned BitWidth = KnownZero.getBitWidth();
+
+ switch (Cmp->getPredicate()) {
+ default:
+ // We know nothing from this condition
+ break;
+ // TODO: implement unsigned bound from below (known one bits)
+ // TODO: common condition check implementations with assumes
+ // TODO: implement other patterns from assume (e.g. V & B == A)
+ case ICmpInst::ICMP_SGT:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ }
+ break;
+ case ICmpInst::ICMP_EQ:
+ {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ if (LHS == V)
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ else if (RHS == V)
+ computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ else
+ llvm_unreachable("missing use?");
+ KnownZero |= KnownZeroTemp;
+ KnownOne |= KnownOneTemp;
+ }
+ break;
+ case ICmpInst::ICMP_ULE:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ // The known zero bits carry over
+ unsigned SignBits = KnownZeroTemp.countLeadingOnes();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ if (LHS == V) {
+ APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
+ computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
+ // Whatever high bits in rhs are zero are known to be zero (if rhs is a
+ // power of 2, then one more).
+ unsigned SignBits = KnownZeroTemp.countLeadingOnes();
+ if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
+ SignBits++;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
+ }
+ break;
+ };
+}
+
+/// Compute known bits in 'V' from conditions which are known to be true along
+/// all paths leading to the context instruction. In particular, look for
+/// cases where one branch of an interesting condition dominates the context
+/// instruction. This does not do general dataflow.
+/// NOTE: This code is EXPERIMENTAL and currently off by default.
+static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout &DL,
+ unsigned Depth,
+ const Query &Q) {
+ // Need both the dominator tree and the query location to do anything useful
+ if (!Q.DT || !Q.CxtI)
+ return;
+ Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
+ // The context instruction might be in a statically unreachable block. If
+ // so, asking dominator queries may yield suprising results. (e.g. the block
+ // may not have a dom tree node)
+ if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
+ return;
+
+ // Avoid useless work
+ if (auto VI = dyn_cast<Instruction>(V))
+ if (VI->getParent() == Cxt->getParent())
+ return;
+
+ // Note: We currently implement two options. It's not clear which of these
+ // will survive long term, we need data for that.
+ // Option 1 - Try walking the dominator tree looking for conditions which
+ // might apply. This works well for local conditions (loop guards, etc..),
+ // but not as well for things far from the context instruction (presuming a
+ // low max blocks explored). If we can set an high enough limit, this would
+ // be all we need.
+ // Option 2 - We restrict out search to those conditions which are uses of
+ // the value we're interested in. This is independent of dom structure,
+ // but is slightly less powerful without looking through lots of use chains.
+ // It does handle conditions far from the context instruction (e.g. early
+ // function exits on entry) really well though.
+
+ // Option 1 - Search the dom tree
+ unsigned NumBlocksExplored = 0;
+ BasicBlock *Current = Cxt->getParent();
+ while (true) {
+ // Stop searching if we've gone too far up the chain
+ if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
+ break;
+ NumBlocksExplored++;
+
+ if (!Q.DT->getNode(Current)->getIDom())
+ break;
+ Current = Q.DT->getNode(Current)->getIDom()->getBlock();
+ if (!Current)
+ // found function entry
+ break;
+
+ BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
+ if (!BI || BI->isUnconditional())
+ continue;
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cmp)
+ continue;
+
+ // We're looking for conditions that are guaranteed to hold at the context
+ // instruction. Finding a condition where one path dominates the context
+ // isn't enough because both the true and false cases could merge before
+ // the context instruction we're actually interested in. Instead, we need
+ // to ensure that the taken *edge* dominates the context instruction. We
+ // know that the edge must be reachable since we started from a reachable
+ // block.
+ BasicBlock *BB0 = BI->getSuccessor(0);
+ BasicBlockEdge Edge(BI->getParent(), BB0);
+ if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
+ continue;
+
+ computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
+ Q);
+ }
+
+ // Option 2 - Search the other uses of V
+ unsigned NumUsesExplored = 0;
+ for (auto U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+ // Consider only compare instructions uniquely controlling a branch
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
+ if (!Cmp)
+ continue;
+
+ if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
+ continue;
+
+ for (auto *CmpU : Cmp->users()) {
+ BranchInst *BI = dyn_cast<BranchInst>(CmpU);
+ if (!BI || BI->isUnconditional())
+ continue;
+ // We're looking for conditions that are guaranteed to hold at the
+ // context instruction. Finding a condition where one path dominates
+ // the context isn't enough because both the true and false cases could
+ // merge before the context instruction we're actually interested in.
+ // Instead, we need to ensure that the taken *edge* dominates the context
+ // instruction.
+ BasicBlock *BB0 = BI->getSuccessor(0);
+ BasicBlockEdge Edge(BI->getParent(), BB0);
+ if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
+ continue;
+
+ computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
+ Q);
+ }
+ }
+}
+
+static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
+ APInt &KnownOne, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return;
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ for (auto &AssumeVH : Q.AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ CallInst *I = cast<CallInst>(AssumeVH);
+ assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+ if (Q.ExclInvs.count(I))
+ continue;
+
+ // Warning: This loop can end up being somewhat performance sensetive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
+ "must be an assume intrinsic");
+
+ Value *Arg = I->getArgOperand(0);
+
+ if (Arg == V && isValidAssumeForContext(I, Q)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ KnownZero.clearAllBits();
+ KnownOne.setAllBits();
+ return;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth == MaxDepth)
+ continue;
+
+ Value *A, *B;
+ auto m_V = m_CombineOr(m_Specific(V),
+ m_CombineOr(m_PtrToInt(m_Specific(V)),
+ m_BitCast(m_Specific(V))));
+
+ CmpInst::Predicate Pred;
+ ConstantInt *C;
+ // assume(v = a)
+ if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ KnownZero |= RHSKnownZero;
+ KnownOne |= RHSKnownOne;
+ // assume(v & b = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & MaskKnownOne;
+ KnownOne |= RHSKnownOne & MaskKnownOne;
+ // assume(~(v & b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & MaskKnownOne;
+ KnownOne |= RHSKnownZero & MaskKnownOne;
+ // assume(v | b = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ // assume(~(v | b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ // assume(v ^ b = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V. For those bits in B that are known to be one,
+ // we can propagate inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ KnownZero |= RHSKnownOne & BKnownOne;
+ KnownOne |= RHSKnownZero & BKnownOne;
+ // assume(~(v ^ b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V. For those bits in B that are
+ // known to be one, we can propagate known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ KnownZero |= RHSKnownZero & BKnownOne;
+ KnownOne |= RHSKnownOne & BKnownOne;
+ // assume(v << c = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
+ // assume(~(v << c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
+ // assume(v >> c = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero << C->getZExtValue();
+ KnownOne |= RHSKnownOne << C->getZExtValue();
+ // assume(~(v >> c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
+ m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C)))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne << C->getZExtValue();
+ KnownOne |= RHSKnownZero << C->getZExtValue();
+ // assume(v >=_s c) where c is non-negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v >_s c) where c is at least -1.
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_s c) where c is negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <_s c) where c is non-positive
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero.
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ // assume(v <_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero (if c is a power
+ // of 2, then one more).
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
+ else
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ }
+ }
+}
+
+// Compute known bits from a shift operator, including those with a
+// non-constant shift amount. KnownZero and KnownOne are the outputs of this
+// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
+// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
+// functors that, given the known-zero or known-one bits respectively, and a
+// shift amount, compute the implied known-zero or known-one bits of the shift
+// operator's result respectively for that shift amount. The results from calling
+// KZF and KOF are conservatively combined for all permitted shift amounts.
+template <typename KZFunctor, typename KOFunctor>
+static void computeKnownBitsFromShiftOperator(Operator *I,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout &DL, unsigned Depth, const Query &Q,
+ KZFunctor KZF, KOFunctor KOF) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
+
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ KnownZero = KZF(KnownZero, ShiftAmt);
+ KnownOne = KOF(KnownOne, ShiftAmt);
+ return;
+ }
+
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+
+ // Note: We cannot use KnownZero.getLimitedValue() here, because if
+ // BitWidth > 64 and any upper bits are known, we'll end up returning the
+ // limit value (which implies all bits are known).
+ uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
+ uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
+
+ // It would be more-clearly correct to use the two temporaries for this
+ // calculation. Reusing the APInts here to prevent unnecessary allocations.
+ KnownZero.clearAllBits(), KnownOne.clearAllBits();
+
+ // If we know the shifter operand is nonzero, we can sometimes infer more
+ // known bits. However this is expensive to compute, so be lazy about it and
+ // only compute it when absolutely necessary.
+ Optional<bool> ShifterOperandIsNonZero;
+
+ // Early exit if we can't constrain any well-defined shift amount.
+ if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
+ ShifterOperandIsNonZero =
+ isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
+ if (!*ShifterOperandIsNonZero)
+ return;
+ }
+
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
+ // Combine the shifted known input bits only for those shift amounts
+ // compatible with its known constraints.
+ if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
+ continue;
+ if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
+ continue;
+ // If we know the shifter is nonzero, we may be able to infer more known
+ // bits. This check is sunk down as far as possible to avoid the expensive
+ // call to isKnownNonZero if the cheaper checks above fail.
+ if (ShiftAmt == 0) {
+ if (!ShifterOperandIsNonZero.hasValue())
+ ShifterOperandIsNonZero =
+ isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
+ if (*ShifterOperandIsNonZero)
+ continue;
+ }
+
+ KnownZero &= KZF(KnownZero2, ShiftAmt);
+ KnownOne &= KOF(KnownOne2, ShiftAmt);
+ }
+
+ // If there are no compatible shift amounts, then we've proven that the shift
+ // amount must be >= the BitWidth, and the result is undefined. We could
+ // return anything we'd like, but we need to make sure the sets of known bits
+ // stay disjoint (it should be better for some other code to actually
+ // propagate the undef than to pick a value here using known bits).
