summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ValueTracking.cpp2760
1 files changed, 2760 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp
new file mode 100644
index 0000000..5d90917
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp
@@ -0,0 +1,2760 @@
+//===- ValueTracking.cpp - Walk computations to compute properties --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains routines that help analyze properties that chains of
+// computations have.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstring>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+const unsigned MaxDepth = 6;
+
+/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
+/// 0). For vector types, returns the element type's bitwidth.
+static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
+ if (unsigned BitWidth = Ty->getScalarSizeInBits())
+ return BitWidth;
+
+ return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
+}
+
+// Many of these functions have internal versions that take an assumption
+// exclusion set. This is because of the potential for mutual recursion to
+// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
+// classic case of this is assume(x = y), which will attempt to determine
+// bits in x from bits in y, which will attempt to determine bits in y from
+// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
+// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
+// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
+typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
+
+namespace {
+// Simplifying using an assume can only be done in a particular control-flow
+// context (the context instruction provides that context). If an assume and
+// the context instruction are not in the same block then the DT helps in
+// figuring out if we can use it.
+struct Query {
+ ExclInvsSet ExclInvs;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
+ const DominatorTree *DT;
+
+ Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr)
+ : AC(AC), CxtI(CxtI), DT(DT) {}
+
+ Query(const Query &Q, const Value *NewExcl)
+ : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
+ ExclInvs.insert(NewExcl);
+ }
+};
+} // end anonymous namespace
+
+// Given the provided Value and, potentially, a context instruction, return
+// the preferred context instruction (if any).
+static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool MaskedValueIsZero(Value *V, const APInt &Mask,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT) {
+ return ::MaskedValueIsZero(V, Mask, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, const Query &Q);
+
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ if (!Add) {
+ if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
+ // We know that the top bits of C-X are clear if X contains less bits
+ // than C (i.e. no wrap-around can happen). For example, 20-X is
+ // positive if we can prove that X is >= 0 and < 16.
+ if (!CLHS->getValue().isNegative()) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
+ // NLZ can't be BitWidth with no sign bit
+ APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // If all of the MaskV bits are known to be zero, then we know the
+ // output top bits are zero, because we now know that the output is
+ // from [0-C].
+ if ((KnownZero2 & MaskV) == MaskV) {
+ unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
+ // Top bits known zero.
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
+ }
+ }
+ }
+ }
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ // If an initial sequence of bits in the result is not needed, the
+ // corresponding bits in the operands are not needed.
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Carry in a 1 for a subtract, rather than a 0.
+ APInt CarryIn(BitWidth, 0);
+ if (!Add) {
+ // Sum = LHS + ~RHS + 1
+ std::swap(KnownZero2, KnownOne2);
+ CarryIn.setBit(0);
+ }
+
+ APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
+ APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
+
+ // Compute known bits of the carry.
+ APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
+ APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
+
+ // Compute set of known bits (where all three relevant bits are known).
+ APInt LHSKnown = LHSKnownZero | LHSKnownOne;
+ APInt RHSKnown = KnownZero2 | KnownOne2;
+ APInt CarryKnown = CarryKnownZero | CarryKnownOne;
+ APInt Known = LHSKnown & RHSKnown & CarryKnown;
+
+ assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
+ "known bits of sum differ");
+
+ // Compute known bits of the result.
+ KnownZero = ~PossibleSumOne & Known;
+ KnownOne = PossibleSumOne & Known;
+
+ // Are we still trying to solve for the sign bit?
+ if (!Known.isNegative()) {
+ if (NSW) {
+ // Adding two non-negative numbers, or subtracting a negative number from
+ // a non-negative one, can't wrap into negative.
+ if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
+ KnownZero |= APInt::getSignBit(BitWidth);
+ // Adding two negative numbers, or subtracting a non-negative number from
+ // a negative one, can't wrap into non-negative.