+ if ((KnownZero & KnownOne) != 0)
+ KnownZero.clearAllBits(), KnownOne.clearAllBits();
+}
+
+static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
+ APInt &KnownOne, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
+ break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+
+ // and(x, add (x, -1)) is a common idiom that always clears the low bit;
+ // here we handle the more general case of adding any odd number by
+ // matching the form add(x, add(x, y)) where y is odd.
+ // TODO: This could be generalized to clearing any bit set in y where the
+ // following bit is known to be unset in y.
+ Value *Y = nullptr;
+ if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
+ m_Value(Y))) ||
+ match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
+ m_Value(Y)))) {
+ APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
+ computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q);
+ if (KnownOne3.countTrailingOnes() > 0)
+ KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
+ }
+ break;
+ }
+ case Instruction::Or: {
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ break;
+ }
+ case Instruction::Xor: {
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+ KnownZero = KnownZeroOut;
+ break;
+ }
+ case Instruction::Mul: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ break;
+ }
+ case Instruction::UDiv: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ unsigned LeadZ = KnownZero2.countLeadingOnes();
+
+ KnownOne2.clearAllBits();
+ KnownZero2.clearAllBits();
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+ if (RHSUnknownLeadingOnes != BitWidth)
+ LeadZ = std::min(BitWidth,
+ LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
+ break;
+ }
+ case Instruction::Select:
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ break; // Can't work with floating point.
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::AddrSpaceCast: // Pointers could be different sizes.
+ // FALL THROUGH and handle them the same as zext/trunc.
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
+ // Note that we handle pointer operands here because of inttoptr/ptrtoint
+ // which fall through here.
+ SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
+
+ assert(SrcBitWidth && "SrcBitWidth can't be zero");
+ KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
+ KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ KnownZero = KnownZero.zextOrTrunc(BitWidth);
+ KnownOne = KnownOne.zextOrTrunc(BitWidth);
+ // Any top bits are known to be zero.
+ if (BitWidth > SrcBitWidth)
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ break;
+ }
+ case Instruction::BitCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
+ SrcTy->isFloatingPointTy()) &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !I->getType()->isVectorTy()) {
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ break;
+ }
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ KnownZero = KnownZero.trunc(SrcBitWidth);
+ KnownOne = KnownOne.trunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
+ KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ break;
+ }
+ case Instruction::Shl: {
+ // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
+ auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
+ return (KnownZero << ShiftAmt) |
+ APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
+ };
+
+ auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
+ return KnownOne << ShiftAmt;
+ };
+
+ computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, DL, Depth, Q,
+ KZF, KOF);
+ break;
+ }
+ case Instruction::LShr: {
+ // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
+ return APIntOps::lshr(KnownZero, ShiftAmt) |
+ // High bits known zero.
+ APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ };
+
+ auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
+ return APIntOps::lshr(KnownOne, ShiftAmt);
+ };
+
+ computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, DL, Depth, Q,
+ KZF, KOF);
+ break;
+ }
+ case Instruction::AShr: {
+ // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
+ return APIntOps::ashr(KnownZero, ShiftAmt);
+ };
+
+ auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
+ return APIntOps::ashr(KnownOne, ShiftAmt);
+ };
+
+ computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, DL, Depth, Q,
+ KZF, KOF);
+ break;
+ }
+ case Instruction::Sub: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
+ break;
+ }
+ case Instruction::Add: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
+ break;
+ }
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
+ Q);
+
+ // The low bits of the first operand are unchanged by the srem.
+ KnownZero = KnownZero2 & LowBits;
+ KnownOne = KnownOne2 & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
+ KnownZero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
+ KnownOne |= ~LowBits;
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ }
+ }
+
+ // The sign bit is the LHS's sign bit, except when the result of the
+ // remainder is zero.
+ if (KnownZero.isNonNegative()) {
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
+ Depth + 1, Q);
+ // If it's known zero, our sign bit is also zero.
+ if (LHSKnownZero.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ }
+
+ break;
+ case Instruction::URem: {
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
+ KnownZero |= ~LowBits;
+ KnownOne &= LowBits;
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
+ KnownZero2.countLeadingOnes());
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
+ break;
+ }
+
+ case Instruction::Alloca: {
+ AllocaInst *AI = cast<AllocaInst>(I);
+ unsigned Align = AI->getAlignment();
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(AI->getType()->getElementType());
+
+ if (Align > 0)
+ KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ // Analyze all of the subscripts of this getelementptr instruction
+ // to determine if we can prove known low zero bits.
+ APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
+ Depth + 1, Q);
+ unsigned TrailZ = LocalKnownZero.countTrailingOnes();
+
+ gep_type_iterator GTI = gep_type_begin(I);
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
+ Value *Index = I->getOperand(i);
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ // Handle struct member offset arithmetic.
+
+ // Handle case when index is vector zeroinitializer
+ Constant *CIndex = cast<Constant>(Index);
+ if (CIndex->isZeroValue())
+ continue;
+
+ if (CIndex->getType()->isVectorTy())
+ Index = CIndex->getSplatValue();
+
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ uint64_t Offset = SL->getElementOffset(Idx);
+ TrailZ = std::min<unsigned>(TrailZ,
+ countTrailingZeros(Offset));
+ } else {
+ // Handle array index arithmetic.
+ Type *IndexedTy = GTI.getIndexedType();
+ if (!IndexedTy->isSized()) {
+ TrailZ = 0;
+ break;
+ }
+ unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
+ uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
+ LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
+ Q);
+ TrailZ = std::min(TrailZ,
+ unsigned(countTrailingZeros(TypeSize) +
+ LocalKnownZero.countTrailingOnes()));
+ }
+ }
+
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *P = cast<PHINode>(I);
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ if (P->getNumIncomingValues() == 2) {
+ for (unsigned i = 0; i != 2; ++i) {
+ Value *L = P->getIncomingValue(i);
+ Value *R = P->getIncomingValue(!i);
+ Operator *LU = dyn_cast<Operator>(L);
+ if (!LU)
+ continue;
+ unsigned Opcode = LU->getOpcode();
+ // Check for operations that have the property that if
+ // both their operands have low zero bits, the result
+ // will have low zero bits.
+ if (Opcode == Instruction::Add ||
+ Opcode == Instruction::Sub ||
+ Opcode == Instruction::And ||
+ Opcode == Instruction::Or ||
+ Opcode == Instruction::Mul) {
+ Value *LL = LU->getOperand(0);
+ Value *LR = LU->getOperand(1);
+ // Find a recurrence.
+ if (LL == I)
+ L = LR;
+ else if (LR == I)
+ L = LL;
+ else
+ break;
+ // Ok, we have a PHI of the form L op= R. Check for low
+ // zero bits.
+ computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+
+ // We need to take the minimum number of known bits
+ APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
+ computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
+
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ std::min(KnownZero2.countTrailingOnes(),
+ KnownZero3.countTrailingOnes()));
+ break;
+ }
+ }
+ }
+
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (P->getNumIncomingValues() == 0)
+ break;
+
+ // Otherwise take the unions of the known bit sets of the operands,
+ // taking conservative care to avoid excessive recursion.
+ if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
+ // Skip if every incoming value references to ourself.
+ if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
+ break;
+
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (Value *IncValue : P->incoming_values()) {
+ // Skip direct self references.
+ if (IncValue == P) continue;
+
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ // Recurse, but cap the recursion to one level, because we don't
+ // want to waste time spinning around in loops.
+ computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
+ MaxDepth - 1, Q);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ // If all bits have been ruled out, there's no need to check
+ // more operands.
+ if (!KnownZero && !KnownOne)
+ break;
+ }
+ }
+ break;
+ }
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
+ // If a range metadata is attached to this IntrinsicInst, intersect the
+ // explicit range specified by the metadata and the implicit range of
+ // the intrinsic.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap:
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
+ Depth + 1, Q);
+ KnownZero |= KnownZero2.byteSwap();
+ KnownOne |= KnownOne2.byteSwap();
+ break;
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
+ // If this call is undefined for 0, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ LowBits -= 1;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ break;
+ }
+ case Intrinsic::ctpop: {
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
+ Depth + 1, Q);
+ // We can bound the space the count needs. Also, bits known to be zero
+ // can't contribute to the population.
+ unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
+ unsigned LeadingZeros =
+ APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
+ assert(LeadingZeros <= BitWidth);
+ KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
+ KnownOne &= ~KnownZero;
+ // TODO: we could bound KnownOne using the lower bound on the number
+ // of bits which might be set provided by popcnt KnownOne2.
+ break;
+ }
+ case Intrinsic::fabs: {
+ Type *Ty = II->getType();
+ APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
+ KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
+ break;
+ }
+ case Intrinsic::x86_sse42_crc32_64_64:
+ KnownZero |= APInt::getHighBitsSet(64, 32);
+ break;
+ }
+ }
+ break;
+ case Instruction::ExtractValue:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
+ ExtractValueInst *EVI = cast<ExtractValueInst>(I);
+ if (EVI->getNumIndices() != 1) break;
+ if (EVI->getIndices()[0] == 0) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
+ break;
+ }
+ }
+ }
+ }
+}
+
+static unsigned getAlignment(const Value *V, const DataLayout &DL) {
+ unsigned Align = 0;
+ if (auto *GO = dyn_cast<GlobalObject>(V)) {
+ Align = GO->getAlignment();
+ if (Align == 0) {
+ if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
+ Type *ObjectType = GVar->getType()->getElementType();
+ if (ObjectType->isSized()) {
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (GVar->isStrongDefinitionForLinker())
+ Align = DL.getPreferredAlignment(GVar);
+ else
+ Align = DL.getABITypeAlignment(ObjectType);
+ }
+ }
+ }
+ } else if (const Argument *A = dyn_cast<Argument>(V)) {
+ Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
+
+ if (!Align && A->hasStructRetAttr()) {
+ // An sret parameter has at least the ABI alignment of the return type.
+ Type *EltTy = cast<PointerType>(A->getType())->getElementType();
+ if (EltTy->isSized())
+ Align = DL.getABITypeAlignment(EltTy);
+ }
+ } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ Align = AI->getAlignment();
+ else if (auto CS = ImmutableCallSite(V))
+ Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
+ else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ Align = CI->getLimitedValue();
+ }
+
+ return Align;
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
+///
+/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
+/// we cannot optimize based on the assumption that it is zero without changing
+/// it to be an explicit zero. If we don't change it to zero, other code could
+/// optimized based on the contradictory assumption that it is non-zero.
+/// Because instcombine aggressively folds operations with undef args anyway,
+/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ assert((V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->isFPOrFPVectorTy() ||
+ V->getType()->getScalarType()->isPointerTy()) &&
+ "Not integer, floating point, or pointer type!");
+ assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ (!V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->getScalarSizeInBits() == BitWidth) &&
+ KnownZero.getBitWidth() == BitWidth &&
+ KnownOne.getBitWidth() == BitWidth &&
+ "V, KnownOne and KnownZero should have same BitWidth");
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ // We know all of the bits for a constant!
+ KnownOne = CI->getValue();
+ KnownZero = ~KnownOne;
+ return;
+ }
+ // Null and aggregate-zero are all-zeros.
+ if (isa<ConstantPointerNull>(V) ||
+ isa<ConstantAggregateZero>(V)) {
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ return;
+ }
+ // Handle a constant vector by taking the intersection of the known bits of
+ // each element. There is no real need to handle ConstantVector here, because
+ // we don't handle undef in any particularly useful way.
+ if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
+ // We know that CDS must be a vector of integers. Take the intersection of
+ // each element.
+ KnownZero.setAllBits(); KnownOne.setAllBits();
+ APInt Elt(KnownZero.getBitWidth(), 0);
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ Elt = CDS->getElementAsInteger(i);
+ KnownZero &= ~Elt;
+ KnownOne &= Elt;
+ }
+ return;
+ }
+
+ // Start out not knowing anything.
+ KnownZero.clearAllBits(); KnownOne.clearAllBits();
+
+ // Limit search depth.
+ // All recursive calls that increase depth must come after this.
+ if (Depth == MaxDepth)
+ return;
+
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden())
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
+ return;
+ }
+
+ if (Operator *I = dyn_cast<Operator>(V))
+ computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
+
+ // Aligned pointers have trailing zeros - refine KnownZero set
+ if (V->getType()->isPointerTy()) {
+ unsigned Align = getAlignment(V, DL);
+ if (Align)
+ KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
+ }
+
+ // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
+ // strictly refines KnownZero and KnownOne. Therefore, we run them after
+ // computeKnownBitsFromOperator.
+
+ // Check whether a nearby assume intrinsic can determine some known bits.
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
+
+ // Check whether there's a dominating condition which implies something about
+ // this value at the given context.
+ if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
+ computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
+ Q);
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+}
+
+/// Determine whether the sign bit is known to be zero or one.
+/// Convenience wrapper around computeKnownBits.
+void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
+ unsigned BitWidth = getBitWidth(V->getType(), DL);
+ if (!BitWidth) {
+ KnownZero = false;
+ KnownOne = false;
+ return;
+ }
+ APInt ZeroBits(BitWidth, 0);
+ APInt OneBits(BitWidth, 0);
+ computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
+ KnownOne = OneBits[BitWidth - 1];
+ KnownZero = ZeroBits[BitWidth - 1];
+}
+
+/// Return true if the given value is known to have exactly one
+/// bit set when defined. For vectors return true if every element is known to
+/// be a power of two when defined. Supports values with integer or pointer
+/// types and vectors of integers.
+bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q, const DataLayout &DL) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return OrZero;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return CI->getValue().isPowerOf2();
+ // TODO: Handle vector constants.
+ }
+
+ // 1 << X is clearly a power of two if the one is not shifted off the end. If
+ // it is shifted off the end then the result is undefined.
+ if (match(V, m_Shl(m_One(), m_Value())))
+ return true;
+
+ // (signbit) >>l X is clearly a power of two if the one is not shifted off the
+ // bottom. If it is shifted off the bottom then the result is undefined.
+ if (match(V, m_LShr(m_SignBit(), m_Value())))
+ return true;
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return false;
+
+ Value *X = nullptr, *Y = nullptr;
+ // A shift of a power of two is a power of two or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_Shr(m_Value(X), m_Value()))))
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
+
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(V))
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
+
+ // Adding a power-of-two or zero to the same power-of-two or zero yields
+ // either the original power-of-two, a larger power-of-two or zero.
+ if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
+ if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
+ if (match(X, m_And(m_Specific(Y), m_Value())) ||
+ match(X, m_And(m_Value(), m_Specific(Y))))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
+ return true;
+ if (match(Y, m_And(m_Specific(X), m_Value())) ||
+ match(Y, m_And(m_Value(), m_Specific(X))))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
+ return true;
+
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
+
+ APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
+ // If i8 V is a power of two or zero:
+ // ZeroBits: 1 1 1 0 1 1 1 1
+ // ~ZeroBits: 0 0 0 1 0 0 0 0
+ if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
+ // If OrZero isn't set, we cannot give back a zero result.
+ // Make sure either the LHS or RHS has a bit set.
+ if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
+ return true;
+ }
+ }
+
+ // An exact divide or right shift can only shift off zero bits, so the result
+ // is a power of two only if the first operand is a power of two and not
+ // copying a sign bit (sdiv int_min, 2).
+ if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
+ match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
+ return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
+ Depth, Q, DL);
+ }
+
+ return false;
+}
+
+/// \brief Test whether a GEP's result is known to be non-null.
+///
+/// Uses properties inherent in a GEP to try to determine whether it is known
+/// to be non-null.
+///
+/// Currently this routine does not support vector GEPs.
+static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
+ return false;
+
+ // FIXME: Support vector-GEPs.
+ assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
+
+ // If the base pointer is non-null, we cannot walk to a null address with an
+ // inbounds GEP in address space zero.
+ if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
+ return true;
+
+ // Walk the GEP operands and see if any operand introduces a non-zero offset.
+ // If so, then the GEP cannot produce a null pointer, as doing so would
+ // inherently violate the inbounds contract within address space zero.
+ for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ // Struct types are easy -- they must always be indexed by a constant.
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
+ if (ElementOffset > 0)
+ return true;
+ continue;
+ }
+
+ // If we have a zero-sized type, the index doesn't matter. Keep looping.
+ if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
+ continue;
+
+ // Fast path the constant operand case both for efficiency and so we don't
+ // increment Depth when just zipping down an all-constant GEP.
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
+ if (!OpC->isZero())
+ return true;
+ continue;
+ }
+
+ // We post-increment Depth here because while isKnownNonZero increments it
+ // as well, when we pop back up that increment won't persist. We don't want
+ // to recurse 10k times just because we have 10k GEP operands. We don't
+ // bail completely out because we want to handle constant GEPs regardless
+ // of depth.
+ if (Depth++ >= MaxDepth)
+ continue;
+
+ if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
+ return true;
+ }
+
+ return false;
+}
+
+/// Does the 'Range' metadata (which must be a valid MD_range operand list)
+/// ensure that the value it's attached to is never Value? 'RangeType' is
+/// is the type of the value described by the range.
+static bool rangeMetadataExcludesValue(MDNode* Ranges,
+ const APInt& Value) {
+ const unsigned NumRanges = Ranges->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.contains(Value))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is known to be non-zero when defined.
+/// For vectors return true if every element is known to be non-zero when
+/// defined. Supports values with integer or pointer type and vectors of
+/// integers.
+bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return false;
+ if (isa<ConstantInt>(C))
+ // Must be non-zero due to null test above.
+ return true;
+ // TODO: Handle vectors
+ return false;
+ }
+
+ if (Instruction* I = dyn_cast<Instruction>(V)) {
+ if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
+ // If the possible ranges don't contain zero, then the value is
+ // definitely non-zero.
+ if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
+ const APInt ZeroValue(Ty->getBitWidth(), 0);
+ if (rangeMetadataExcludesValue(Ranges, ZeroValue))
+ return true;
+ }
+ }
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ >= MaxDepth)
+ return false;
+
+ // Check for pointer simplifications.
+ if (V->getType()->isPointerTy()) {
+ if (isKnownNonNull(V))
+ return true;
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ if (isGEPKnownNonNull(GEP, DL, Depth, Q))
+ return true;
+ }
+
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
+
+ // X | Y != 0 if X != 0 or Y != 0.
+ Value *X = nullptr, *Y = nullptr;
+ if (match(V, m_Or(m_Value(X), m_Value(Y))))
+ return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
+
+ // ext X != 0 if X != 0.
+ if (isa<SExtInst>(V) || isa<ZExtInst>(V))
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
+
+ // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
+ // if the lowest bit is shifted off the end.
+ if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
+ // shl nuw can't remove any non-zero bits.
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ if (BO->hasNoUnsignedWrap())
+ return isKnownNonZero(X, DL, Depth, Q);
+
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
+ if (KnownOne[0])
+ return true;
+ }
+ // shr X, Y != 0 if X is negative. Note that the value of the shift is not
+ // defined if the sign bit is shifted off the end.
+ else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
+ // shr exact can only shift out zero bits.
+ PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
+ if (BO->isExact())
+ return isKnownNonZero(X, DL, Depth, Q);
+
+ bool XKnownNonNegative, XKnownNegative;
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
+ if (XKnownNegative)
+ return true;
+
+ // If the shifter operand is a constant, and all of the bits shifted
+ // out are known to be zero, and X is known non-zero then at least one
+ // non-zero bit must remain.
+ if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
+
+ auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
+ // Is there a known one in the portion not shifted out?
+ if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
+ return true;
+ // Are all the bits to be shifted out known zero?