+ else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ }
+}
+
+static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (NSW) {
+ if (Op0 == Op1) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegativeOp1 = KnownZero.isNegative();
+ bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
+ bool isKnownNegativeOp1 = KnownOne.isNegative();
+ bool isKnownNegativeOp0 = KnownOne2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
+ (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
+ isKnownNonZero(Op0, TD, Depth, Q)) ||
+ (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
+ isKnownNonZero(Op1, TD, Depth, Q));
+ }
+ }
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conserative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ KnownOne.clearAllBits();
+ unsigned TrailZ = KnownZero.countTrailingOnes() +
+ KnownZero2.countTrailingOnes();
+ unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
+ KnownZero2.countLeadingOnes(),
+ BitWidth) - BitWidth;
+
+ TrailZ = std::min(TrailZ, BitWidth);
+ LeadZ = std::min(LeadZ, BitWidth);
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+ APInt::getHighBitsSet(BitWidth, LeadZ);
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !KnownOne.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ else if (isKnownNegative && !KnownZero.isNegative())
+ KnownOne.setBit(BitWidth - 1);
+}
+
+void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
+ APInt &KnownZero) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ // Use the high end of the ranges to find leading zeros.
+ unsigned MinLeadingZeros = BitWidth;
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.isWrappedSet())
+ MinLeadingZeros = 0; // -1 has no zeros
+ unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
+ MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
+ }
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
+}
+
+static bool isEphemeralValueOf(Instruction *I, const Value *E) {
+ SmallVector<const Value *, 16> WorkSet(1, I);
+ SmallPtrSet<const Value *, 32> Visited;
+ SmallPtrSet<const Value *, 16> EphValues;
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ bool FoundNEUse = false;
+ for (const User *I : V->users())
+ if (!EphValues.count(I)) {
+ FoundNEUse = true;
+ break;
+ }
+
+ if (!FoundNEUse) {
+ if (V == E)
+ return true;
+
+ EphValues.insert(V);
+ if (const User *U = dyn_cast<User>(V))
+ for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
+ J != JE; ++J) {
+ if (isSafeToSpeculativelyExecute(*J))
+ WorkSet.push_back(*J);
+ }
+ }
+ }
+
+ return false;
+}
+
+// Is this an intrinsic that cannot be speculated but also cannot trap?
+static bool isAssumeLikeIntrinsic(const Instruction *I) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ default: break;
+ // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
+ case Intrinsic::assume:
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ return true;
+ }
+
+ return false;
+}
+
+static bool isValidAssumeForContext(Value *V, const Query &Q,
+ const DataLayout *DL) {
+ Instruction *Inv = cast<Instruction>(V);
+
+ // There are two restrictions on the use of an assume:
+ // 1. The assume must dominate the context (or the control flow must
+ // reach the assume whenever it reaches the context).
+ // 2. The context must not be in the assume's set of ephemeral values
+ // (otherwise we will use the assume to prove that the condition
+ // feeding the assume is trivially true, thus causing the removal of
+ // the assume).
+
+ if (Q.DT) {
+ if (Q.DT->dominates(Inv, Q.CxtI)) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // The context comes first, but they're both in the same block. Make sure
+ // there is nothing in between that might interrupt the control flow.
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(I, DL) &&
+ !isAssumeLikeIntrinsic(I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+ }
+
+ // When we don't have a DT, we do a limited search...
+ if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // Search forward from the assume until we reach the context (or the end
+ // of the block); the common case is that the assume will come first.
+ for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
+ IE = Inv->getParent()->end(); I != IE; ++I)
+ if (I == Q.CxtI)
+ return true;
+
+ // The context must come first...