+ if (KnownZero.countTrailingOnes() >= ShiftVal)
+ return isKnownNonZero(X, DL, Depth, Q);
+ }
+ }
+ // div exact can only produce a zero if the dividend is zero.
+ else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
+ return isKnownNonZero(X, DL, Depth, Q);
+ }
+ // X + Y.
+ else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ bool XKnownNonNegative, XKnownNegative;
+ bool YKnownNonNegative, YKnownNegative;
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
+
+ // If X and Y are both non-negative (as signed values) then their sum is not
+ // zero unless both X and Y are zero.
+ if (XKnownNonNegative && YKnownNonNegative)
+ if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
+ return true;
+
+ // If X and Y are both negative (as signed values) then their sum is not
+ // zero unless both X and Y equal INT_MIN.
+ if (BitWidth && XKnownNegative && YKnownNegative) {
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ APInt Mask = APInt::getSignedMaxValue(BitWidth);
+ // The sign bit of X is set. If some other bit is set then X is not equal
+ // to INT_MIN.
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
+ if ((KnownOne & Mask) != 0)
+ return true;
+ // The sign bit of Y is set. If some other bit is set then Y is not equal
+ // to INT_MIN.
+ computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
+ if ((KnownOne & Mask) != 0)
+ return true;
+ }
+
+ // The sum of a non-negative number and a power of two is not zero.
+ if (XKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
+ return true;
+ if (YKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
+ return true;
+ }
+ // X * Y.
+ else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
+ isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
+ return true;
+ }
+ // (C ? X : Y) != 0 if X != 0 and Y != 0.
+ else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
+ return true;
+ }
+ // PHI
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ // Try and detect a recurrence that monotonically increases from a
+ // starting value, as these are common as induction variables.
+ if (PN->getNumIncomingValues() == 2) {
+ Value *Start = PN->getIncomingValue(0);
+ Value *Induction = PN->getIncomingValue(1);
+ if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
+ std::swap(Start, Induction);
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
+ if (!C->isZero() && !C->isNegative()) {
+ ConstantInt *X;
+ if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
+ match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
+ !X->isNegative())
+ return true;
+ }
+ }
+ }
+ }
+
+ if (!BitWidth) return false;
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
+ return KnownOne != 0;
+}
+
+/// Return true if V2 == V1 + X, where X is known non-zero.
+static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
+ const Query &Q) {
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
+ if (!BO || BO->getOpcode() != Instruction::Add)
+ return false;
+ Value *Op = nullptr;
+ if (V2 == BO->getOperand(0))
+ Op = BO->getOperand(1);
+ else if (V2 == BO->getOperand(1))
+ Op = BO->getOperand(0);
+ else
+ return false;
+ return isKnownNonZero(Op, DL, 0, Q);
+}
+
+/// Return true if it is known that V1 != V2.
+static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
+ const Query &Q) {
+ if (V1->getType()->isVectorTy() || V1 == V2)
+ return false;
+ if (V1->getType() != V2->getType())
+ // We can't look through casts yet.
+ return false;
+ if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
+ return true;
+
+ if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
+ // Are any known bits in V1 contradictory to known bits in V2? If V1
+ // has a known zero where V2 has a known one, they must not be equal.
+ auto BitWidth = Ty->getBitWidth();
+ APInt KnownZero1(BitWidth, 0);
+ APInt KnownOne1(BitWidth, 0);
+ computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
+ APInt KnownZero2(BitWidth, 0);
+ APInt KnownOne2(BitWidth, 0);
+ computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
+
+ auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
+ if (OppositeBits.getBoolValue())
+ return true;
+ }
+ return false;
+}
+
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
+ APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
+ return (KnownZero & Mask) == Mask;
+}
+
+
+
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign bit
+/// (itself), but other cases can give us information. For example, immediately
+/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
+/// other, so we return 3.
+///
+/// 'Op' must have a scalar integer type.
+///
+unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ // Note that ConstantInt is handled by the general computeKnownBits case
+ // below.
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ Operator *U = dyn_cast<Operator>(V);
+ switch (Operator::getOpcode(V)) {
+ default: break;
+ case Instruction::SExt:
+ Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
+ return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
+
+ case Instruction::SDiv: {
+ const APInt *Denominator;
+ // sdiv X, C -> adds log(C) sign bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits.
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+
+ // Add floor(log(C)) bits to the numerator bits.
+ return std::min(TyBits, NumBits + Denominator->logBase2());
+ }
+ break;
+ }
+
+ case Instruction::SRem: {
+ const APInt *Denominator;
+ // srem X, C -> we know that the result is within [-C+1,C) when C is a
+ // positive constant. This let us put a lower bound on the number of sign
+ // bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits. SRem by a positive constant
+ // can't lower the number of sign bits.
+ unsigned NumrBits =
+ ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+
+ // Calculate the leading sign bit constraints by examining the
+ // denominator. Given that the denominator is positive, there are two
+ // cases:
+ //
+ // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
+ // (1 << ceilLogBase2(C)).
+ //
+ // 2. the numerator is negative. Then the result range is (-C,0] and
+ // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
+ //
+ // Thus a lower bound on the number of sign bits is `TyBits -
+ // ceilLogBase2(C)`.
+
+ unsigned ResBits = TyBits - Denominator->ceilLogBase2();
+ return std::max(NumrBits, ResBits);
+ }
+ break;
+ }
+
+ case Instruction::AShr: {
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ // ashr X, C -> adds C sign bits. Vectors too.
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ Tmp += ShAmt->getZExtValue();
+ if (Tmp > TyBits) Tmp = TyBits;
+ }
+ return Tmp;
+ }
+ case Instruction::Shl: {
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp2 = ShAmt->getZExtValue();
+ if (Tmp2 >= TyBits || // Bad shift.
+ Tmp2 >= Tmp) break; // Shifted all sign bits out.
+ return Tmp - Tmp2;
+ }
+ break;
+ }
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // computeKnownBits, and pick whichever answer is better.
+ }
+ break;
+
+ case Instruction::Select:
+ Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
+ return std::min(Tmp, Tmp2);
+
+ case Instruction::Add:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ if (Tmp == 1) return 1; // Early out.
+
+ // Special case decrementing a value (ADD X, -1):
+ if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
+ return TyBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (KnownZero.isNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ if (Tmp2 == 1) return 1;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::Sub:
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ if (Tmp2 == 1) return 1;
+
+ // Handle NEG.
+ if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
+ if (CLHS->isNullValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
+ return TyBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (KnownZero.isNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ if (Tmp == 1) return 1; // Early out.
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(U);
+ unsigned NumIncomingValues = PN->getNumIncomingValues();
+ // Don't analyze large in-degree PHIs.
+ if (NumIncomingValues > 4) break;
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (NumIncomingValues == 0) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
+ for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ Tmp = std::min(
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
+ }
+ return Tmp;
+ }
+
+ case Instruction::Trunc:
+ // FIXME: it's tricky to do anything useful for this, but it is an important
+ // case for targets like X86.
+ break;
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask;
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
+
+ if (KnownZero.isNegative()) { // sign bit is 0
+ Mask = KnownZero;
+ } else if (KnownOne.isNegative()) { // sign bit is 1;
+ Mask = KnownOne;
+ } else {
+ // Nothing known.
+ return FirstAnswer;
+ }
+
+ // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
+ // the number of identical bits in the top of the input value.
+ Mask = ~Mask;
+ Mask <<= Mask.getBitWidth()-TyBits;
+ // Return # leading zeros. We use 'min' here in case Val was zero before
+ // shifting. We don't want to return '64' as for an i32 "0".
+ return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
+}
+
+/// This function computes the integer multiple of Base that equals V.
+/// If successful, it returns true and returns the multiple in
+/// Multiple. If unsuccessful, it returns false. It looks
+/// through SExt instructions only if LookThroughSExt is true.
+bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
+ bool LookThroughSExt, unsigned Depth) {
+ const unsigned MaxDepth = 6;
+
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
+
+ Type *T = V->getType();
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+
+ if (Base == 0)
+ return false;
+
+ if (Base == 1) {
+ Multiple = V;
+ return true;
+ }
+
+ ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
+ Constant *BaseVal = ConstantInt::get(T, Base);
+ if (CO && CO == BaseVal) {
+ // Multiple is 1.
+ Multiple = ConstantInt::get(T, 1);
+ return true;
+ }
+
+ if (CI && CI->getZExtValue() % Base == 0) {
+ Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
+ return true;
+ }
+
+ if (Depth == MaxDepth) return false; // Limit search depth.
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::SExt:
+ if (!LookThroughSExt) return false;
+ // otherwise fall through to ZExt
+ case Instruction::ZExt:
+ return ComputeMultiple(I->getOperand(0), Base, Multiple,
+ LookThroughSExt, Depth+1);
+ case Instruction::Shl:
+ case Instruction::Mul: {
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+
+ if (I->getOpcode() == Instruction::Shl) {
+ ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
+ if (!Op1CI) return false;
+ // Turn Op0 << Op1 into Op0 * 2^Op1
+ APInt Op1Int = Op1CI->getValue();
+ uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
+ APInt API(Op1Int.getBitWidth(), 0);
+ API.setBit(BitToSet);
+ Op1 = ConstantInt::get(V->getContext(), API);
+ }
+
+ Value *Mul0 = nullptr;
+ if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1))
+ if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
+ if (Op1C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
+ if (Op1C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
+
+ // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
+ Multiple = ConstantExpr::getMul(MulC, Op1C);
+ return true;
+ }
+
+ if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
+ if (Mul0CI->getValue() == 1) {
+ // V == Base * Op1, so return Op1
+ Multiple = Op1;
+ return true;
+ }
+ }
+
+ Value *Mul1 = nullptr;
+ if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
+ if (Constant *Op0C = dyn_cast<Constant>(Op0))
+ if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
+ if (Op0C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
+ if (Op0C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
+
+ // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
+ Multiple = ConstantExpr::getMul(MulC, Op0C);
+ return true;
+ }
+
+ if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
+ if (Mul1CI->getValue() == 1) {
+ // V == Base * Op0, so return Op0
+ Multiple = Op0;
+ return true;
+ }
+ }
+ }
+ }
+
+ // We could not determine if V is a multiple of Base.