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(I, DL) &&
+ !isAssumeLikeIntrinsic(I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+}
+
+bool llvm::isValidAssumeForContext(const Instruction *I,
+ const Instruction *CxtI,
+ const DataLayout *DL,
+ const DominatorTree *DT) {
+ return ::isValidAssumeForContext(const_cast<Instruction*>(I),
+ Query(nullptr, CxtI, DT), DL);
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
+ CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
+m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
+ BinaryOp_match<RHS, LHS, Instruction::And>>
+m_c_And(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_And(L, R), m_And(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
+ BinaryOp_match<RHS, LHS, Instruction::Or>>
+m_c_Or(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Or(L, R), m_Or(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
+ BinaryOp_match<RHS, LHS, Instruction::Xor>>
+m_c_Xor(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
+}
+
+static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout *DL,
+ unsigned Depth, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return;
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ for (auto &AssumeVH : Q.AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ CallInst *I = cast<CallInst>(AssumeVH);
+ assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+ if (Q.ExclInvs.count(I))
+ continue;
+
+ // Warning: This loop can end up being somewhat performance sensetive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ assert(isa<IntrinsicInst>(I) &&
+ dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
+ "must be an assume intrinsic");
+
+ Value *Arg = I->getArgOperand(0);
+
+ if (Arg == V &&
+ isValidAssumeForContext(I, Q, DL)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ KnownZero.clearAllBits();
+ KnownOne.setAllBits();
+ return;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth == MaxDepth)
+ continue;
+
+ Value *A, *B;
+ auto m_V = m_CombineOr(m_Specific(V),
+ m_CombineOr(m_PtrToInt(m_Specific(V)),
+ m_BitCast(m_Specific(V))));
+
+ CmpInst::Predicate Pred;
+ ConstantInt *C;
+ // assume(v = a)
+ if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ KnownZero |= RHSKnownZero;
+ KnownOne |= RHSKnownOne;
+ // assume(v & b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & MaskKnownOne;
+ KnownOne |= RHSKnownOne & MaskKnownOne;
+ // assume(~(v & b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & MaskKnownOne;
+ KnownOne |= RHSKnownZero & MaskKnownOne;
+ // assume(v | b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ // assume(~(v | b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ // assume(v ^ b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V. For those bits in B that are known to be one,
+ // we can propagate inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ KnownZero |= RHSKnownOne & BKnownOne;
+ KnownOne |= RHSKnownZero & BKnownOne;
+ // assume(~(v ^ b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V. For those bits in B that are
+ // known to be one, we can propagate known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ KnownZero |= RHSKnownZero & BKnownOne;
+ KnownOne |= RHSKnownOne & BKnownOne;
+ // assume(v << c = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
+ // assume(~(v << c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
+ // assume(v >> c = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V,
+ m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero << C->getZExtValue();
+ KnownOne |= RHSKnownOne << C->getZExtValue();
+ // assume(~(v >> c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
+ m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C)))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne << C->getZExtValue();
+ KnownOne |= RHSKnownZero << C->getZExtValue();
+ // assume(v >=_s c) where c is non-negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v >_s c) where c is at least -1.
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_s c) where c is negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <_s c) where c is non-positive
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero.
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ // assume(v <_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero (if c is a power
+ // of 2, then one more).
+ if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
+ else
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ }
+ }
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
+///
+/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
+/// we cannot optimize based on the assumption that it is zero without changing
+/// it to be an explicit zero. If we don't change it to zero, other code could
+/// optimized based on the contradictory assumption that it is non-zero.
+/// Because instcombine aggressively folds operations with undef args anyway,
+/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ assert((V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->getScalarType()->isPointerTy()) &&
+ "Not integer or pointer type!");
+ assert((!TD ||
+ TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ (!V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->getScalarSizeInBits() == BitWidth) &&
+ KnownZero.getBitWidth() == BitWidth &&
+ KnownOne.getBitWidth() == BitWidth &&
+ "V, KnownOne and KnownZero should have same BitWidth");
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ // We know all of the bits for a constant!
+ KnownOne = CI->getValue();
+ KnownZero = ~KnownOne;
+ return;
+ }
+ // Null and aggregate-zero are all-zeros.
+ if (isa<ConstantPointerNull>(V) ||
+ isa<ConstantAggregateZero>(V)) {
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ return;
+ }
+ // Handle a constant vector by taking the intersection of the known bits of
+ // each element. There is no real need to handle ConstantVector here, because
+ // we don't handle undef in any particularly useful way.
+ if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
+ // We know that CDS must be a vector of integers. Take the intersection of
+ // each element.
+ KnownZero.setAllBits(); KnownOne.setAllBits();
+ APInt Elt(KnownZero.getBitWidth(), 0);
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ Elt = CDS->getElementAsInteger(i);
+ KnownZero &= ~Elt;
+ KnownOne &= Elt;
+ }
+ return;
+ }
+
+ // The address of an aligned GlobalValue has trailing zeros.
+ if (auto *GO = dyn_cast<GlobalObject>(V)) {
+ unsigned Align = GO->getAlignment();
+ if (Align == 0 && TD) {
+ if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
+ Type *ObjectType = GVar->getType()->getElementType();
+ if (ObjectType->isSized()) {
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
+ Align = TD->getPreferredAlignment(GVar);
+ else
+ Align = TD->getABITypeAlignment(ObjectType);
+ }
+ }
+ }
+ if (Align > 0)
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ countTrailingZeros(Align));
+ else
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
+ return;
+ }
+
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
+
+ if (!Align && TD && A->hasStructRetAttr()) {
+ // An sret parameter has at least the ABI alignment of the return type.
+ Type *EltTy = cast<PointerType>(A->getType())->getElementType();
+ if (EltTy->isSized())
+ Align = TD->getABITypeAlignment(EltTy);
+ }
+
+ if (Align)
+ KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
+ else
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
+
+ // Don't give up yet... there might be an assumption that provides more
+ // information...
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+ return;
+ }
+
+ // Start out not knowing anything.
+ KnownZero.clearAllBits(); KnownOne.clearAllBits();
+
+ // Limit search depth.
+ // All recursive calls that increase depth must come after this.
+ if (Depth == MaxDepth)
+ return;
+
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden())
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
+ return;
+ }
+
+ // Check whether a nearby assume intrinsic can determine some known bits.
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return;
+
+ APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero);
+ break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+ break;
+ }
+ case Instruction::Or: {
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ break;
+ }
+ case Instruction::Xor: {
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+ KnownZero = KnownZeroOut;
+ break;
+ }
+ case Instruction::Mul: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth, Q);
+ break;
+ }
+ case Instruction::UDiv: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ unsigned LeadZ = KnownZero2.countLeadingOnes();
+
+ KnownOne2.clearAllBits();
+ KnownZero2.clearAllBits();
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+ if (RHSUnknownLeadingOnes != BitWidth)
+ LeadZ = std::min(BitWidth,
+ LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
+ break;
+ }
+ case Instruction::Select:
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ break; // Can't work with floating point.
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::AddrSpaceCast: // Pointers could be different sizes.
+ // We can't handle these if we don't know the pointer size.
+ if (!TD) break;
+ // FALL THROUGH and handle them the same as zext/trunc.
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
+ // Note that we handle pointer operands here because of inttoptr/ptrtoint
+ // which fall through here.
+ if(TD) {
+ SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
+ } else {
+ SrcBitWidth = SrcTy->getScalarSizeInBits();
+ if (!SrcBitWidth) break;
+ }
+
+ assert(SrcBitWidth && "SrcBitWidth can't be zero");
+ KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
+ KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ KnownZero = KnownZero.zextOrTrunc(BitWidth);
+ KnownOne = KnownOne.zextOrTrunc(BitWidth);
+ // Any top bits are known to be zero.
+ if (BitWidth > SrcBitWidth)
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ break;
+ }
+ case Instruction::BitCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !I->getType()->isVectorTy()) {
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ break;
+ }
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ KnownZero = KnownZero.trunc(SrcBitWidth);
+ KnownOne = KnownOne.trunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
+ KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ break;
+ }
+ case Instruction::Shl:
+ // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ KnownZero <<= ShiftAmt;
+ KnownOne <<= ShiftAmt;
+ KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
+ }
+ break;
+ case Instruction::LShr:
+ // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // Compute the new bits that are at the top now.
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+
+ // Unsigned shift right.
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
+ KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
+ // high bits known zero.
+ KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ }
+ break;
+ case Instruction::AShr:
+ // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // Compute the new bits that are at the top now.
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
+
+ // Signed shift right.