+ return false;
+}
+
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
+///
+/// NOTE: this function will need to be revisited when we support non-default
+/// rounding modes!
+///
+bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegZero();
+
+ // FIXME: Magic number! At the least, this should be given a name because it's
+ // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
+ // expose it as a parameter, so it can be used for testing / experimenting.
+ if (Depth == 6)
+ return false; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ // Check if the nsz fast-math flag is set
+ if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
+ if (FPO->hasNoSignedZeros())
+ return true;
+
+ // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
+ if (I->getOpcode() == Instruction::FAdd)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
+ if (CFP->isNullValue())
+ return true;
+
+ // sitofp and uitofp turn into +0.0 for zero.
+ if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
+ return true;
+
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ // sqrt(-0.0) = -0.0, no other negative results are possible.
+ if (II->getIntrinsicID() == Intrinsic::sqrt)
+ return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
+
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (const Function *F = CI->getCalledFunction()) {
+ if (F->isDeclaration()) {
+ // abs(x) != -0.0
+ if (F->getName() == "abs") return true;
+ // fabs[lf](x) != -0.0
+ if (F->getName() == "fabs") return true;
+ if (F->getName() == "fabsf") return true;
+ if (F->getName() == "fabsl") return true;
+ if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
+ F->getName() == "sqrtl")
+ return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
+ }
+ }
+
+ return false;
+}
+
+bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
+
+ // FIXME: Magic number! At the least, this should be given a name because it's
+ // used similarly in CannotBeNegativeZero(). A better fix may be to
+ // expose it as a parameter, so it can be used for testing / experimenting.
+ if (Depth == 6)
+ return false; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::FMul:
+ // x*x is always non-negative or a NaN.
+ if (I->getOperand(0) == I->getOperand(1))
+ return true;
+ // Fall through
+ case Instruction::FAdd:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
+ case Instruction::FPExt:
+ case Instruction::FPTrunc:
+ // Widening/narrowing never change sign.
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ case Intrinsic::sqrt:
+ return true;
+ case Intrinsic::powi:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // powi(x,n) is non-negative if n is even.
+ if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
+ return true;
+ }
+ return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // x*x+y is non-negative if y is non-negative.
+ return I->getOperand(0) == I->getOperand(1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
+ }
+ break;
+ }
+ return false;
+}
+
+/// If the specified value can be set by repeating the same byte in memory,
+/// return the i8 value that it is represented with. This is
+/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
+/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
+/// byte store (e.g. i16 0x1234), return null.
+Value *llvm::isBytewiseValue(Value *V) {
+ // All byte-wide stores are splatable, even of arbitrary variables.
+ if (V->getType()->isIntegerTy(8)) return V;
+
+ // Handle 'null' ConstantArrayZero etc.
+ if (Constant *C = dyn_cast<Constant>(V))
+ if (C->isNullValue())
+ return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
+
+ // Constant float and double values can be handled as integer values if the
+ // corresponding integer value is "byteable". An important case is 0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ if (CFP->getType()->isFloatTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
+ if (CFP->getType()->isDoubleTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
+ // Don't handle long double formats, which have strange constraints.
+ }
+
+ // We can handle constant integers that are multiple of 8 bits.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (CI->getBitWidth() % 8 == 0) {
+ assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
+
+ if (!CI->getValue().isSplat(8))
+ return nullptr;
+ return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
+ }
+ }
+
+ // A ConstantDataArray/Vector is splatable if all its members are equal and
+ // also splatable.
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
+ Value *Elt = CA->getElementAsConstant(0);
+ Value *Val = isBytewiseValue(Elt);
+ if (!Val)
+ return nullptr;
+
+ for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
+ if (CA->getElementAsConstant(I) != Elt)
+ return nullptr;
+
+ return Val;
+ }
+
+ // Conceptually, we could handle things like:
+ // %a = zext i8 %X to i16
+ // %b = shl i16 %a, 8
+ // %c = or i16 %a, %b
+ // but until there is an example that actually needs this, it doesn't seem
+ // worth worrying about.
+ return nullptr;
+}
+
+
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
+ SmallVectorImpl<unsigned> &Idxs,
+ unsigned IdxSkip,
+ Instruction *InsertBefore) {
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
+ if (STy) {
+ // Save the original To argument so we can modify it
+ Value *OrigTo = To;
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ Value *PrevTo = To;
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
+ InsertBefore);
+ Idxs.pop_back();
+ if (!To) {
+ // Couldn't find any inserted value for this index? Cleanup
+ while (PrevTo != OrigTo) {
+ InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
+ PrevTo = Del->getAggregateOperand();
+ Del->eraseFromParent();
+ }
+ // Stop processing elements
+ break;
+ }
+ }
+ // If we successfully found a value for each of our subaggregates
+ if (To)
+ return To;
+ }
+ // Base case, the type indexed by SourceIdxs is not a struct, or not all of
+ // the struct's elements had a value that was inserted directly. In the latter
+ // case, perhaps we can't determine each of the subelements individually, but
+ // we might be able to find the complete struct somewhere.
+
+ // Find the value that is at that particular spot
+ Value *V = FindInsertedValue(From, Idxs);
+
+ if (!V)
+ return nullptr;
+
+ // Insert the value in the new (sub) aggregrate
+ return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
+ "tmp", InsertBefore);
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an insertvalue for each element in the resulting
+// struct, as opposed to just inserting a single struct. This will only work if
+// each of the elements of the substruct are known (ie, inserted into From by an
+// insertvalue instruction somewhere).
+//
+// All inserted insertvalue instructions are inserted before InsertBefore
+static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ assert(InsertBefore && "Must have someplace to insert!");
+ Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
+ idx_range);
+ Value *To = UndefValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// Given an aggregrate and an sequence of indices, see if
+/// the scalar value indexed is already around as a register, for example if it
+/// were inserted directly into the aggregrate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion).
+ if (idx_range.empty())
+ return V;
+ // We have indices, so V should have an indexable type.
+ assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
+ "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
+ "Invalid indices for type?");
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = C->getAggregateElement(idx_range[0]);
+ if (!C) return nullptr;
+ return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
+ }
+
+ if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_range.begin();
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i, ++req_idx) {
+ if (req_idx == idx_range.end()) {
+ // We can't handle this without inserting insertvalues
+ if (!InsertBefore)
+ return nullptr;
+
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
+ InsertBefore);
+ }
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindInsertedValue(I->getAggregateOperand(), idx_range,
+ InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindInsertedValue(I->getInsertedValueOperand(),
+ makeArrayRef(req_idx, idx_range.end()),
+ InsertBefore);
+ }
+
+ if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + idx_range.size();
+ // Allocate some space to put the new indices in
+ SmallVector<unsigned, 5> Idxs;
+ Idxs.reserve(size);
+ // Add indices from the extract value instruction
+ Idxs.append(I->idx_begin(), I->idx_end());
+
+ // Add requested indices
+ Idxs.append(idx_range.begin(), idx_range.end());
+
+ assert(Idxs.size() == size
+ && "Number of indices added not correct?");
+
+ return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return nullptr;
+}
+
+/// Analyze the specified pointer to see if it can be expressed as a base
+/// pointer plus a constant offset. Return the base and offset to the caller.
+Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
+ const DataLayout &DL) {
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
+ APInt ByteOffset(BitWidth, 0);
+ while (1) {
+ if (Ptr->getType()->isVectorTy())
+ break;
+
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ APInt GEPOffset(BitWidth, 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ break;
+
+ ByteOffset += GEPOffset;
+
+ Ptr = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
+ Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
+ Ptr = cast<Operator>(Ptr)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
+ if (GA->mayBeOverridden())
+ break;
+ Ptr = GA->getAliasee();
+ } else {
+ break;
+ }
+ }
+ Offset = ByteOffset.getSExtValue();
+ return Ptr;
+}
+
+
+/// This function computes the length of a null-terminated C string pointed to
+/// by V. If successful, it returns true and returns the string in Str.
+/// If unsuccessful, it returns false.
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset, bool TrimAtNul) {
+ assert(V);
+
+ // Look through bitcast instructions and geps.
+ V = V->stripPointerCasts();
+
+ // If the value is a GEP instruction or constant expression, treat it as an
+ // offset.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of i8.
+ PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
+ ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
+ if (!AT || !AT->getElementType()->isIntegerTy(8))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!FirstIdx || !FirstIdx->isZero())
+ return false;
+
+ // If the second index isn't a ConstantInt, then this is a variable index
+ // into the array. If this occurs, we can't say anything meaningful about
+ // the string.
+ uint64_t StartIdx = 0;
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+ StartIdx = CI->getZExtValue();
+ else
+ return false;
+ return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
+ TrimAtNul);
+ }
+
+ // The GEP instruction, constant or instruction, must reference a global
+ // variable that is a constant and is initialized. The referenced constant
+ // initializer is the array that we'll use for optimization.
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ return false;
+
+ // Handle the all-zeros case
+ if (GV->getInitializer()->isNullValue()) {
+ // This is a degenerate case. The initializer is constant zero so the
+ // length of the string must be zero.
+ Str = "";
+ return true;
+ }
+
+ // Must be a Constant Array
+ const ConstantDataArray *Array =
+ dyn_cast<ConstantDataArray>(GV->getInitializer());
+ if (!Array || !Array->isString())
+ return false;
+
+ // Get the number of elements in the array
+ uint64_t NumElts = Array->getType()->getArrayNumElements();
+
+ // Start out with the entire array in the StringRef.
+ Str = Array->getAsString();
+
+ if (Offset > NumElts)
+ return false;
+
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Offset);
+
+ if (TrimAtNul) {
+ // Trim off the \0 and anything after it. If the array is not nul
+ // terminated, we just return the whole end of string. The client may know
+ // some other way that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
+ }
+ return true;
+}
+
+// These next two are very similar to the above, but also look through PHI
+// nodes.