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
+ KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
+
+ APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+ if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
+ KnownZero |= HighBits;
+ else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
+ KnownOne |= HighBits;
+ }
+ break;
+ case Instruction::Sub: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth, Q);
+ break;
+ }
+ case Instruction::Add: {
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth, Q);
+ break;
+ }
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
+ Depth+1, Q);
+
+ // The low bits of the first operand are unchanged by the srem.
+ KnownZero = KnownZero2 & LowBits;
+ KnownOne = KnownOne2 & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
+ KnownZero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
+ KnownOne |= ~LowBits;
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ }
+ }
+
+ // The sign bit is the LHS's sign bit, except when the result of the
+ // remainder is zero.
+ if (KnownZero.isNonNegative()) {
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
+ Depth+1, Q);
+ // If it's known zero, our sign bit is also zero.
+ if (LHSKnownZero.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ }
+
+ break;
+ case Instruction::URem: {
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
+ Depth+1, Q);
+ KnownZero |= ~LowBits;
+ KnownOne &= LowBits;
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
+ KnownZero2.countLeadingOnes());
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
+ break;
+ }
+
+ case Instruction::Alloca: {
+ AllocaInst *AI = cast<AllocaInst>(V);
+ unsigned Align = AI->getAlignment();
+ if (Align == 0 && TD)
+ Align = TD->getABITypeAlignment(AI->getType()->getElementType());
+
+ if (Align > 0)
+ KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ // Analyze all of the subscripts of this getelementptr instruction
+ // to determine if we can prove known low zero bits.
+ APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
+ Depth+1, Q);
+ unsigned TrailZ = LocalKnownZero.countTrailingOnes();
+
+ gep_type_iterator GTI = gep_type_begin(I);
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
+ Value *Index = I->getOperand(i);
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ // Handle struct member offset arithmetic.
+ if (!TD) {
+ TrailZ = 0;
+ break;
+ }
+
+ // Handle case when index is vector zeroinitializer
+ Constant *CIndex = cast<Constant>(Index);
+ if (CIndex->isZeroValue())
+ continue;
+
+ if (CIndex->getType()->isVectorTy())
+ Index = CIndex->getSplatValue();
+
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+ const StructLayout *SL = TD->getStructLayout(STy);
+ uint64_t Offset = SL->getElementOffset(Idx);
+ TrailZ = std::min<unsigned>(TrailZ,
+ countTrailingZeros(Offset));
+ } else {
+ // Handle array index arithmetic.
+ Type *IndexedTy = GTI.getIndexedType();
+ if (!IndexedTy->isSized()) {
+ TrailZ = 0;
+ break;
+ }
+ unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
+ uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
+ LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
+ TrailZ = std::min(TrailZ,
+ unsigned(countTrailingZeros(TypeSize) +
+ LocalKnownZero.countTrailingOnes()));
+ }
+ }
+
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *P = cast<PHINode>(I);
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ if (P->getNumIncomingValues() == 2) {
+ for (unsigned i = 0; i != 2; ++i) {
+ Value *L = P->getIncomingValue(i);
+ Value *R = P->getIncomingValue(!i);
+ Operator *LU = dyn_cast<Operator>(L);
+ if (!LU)
+ continue;
+ unsigned Opcode = LU->getOpcode();
+ // Check for operations that have the property that if
+ // both their operands have low zero bits, the result
+ // will have low zero bits.
+ if (Opcode == Instruction::Add ||
+ Opcode == Instruction::Sub ||
+ Opcode == Instruction::And ||
+ Opcode == Instruction::Or ||
+ Opcode == Instruction::Mul) {
+ Value *LL = LU->getOperand(0);
+ Value *LR = LU->getOperand(1);
+ // Find a recurrence.
+ if (LL == I)
+ L = LR;
+ else if (LR == I)
+ L = LL;
+ else
+ break;
+ // Ok, we have a PHI of the form L op= R. Check for low
+ // zero bits.
+ computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // We need to take the minimum number of known bits
+ APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
+ computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
+
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ std::min(KnownZero2.countTrailingOnes(),
+ KnownZero3.countTrailingOnes()));
+ break;
+ }
+ }
+ }
+
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (P->getNumIncomingValues() == 0)
+ break;
+
+ // Otherwise take the unions of the known bit sets of the operands,
+ // taking conservative care to avoid excessive recursion.