+// TODO: See if we can integrate these two together.
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
+ // Look through noop bitcast instructions.
+ V = V->stripPointerCasts();
+
+ // If this is a PHI node, there are two cases: either we have already seen it
+ // or we haven't.
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (!PHIs.insert(PN).second)
+ return ~0ULL; // already in the set.
+
+ // If it was new, see if all the input strings are the same length.
+ uint64_t LenSoFar = ~0ULL;
+ for (Value *IncValue : PN->incoming_values()) {
+ uint64_t Len = GetStringLengthH(IncValue, PHIs);
+ if (Len == 0) return 0; // Unknown length -> unknown.
+
+ if (Len == ~0ULL) continue;
+
+ if (Len != LenSoFar && LenSoFar != ~0ULL)
+ return 0; // Disagree -> unknown.
+ LenSoFar = Len;
+ }
+
+ // Success, all agree.
+ return LenSoFar;
+ }
+
+ // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
+ if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
+ if (Len1 == 0) return 0;
+ uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
+ if (Len2 == 0) return 0;
+ if (Len1 == ~0ULL) return Len2;
+ if (Len2 == ~0ULL) return Len1;
+ if (Len1 != Len2) return 0;
+ return Len1;
+ }
+
+ // Otherwise, see if we can read the string.
+ StringRef StrData;
+ if (!getConstantStringInfo(V, StrData))
+ return 0;
+
+ return StrData.size()+1;
+}
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+uint64_t llvm::GetStringLength(Value *V) {
+ if (!V->getType()->isPointerTy()) return 0;
+
+ SmallPtrSet<PHINode*, 32> PHIs;
+ uint64_t Len = GetStringLengthH(V, PHIs);
+ // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
+ // an empty string as a length.
+ return Len == ~0ULL ? 1 : Len;
+}
+
+/// \brief \p PN defines a loop-variant pointer to an object. Check if the
+/// previous iteration of the loop was referring to the same object as \p PN.
+static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
+ // Find the loop-defined value.
+ Loop *L = LI->getLoopFor(PN->getParent());
+ if (PN->getNumIncomingValues() != 2)
+ return true;
+
+ // Find the value from previous iteration.
+ auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ return true;
+
+ // If a new pointer is loaded in the loop, the pointer references a different
+ // object in every iteration. E.g.:
+ // for (i)
+ // int *p = a[i];
+ // ...
+ if (auto *Load = dyn_cast<LoadInst>(PrevValue))
+ if (!L->isLoopInvariant(Load->getPointerOperand()))
+ return false;
+ return true;
+}
+
+Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
+ unsigned MaxLookup) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast ||
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
+ return V;
+ V = GA->getAliasee();
+ } else {
+ // See if InstructionSimplify knows any relevant tricks.
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ // TODO: Acquire a DominatorTree and AssumptionCache and use them.
+ if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
+ V = Simplified;
+ continue;
+ }
+
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
+ const DataLayout &DL, LoopInfo *LI,
+ unsigned MaxLookup) {
+ SmallPtrSet<Value *, 4> Visited;
+ SmallVector<Value *, 4> Worklist;
+ Worklist.push_back(V);
+ do {
+ Value *P = Worklist.pop_back_val();
+ P = GetUnderlyingObject(P, DL, MaxLookup);
+
+ if (!Visited.insert(P).second)
+ continue;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(P)) {
+ // If this PHI changes the underlying object in every iteration of the
+ // loop, don't look through it. Consider:
+ // int **A;
+ // for (i) {
+ // Prev = Curr; // Prev = PHI (Prev_0, Curr)
+ // Curr = A[i];
+ // *Prev, *Curr;
+ //
+ // Prev is tracking Curr one iteration behind so they refer to different
+ // underlying objects.
+ if (!LI || !LI->isLoopHeader(PN->getParent()) ||
+ isSameUnderlyingObjectInLoop(PN, LI))
+ for (Value *IncValue : PN->incoming_values())
+ Worklist.push_back(IncValue);
+ continue;
+ }
+
+ Objects.push_back(P);
+ } while (!Worklist.empty());
+}
+
+/// Return true if the only users of this pointer are lifetime markers.
+bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
+ for (const User *U : V->users()) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ if (!II) return false;
+
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
+ }
+ return true;
+}
+
+static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
+ Type *Ty, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ assert(Offset.isNonNegative() && "offset can't be negative");
+ assert(Ty->isSized() && "must be sized");
+
+ APInt DerefBytes(Offset.getBitWidth(), 0);
+ bool CheckForNonNull = false;
+ if (const Argument *A = dyn_cast<Argument>(BV)) {
+ DerefBytes = A->getDereferenceableBytes();
+ if (!DerefBytes.getBoolValue()) {
+ DerefBytes = A->getDereferenceableOrNullBytes();
+ CheckForNonNull = true;
+ }
+ } else if (auto CS = ImmutableCallSite(BV)) {
+ DerefBytes = CS.getDereferenceableBytes(0);
+ if (!DerefBytes.getBoolValue()) {
+ DerefBytes = CS.getDereferenceableOrNullBytes(0);
+ CheckForNonNull = true;
+ }
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
+ if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ if (!DerefBytes.getBoolValue()) {
+ if (MDNode *MD =
+ LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ CheckForNonNull = true;
+ }
+ }
+
+ if (DerefBytes.getBoolValue())
+ if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
+ if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
+ return true;
+
+ return false;
+}
+
+static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ Type *VTy = V->getType();
+ Type *Ty = VTy->getPointerElementType();
+ if (!Ty->isSized())
+ return false;
+
+ APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
+ return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
+}
+
+static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
+ const DataLayout &DL) {
+ APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
+
+ if (!BaseAlign) {
+ Type *Ty = Base->getType()->getPointerElementType();
+ if (!Ty->isSized())
+ return false;
+ BaseAlign = DL.getABITypeAlignment(Ty);
+ }
+
+ APInt Alignment(Offset.getBitWidth(), Align);
+
+ assert(Alignment.isPowerOf2() && "must be a power of 2!");
+ return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
+}
+
+static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
+ Type *Ty = Base->getType();
+ assert(Ty->isSized() && "must be sized");
+ APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
+ return isAligned(Base, Offset, Align, DL);
+}
+
+/// Test if V is always a pointer to allocated and suitably aligned memory for
+/// a simple load or store.
+static bool isDereferenceableAndAlignedPointer(
+ const Value *V, unsigned Align, const DataLayout &DL,
+ const Instruction *CtxI, const DominatorTree *DT,
+ const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
+ // Note that it is not safe to speculate into a malloc'd region because
+ // malloc may return null.
+
+ // These are obviously ok if aligned.
+ if (isa<AllocaInst>(V))
+ return isAligned(V, Align, DL);
+
+ // It's not always safe to follow a bitcast, for example:
+ // bitcast i8* (alloca i8) to i32*
+ // would result in a 4-byte load from a 1-byte alloca. However,
+ // if we're casting from a pointer from a type of larger size
+ // to a type of smaller size (or the same size), and the alignment
+ // is at least as large as for the resulting pointer type, then
+ // we can look through the bitcast.
+ if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
+ Type *STy = BC->getSrcTy()->getPointerElementType(),
+ *DTy = BC->getDestTy()->getPointerElementType();
+ if (STy->isSized() && DTy->isSized() &&
+ (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
+ (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
+ return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
+ CtxI, DT, TLI, Visited);
+ }
+
+ // Global variables which can't collapse to null are ok.
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ if (!GV->hasExternalWeakLinkage())
+ return isAligned(V, Align, DL);
+
+ // byval arguments are okay.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ if (A->hasByValAttr())
+ return isAligned(V, Align, DL);
+
+ if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
+ return isAligned(V, Align, DL);
+
+ // For GEPs, determine if the indexing lands within the allocated object.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ Type *VTy = GEP->getType();
+ Type *Ty = VTy->getPointerElementType();
+ const Value *Base = GEP->getPointerOperand();
+
+ // Conservatively require that the base pointer be fully dereferenceable
+ // and aligned.
+ if (!Visited.insert(Base).second)
+ return false;
+ if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
+ Visited))
+ return false;
+
+ APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
+ if (!GEP->accumulateConstantOffset(DL, Offset))
+ return false;
+
+ // Check if the load is within the bounds of the underlying object
+ // and offset is aligned.
+ uint64_t LoadSize = DL.getTypeStoreSize(Ty);
+ Type *BaseType = Base->getType()->getPointerElementType();
+ assert(isPowerOf2_32(Align) && "must be a power of 2!");
+ return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
+ !(Offset & APInt(Offset.getBitWidth(), Align-1));
+ }
+
+ // For gc.relocate, look through relocations
+ if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
+ if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
+ GCRelocateOperands RelocateInst(I);
+ return isDereferenceableAndAlignedPointer(
+ RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
+ }
+
+ if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
+ return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
+ CtxI, DT, TLI, Visited);
+
+ // If we don't know, assume the worst.
+ return false;
+}
+
+bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
+ const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ // When dereferenceability information is provided by a dereferenceable
+ // attribute, we know exactly how many bytes are dereferenceable. If we can
+ // determine the exact offset to the attributed variable, we can use that
+ // information here.
+ Type *VTy = V->getType();
+ Type *Ty = VTy->getPointerElementType();
+
+ // Require ABI alignment for loads without alignment specification
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(Ty);
+
+ if (Ty->isSized()) {
+ APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
+ const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
+
+ if (Offset.isNonNegative())
+ if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
+ isAligned(BV, Offset, Align, DL))
+ return true;
+ }
+
+ SmallPtrSet<const Value *, 32> Visited;
+ return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
+ Visited);
+}
+
+bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
+}
+
+bool llvm::isSafeToSpeculativelyExecute(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ const Operator *Inst = dyn_cast<Operator>(V);
+ if (!Inst)
+ return false;
+
+ for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (Inst->getOpcode()) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // x / y is undefined if y == 0.