+ if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
+ // Skip if every incoming value references to ourself.
+ if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
+ break;
+
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
+ // Skip direct self references.
+ if (P->getIncomingValue(i) == P) continue;
+
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ // Recurse, but cap the recursion to one level, because we don't
+ // want to waste time spinning around in loops.
+ computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
+ MaxDepth-1, Q);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ // If all bits have been ruled out, there's no need to check
+ // more operands.
+ if (!KnownZero && !KnownOne)
+ break;
+ }
+ }
+ break;
+ }
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero);
+ // If a range metadata is attached to this IntrinsicInst, intersect the
+ // explicit range specified by the metadata and the implicit range of
+ // the intrinsic.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
+ // If this call is undefined for 0, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ LowBits -= 1;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ break;
+ }
+ case Intrinsic::ctpop: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ break;
+ }
+ case Intrinsic::x86_sse42_crc32_64_64:
+ KnownZero |= APInt::getHighBitsSet(64, 32);
+ break;
+ }
+ }
+ break;
+ case Instruction::ExtractValue:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
+ ExtractValueInst *EVI = cast<ExtractValueInst>(I);
+ if (EVI->getNumIndices() != 1) break;
+ if (EVI->getIndices()[0] == 0) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
+ false, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, TD, Depth, Q);
+ break;
+ }
+ }
+ }
+ }
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+}
+
+/// Determine whether the sign bit is known to be zero or one.
+/// Convenience wrapper around computeKnownBits.
+void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ unsigned BitWidth = getBitWidth(V->getType(), TD);
+ if (!BitWidth) {
+ KnownZero = false;
+ KnownOne = false;
+ return;
+ }
+ APInt ZeroBits(BitWidth, 0);
+ APInt OneBits(BitWidth, 0);
+ computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
+ KnownOne = OneBits[BitWidth - 1];
+ KnownZero = ZeroBits[BitWidth - 1];
+}
+
+/// Return true if the given value is known to have exactly one
+/// bit set when defined. For vectors return true if every element is known to
+/// be a power of two when defined. Supports values with integer or pointer
+/// types and vectors of integers.
+bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return OrZero;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return CI->getValue().isPowerOf2();
+ // TODO: Handle vector constants.
+ }
+
+ // 1 << X is clearly a power of two if the one is not shifted off the end. If
+ // it is shifted off the end then the result is undefined.
+ if (match(V, m_Shl(m_One(), m_Value())))
+ return true;
+
+ // (signbit) >>l X is clearly a power of two if the one is not shifted off the
+ // bottom. If it is shifted off the bottom then the result is undefined.
+ if (match(V, m_LShr(m_SignBit(), m_Value())))
+ return true;
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return false;
+
+ Value *X = nullptr, *Y = nullptr;
+ // A shift of a power of two is a power of two or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_Shr(m_Value(X), m_Value()))))
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
+
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(V))
+ return
+ isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
+
+ // Adding a power-of-two or zero to the same power-of-two or zero yields
+ // either the original power-of-two, a larger power-of-two or zero.
+ if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
+ if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
+ if (match(X, m_And(m_Specific(Y), m_Value())) ||
+ match(X, m_And(m_Value(), m_Specific(Y))))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
+ return true;
+ if (match(Y, m_And(m_Specific(X), m_Value())) ||
+ match(Y, m_And(m_Value(), m_Specific(X))))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
+ return true;
+
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
+
+ APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
+ // If i8 V is a power of two or zero:
+ // ZeroBits: 1 1 1 0 1 1 1 1
+ // ~ZeroBits: 0 0 0 1 0 0 0 0
+ if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
+ // If OrZero isn't set, we cannot give back a zero result.
+ // Make sure either the LHS or RHS has a bit set.
+ if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
+ return true;
+ }
+ }
+
+ // An exact divide or right shift can only shift off zero bits, so the result
+ // is a power of two only if the first operand is a power of two and not
+ // copying a sign bit (sdiv int_min, 2).