+ const APInt *V;
+ if (match(Inst->getOperand(1), m_APInt(V)))
+ return *V != 0;
+ return false;
+ }
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ // x / y is undefined if y == 0 or x == INT_MIN and y == -1
+ const APInt *Numerator, *Denominator;
+ if (!match(Inst->getOperand(1), m_APInt(Denominator)))
+ return false;
+ // We cannot hoist this division if the denominator is 0.
+ if (*Denominator == 0)
+ return false;
+ // It's safe to hoist if the denominator is not 0 or -1.
+ if (*Denominator != -1)
+ return true;
+ // At this point we know that the denominator is -1. It is safe to hoist as
+ // long we know that the numerator is not INT_MIN.
+ if (match(Inst->getOperand(0), m_APInt(Numerator)))
+ return !Numerator->isMinSignedValue();
+ // The numerator *might* be MinSignedValue.
+ return false;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(Inst);
+ if (!LI->isUnordered() ||
+ // Speculative load may create a race that did not exist in the source.
+ LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeThread) ||
+ // Speculative load may load data from dirty regions.
+ LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeAddress))
+ return false;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return isDereferenceableAndAlignedPointer(
+ LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
+ }
+ case Instruction::Call: {
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ // These synthetic intrinsics have no side-effects and just mark
+ // information about their operands.
+ // FIXME: There are other no-op synthetic instructions that potentially
+ // should be considered at least *safe* to speculate...
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ return true;
+
+ case Intrinsic::bswap:
+ case Intrinsic::ctlz:
+ case Intrinsic::ctpop:
+ case Intrinsic::cttz:
+ case Intrinsic::objectsize:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ return true;
+ // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
+ // errno like libm sqrt would.
+ case Intrinsic::sqrt:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ return true;
+ // TODO: some fp intrinsics are marked as having the same error handling
+ // as libm. They're safe to speculate when they won't error.
+ // TODO: are convert_{from,to}_fp16 safe?
+ // TODO: can we list target-specific intrinsics here?
+ default: break;
+ }
+ }
+ return false; // The called function could have undefined behavior or
+ // side-effects, even if marked readnone nounwind.
+ }
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::LandingPad:
+ case Instruction::Resume:
+ case Instruction::CatchSwitch:
+ case Instruction::CatchPad:
+ case Instruction::CatchRet:
+ case Instruction::CleanupPad:
+ case Instruction::CleanupRet:
+ return false; // Misc instructions which have effects
+ }
+}
+
+bool llvm::mayBeMemoryDependent(const Instruction &I) {
+ return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
+}
+
+/// Return true if we know that the specified value is never null.
+bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
+ assert(V->getType()->isPointerTy() && "V must be pointer type");
+
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V)) return true;
+
+ // A byval, inalloca, or nonnull argument is never null.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
+
+ // A global variable in address space 0 is non null unless extern weak.
+ // Other address spaces may have null as a valid address for a global,
+ // so we can't assume anything.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return !GV->hasExternalWeakLinkage() &&
+ GV->getType()->getAddressSpace() == 0;
+
+ // A Load tagged w/nonnull metadata is never null.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ return LI->getMetadata(LLVMContext::MD_nonnull);
+
+ if (auto CS = ImmutableCallSite(V))
+ if (CS.isReturnNonNull())
+ return true;
+
+ // operator new never returns null.
+ if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
+ return true;
+
+ return false;
+}
+
+static bool isKnownNonNullFromDominatingCondition(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ assert(V->getType()->isPointerTy() && "V must be pointer type");
+
+ unsigned NumUsesExplored = 0;
+ for (auto U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+ // Consider only compare instructions uniquely controlling a branch
+ const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
+ if (!Cmp)
+ continue;
+
+ if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
+ continue;
+
+ for (auto *CmpU : Cmp->users()) {
+ const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
+ if (!BI)
+ continue;
+
+ assert(BI->isConditional() && "uses a comparison!");
+
+ BasicBlock *NonNullSuccessor = nullptr;
+ CmpInst::Predicate Pred;
+
+ if (match(const_cast<ICmpInst*>(Cmp),
+ m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ NonNullSuccessor = BI->getSuccessor(1);
+ else if (Pred == ICmpInst::ICMP_NE)
+ NonNullSuccessor = BI->getSuccessor(0);
+ }
+
+ if (NonNullSuccessor) {
+ BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
+ if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
+ const DominatorTree *DT, const TargetLibraryInfo *TLI) {
+ if (isKnownNonNull(V, TLI))
+ return true;
+
+ return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading zero bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ // Note that underestimating the number of zero bits gives a more
+ // conservative answer.
+ unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
+ RHSKnownZero.countLeadingOnes();
+ // First handle the easy case: if we have enough zero bits there's
+ // definitely no overflow.
+ if (ZeroBits >= BitWidth)
+ return OverflowResult::NeverOverflows;
+
+ // Get the largest possible values for each operand.
+ APInt LHSMax = ~LHSKnownZero;
+ APInt RHSMax = ~RHSKnownZero;
+
+ // We know the multiply operation doesn't overflow if the maximum values for
+ // each operand will not overflow after we multiply them together.
+ bool MaxOverflow;
+ LHSMax.umul_ov(RHSMax, MaxOverflow);
+ if (!MaxOverflow)
+ return OverflowResult::NeverOverflows;
+
+ // We know it always overflows if multiplying the smallest possible values for
+ // the operands also results in overflow.
+ bool MinOverflow;
+ LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
+ if (MinOverflow)
+ return OverflowResult::AlwaysOverflows;
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool LHSKnownNonNegative, LHSKnownNegative;
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+ if (LHSKnownNonNegative || LHSKnownNegative) {
+ bool RHSKnownNonNegative, RHSKnownNegative;
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::AlwaysOverflows;
+ }
+
+ if (LHSKnownNonNegative && RHSKnownNonNegative) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::NeverOverflows;
+ }
+ }
+
+ return OverflowResult::MayOverflow;
+}
+
+static OverflowResult computeOverflowForSignedAdd(
+ Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
+ if (Add && Add->hasNoSignedWrap()) {
+ return OverflowResult::NeverOverflows;
+ }
+
+ bool LHSKnownNonNegative, LHSKnownNegative;
+ bool RHSKnownNonNegative, RHSKnownNegative;
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+
+ if ((LHSKnownNonNegative && RHSKnownNegative) ||
+ (LHSKnownNegative && RHSKnownNonNegative)) {
+ // The sign bits are opposite: this CANNOT overflow.
+ return OverflowResult::NeverOverflows;
+ }
+
+ // The remaining code needs Add to be available. Early returns if not so.
+ if (!Add)
+ return OverflowResult::MayOverflow;
+
+ // If the sign of Add is the same as at least one of the operands, this add
+ // CANNOT overflow. This is particularly useful when the sum is
+ // @llvm.assume'ed non-negative rather than proved so from analyzing its
+ // operands.
+ bool LHSOrRHSKnownNonNegative =
+ (LHSKnownNonNegative || RHSKnownNonNegative);
+ bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
+ if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
+ bool AddKnownNonNegative, AddKnownNegative;
+ ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
+ /*Depth=*/0, AC, CxtI, DT);
+ if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
+ (AddKnownNegative && LHSOrRHSKnownNegative)) {
+ return OverflowResult::NeverOverflows;
+ }
+ }
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
+ Add, DL, AC, CxtI, DT);
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
+ // FIXME: This conservative implementation can be relaxed. E.g. most
+ // atomic operations are guaranteed to terminate on most platforms
+ // and most functions terminate.
+
+ return !I->isAtomic() && // atomics may never succeed on some platforms
+ !isa<CallInst>(I) && // could throw and might not terminate
+ !isa<InvokeInst>(I) && // might not terminate and could throw to
+ // non-successor (see bug 24185 for details).
+ !isa<ResumeInst>(I) && // has no successors
+ !isa<ReturnInst>(I); // has no successors
+}
+
+bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
+ const Loop *L) {
+ // The loop header is guaranteed to be executed for every iteration.
+ //
+ // FIXME: Relax this constraint to cover all basic blocks that are
+ // guaranteed to be executed at every iteration.
+ if (I->getParent() != L->getHeader()) return false;
+
+ for (const Instruction &LI : *L->getHeader()) {
+ if (&LI == I) return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
+ }
+ llvm_unreachable("Instruction not contained in its own parent basic block.");
+}
+
+bool llvm::propagatesFullPoison(const Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ case Instruction::Trunc:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ // These operations all propagate poison unconditionally. Note that poison
+ // is not any particular value, so xor or subtraction of poison with
+ // itself still yields poison, not zero.
+ return true;
+
+ case Instruction::AShr:
+ case Instruction::SExt:
+ // For these operations, one bit of the input is replicated across
+ // multiple output bits. A replicated poison bit is still poison.
+ return true;
+
+ case Instruction::Shl: {
+ // Left shift *by* a poison value is poison. The number of
+ // positions to shift is unsigned, so no negative values are
+ // possible there. Left shift by zero places preserves poison. So
+ // it only remains to consider left shift of poison by a positive
+ // number of places.
+ //
+ // A left shift by a positive number of places leaves the lowest order bit
+ // non-poisoned. However, if such a shift has a no-wrap flag, then we can
+ // make the poison operand violate that flag, yielding a fresh full-poison
+ // value.
+ auto *OBO = cast<OverflowingBinaryOperator>(I);
+ return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
+ }
+
+ case Instruction::Mul: {
+ // A multiplication by zero yields a non-poison zero result, so we need to
+ // rule out zero as an operand. Conservatively, multiplication by a
+ // non-zero constant is not multiplication by zero.
+ //
+ // Multiplication by a non-zero constant can leave some bits
+ // non-poisoned. For example, a multiplication by 2 leaves the lowest
+ // order bit unpoisoned. So we need to consider that.
+ //
+ // Multiplication by 1 preserves poison. If the multiplication has a
+ // no-wrap flag, then we can make the poison operand violate that flag
+ // when multiplied by any integer other than 0 and 1.
+ auto *OBO = cast<OverflowingBinaryOperator>(I);
+ if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
+ for (Value *V : OBO->operands()) {
+ if (auto *CI = dyn_cast<ConstantInt>(V)) {
+ // A ConstantInt cannot yield poison, so we can assume that it is
+ // the other operand that is poison.
+ return !CI->isZero();
+ }
+ }
+ }
+ return false;
+ }
+
+ case Instruction::GetElementPtr:
+ // A GEP implicitly represents a sequence of additions, subtractions,
+ // truncations, sign extensions and multiplications. The multiplications
+ // are by the non-zero sizes of some set of types, so we do not have to be
+ // concerned with multiplication by zero. If the GEP is in-bounds, then
+ // these operations are implicitly no-signed-wrap so poison is propagated
+ // by the arguments above for Add, Sub, Trunc, SExt and Mul.
+ return cast<GEPOperator>(I)->isInBounds();
+
+ default:
+ return false;
+ }
+}
+
+const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Store:
+ return cast<StoreInst>(I)->getPointerOperand();
+
+ case Instruction::Load:
+ return cast<LoadInst>(I)->getPointerOperand();
+
+ case Instruction::AtomicCmpXchg:
+ return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
+
+ case Instruction::AtomicRMW:
+ return cast<AtomicRMWInst>(I)->getPointerOperand();
+
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return I->getOperand(1);
+
+ default:
+ return nullptr;
+ }
+}
+
+bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
+ // We currently only look for uses of poison values within the same basic
+ // block, as that makes it easier to guarantee that the uses will be
+ // executed given that PoisonI is executed.
+ //
+ // FIXME: Expand this to consider uses beyond the same basic block. To do
+ // this, look out for the distinction between post-dominance and strong
+ // post-dominance.
+ const BasicBlock *BB = PoisonI->getParent();
+
+ // Set of instructions that we have proved will yield poison if PoisonI
+ // does.
+ SmallSet<const Value *, 16> YieldsPoison;
+ YieldsPoison.insert(PoisonI);
+
+ for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
+ I != E; ++I) {
+ if (&*I != PoisonI) {
+ const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
+ if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
+ return false;
+ }
+
+ // Mark poison that propagates from I through uses of I.
+ if (YieldsPoison.count(&*I)) {
+ for (const User *User : I->users()) {
+ const Instruction *UserI = cast<Instruction>(User);
+ if (UserI->getParent() == BB && propagatesFullPoison(UserI))
+ YieldsPoison.insert(User);
+ }
+ }
+ }
+ return false;
+}
+
+static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
+ if (FMF.noNaNs())
+ return true;
+
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isNaN();
+ return false;
+}
+
+static bool isKnownNonZero(Value *V) {
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isZero();
+ return false;
+}
+
+static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
+ FastMathFlags FMF,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS) {
+ LHS = CmpLHS;
+ RHS = CmpRHS;
+
+ // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
+ // return inconsistent results between implementations.
+ // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
+ // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
+ // Therefore we behave conservatively and only proceed if at least one of the
+ // operands is known to not be zero, or if we don't care about signed zeroes.
+ switch (Pred) {
+ default: break;
+ case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
+ if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
+ !isKnownNonZero(CmpRHS))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+
+ SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
+ bool Ordered = false;
+
+ // When given one NaN and one non-NaN input:
+ // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
+ // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
+ // ordered comparison fails), which could be NaN or non-NaN.
+ // so here we discover exactly what NaN behavior is required/accepted.
+ if (CmpInst::isFPPredicate(Pred)) {
+ bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
+ bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
+
+ if (LHSSafe && RHSSafe) {
+ // Both operands are known non-NaN.
+ NaNBehavior = SPNB_RETURNS_ANY;
+ } else if (CmpInst::isOrdered(Pred)) {
+ // An ordered comparison will return false when given a NaN, so it
+ // returns the RHS.
+ Ordered = true;
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ } else {
+ Ordered = false;
+ // An unordered comparison will return true when given a NaN, so it
+ // returns the LHS.
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+ }
+
+ if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
+ std::swap(CmpLHS, CmpRHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ if (NaNBehavior == SPNB_RETURNS_NAN)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (NaNBehavior == SPNB_RETURNS_OTHER)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ Ordered = !Ordered;
+ }
+
+ // ([if]cmp X, Y) ? X : Y
+ if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
+ switch (Pred) {
+ default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGT:
+ case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLT:
+ case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
+ }
+ }
+
+ if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
+ if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
+ (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
+
+ // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
+ // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
+ if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
+ return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
+ }
+
+ // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
+ // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
+ if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
+ return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
+ }
+ }
+
+ // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
+ if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
+ if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
+ (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
+ match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
+ LHS = TrueVal;
+ RHS = FalseVal;
+ return {SPF_SMIN, SPNB_NA, false};
+ }
+ }
+ }
+
+ // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
+ Instruction::CastOps *CastOp) {
+ CastInst *CI = dyn_cast<CastInst>(V1);
+ Constant *C = dyn_cast<Constant>(V2);
+ CastInst *CI2 = dyn_cast<CastInst>(V2);
+ if (!CI)
+ return nullptr;
+ *CastOp = CI->getOpcode();
+
+ if (CI2) {
+ // If V1 and V2 are both the same cast from the same type, we can look
+ // through V1.
+ if (CI2->getOpcode() == CI->getOpcode() &&
+ CI2->getSrcTy() == CI->getSrcTy())
+ return CI2->getOperand(0);
+ return nullptr;
+ } else if (!C) {
+ return nullptr;
+ }
+
+ if (isa<SExtInst>(CI) && CmpI->isSigned()) {
+ Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
+ // This is only valid if the truncated value can be sign-extended
+ // back to the original value.
+ if (ConstantExpr::getSExt(T, C->getType()) == C)
+ return T;
+ return nullptr;
+ }
+ if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
+ return ConstantExpr::getTrunc(C, CI->getSrcTy());
+
+ if (isa<TruncInst>(CI))
+ return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
+
+ if (isa<FPToUIInst>(CI))
+ return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
+
+ if (isa<FPToSIInst>(CI))
+ return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
+
+ if (isa<UIToFPInst>(CI))
+ return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
+
+ if (isa<SIToFPInst>(CI))
+ return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
+
+ if (isa<FPTruncInst>(CI))
+ return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
+
+ if (isa<FPExtInst>(CI))
+ return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
+
+ return nullptr;
+}
+
+SelectPatternResult llvm::matchSelectPattern(Value *V,
+ Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp) {
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
+ if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ CmpInst::Predicate Pred = CmpI->getPredicate();
+ Value *CmpLHS = CmpI->getOperand(0);
+ Value *CmpRHS = CmpI->getOperand(1);
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+ FastMathFlags FMF;
+ if (isa<FPMathOperator>(CmpI))
+ FMF = CmpI->getFastMathFlags();
+
+ // Bail out early.
+ if (CmpI->isEquality())
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // Deal with type mismatches.
+ if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
+ if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ cast<CastInst>(TrueVal)->getOperand(0), C,
+ LHS, RHS);
+ if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ C, cast<CastInst>(FalseVal)->getOperand(0),
+ LHS, RHS);
+ }
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
+ LHS, RHS);
+}
+
+ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
+ const unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1 && "Must have at least one range!");
+ assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
+
+ auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
+ auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
+
+ ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
+
+ for (unsigned i = 1; i < NumRanges; ++i) {
+ auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
+
+ // Note: unionWith will potentially create a range that contains values not
+ // contained in any of the original N ranges.
+ CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
+ }
+
+ return CR;
+}
+
+/// Return true if "icmp Pred LHS RHS" is always true.
+static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
+ if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
+ return true;
+
+ switch (Pred) {
+ default:
+ return false;
+
+ case CmpInst::ICMP_SLE: {
+ const APInt *C;
+
+ // LHS s<= LHS +_{nsw} C if C >= 0
+ if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
+ return !C->isNegative();
+ return false;
+ }
+
+ case CmpInst::ICMP_ULE: {
+ const APInt *C;
+
+ // LHS u<= LHS +_{nuw} C for any C
+ if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
+ return true;
+
+ // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
+ auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
+ const APInt *&CA, const APInt *&CB) {
+ if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
+ match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
+ return true;
+
+ // If X & C == 0 then (X | C) == X +_{nuw} C
+ if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
+ match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
+ unsigned BitWidth = CA->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
+
+ if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
+ return true;
+ }
+
+ return false;
+ };
+
+ Value *X;
+ const APInt *CLHS, *CRHS;
+ if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
+ return CLHS->ule(*CRHS);
+
+ return false;
+ }
+ }
+}
+
+/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
+/// ALHS ARHS" is true.
+static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
+ Value *ARHS, Value *BLHS, Value *BRHS,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ switch (Pred) {
+ default:
+ return false;
+
+ case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SLE:
+ return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
+ DT) &&
+ isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
+ DT);
+
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_ULE:
+ return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
+ DT) &&
+ isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
+ DT);
+ }
+}
+
+bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ assert(LHS->getType() == RHS->getType() && "mismatched type");
+ Type *OpTy = LHS->getType();
+ assert(OpTy->getScalarType()->isIntegerTy(1));
+
+ // LHS ==> RHS by definition
+ if (LHS == RHS) return true;
+
+ if (OpTy->isVectorTy())
+ // TODO: extending the code below to handle vectors
+ return false;
+ assert(OpTy->isIntegerTy(1) && "implied by above");
+
+ ICmpInst::Predicate APred, BPred;
+ Value *ALHS, *ARHS;
+ Value *BLHS, *BRHS;
+
+ if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
+ !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
+ return false;
+
+ if (APred == BPred)
+ return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
+ CxtI, DT);
+
+ return false;
+}
OpenPOWER on IntegriCloud