+ if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
+ match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
+ return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
+ Depth, Q);
+ }
+
+ return false;
+}
+
+/// \brief Test whether a GEP's result is known to be non-null.
+///
+/// Uses properties inherent in a GEP to try to determine whether it is known
+/// to be non-null.
+///
+/// Currently this routine does not support vector GEPs.
+static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
+ unsigned Depth, const Query &Q) {
+ if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
+ return false;
+
+ // FIXME: Support vector-GEPs.
+ assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
+
+ // If the base pointer is non-null, we cannot walk to a null address with an
+ // inbounds GEP in address space zero.
+ if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
+ return true;
+
+ // Past this, if we don't have DataLayout, we can't do much.
+ if (!DL)
+ return false;
+
+ // Walk the GEP operands and see if any operand introduces a non-zero offset.
+ // If so, then the GEP cannot produce a null pointer, as doing so would
+ // inherently violate the inbounds contract within address space zero.
+ for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ // Struct types are easy -- they must always be indexed by a constant.
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = DL->getStructLayout(STy);
+ uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
+ if (ElementOffset > 0)
+ return true;
+ continue;
+ }
+
+ // If we have a zero-sized type, the index doesn't matter. Keep looping.
+ if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
+ continue;
+
+ // Fast path the constant operand case both for efficiency and so we don't
+ // increment Depth when just zipping down an all-constant GEP.
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
+ if (!OpC->isZero())
+ return true;
+ continue;
+ }
+
+ // We post-increment Depth here because while isKnownNonZero increments it
+ // as well, when we pop back up that increment won't persist. We don't want
+ // to recurse 10k times just because we have 10k GEP operands. We don't
+ // bail completely out because we want to handle constant GEPs regardless
+ // of depth.
+ if (Depth++ >= MaxDepth)
+ continue;
+
+ if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
+ return true;
+ }
+
+ return false;
+}
+
+/// Does the 'Range' metadata (which must be a valid MD_range operand list)
+/// ensure that the value it's attached to is never Value? 'RangeType' is
+/// is the type of the value described by the range.
+static bool rangeMetadataExcludesValue(MDNode* Ranges,
+ const APInt& Value) {
+ const unsigned NumRanges = Ranges->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.contains(Value))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is known to be non-zero when defined.
+/// For vectors return true if every element is known to be non-zero when
+/// defined. Supports values with integer or pointer type and vectors of
+/// integers.
+bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return false;
+ if (isa<ConstantInt>(C))
+ // Must be non-zero due to null test above.
+ return true;
+ // TODO: Handle vectors
+ return false;
+ }
+
+ if (Instruction* I = dyn_cast<Instruction>(V)) {
+ if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
+ // If the possible ranges don't contain zero, then the value is
+ // definitely non-zero.
+ if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
+ const APInt ZeroValue(Ty->getBitWidth(), 0);
+ if (rangeMetadataExcludesValue(Ranges, ZeroValue))
+ return true;
+ }
+ }
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ >= MaxDepth)
+ return false;
+
+ // Check for pointer simplifications.
+ if (V->getType()->isPointerTy()) {
+ if (isKnownNonNull(V))
+ return true;
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ if (isGEPKnownNonNull(GEP, TD, Depth, Q))
+ return true;
+ }
+
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
+
+ // X | Y != 0 if X != 0 or Y != 0.
+ Value *X = nullptr, *Y = nullptr;
+ if (match(V, m_Or(m_Value(X), m_Value(Y))))
+ return isKnownNonZero(X, TD, Depth, Q) ||
+ isKnownNonZero(Y, TD, Depth, Q);
+
+ // ext X != 0 if X != 0.
+ if (isa<SExtInst>(V) || isa<ZExtInst>(V))
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
+
+ // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
+ // if the lowest bit is shifted off the end.
+ if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
+ // shl nuw can't remove any non-zero bits.
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ if (BO->hasNoUnsignedWrap())
+ return isKnownNonZero(X, TD, Depth, Q);
+
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ if (KnownOne[0])
+ return true;
+ }
+ // shr X, Y != 0 if X is negative. Note that the value of the shift is not
+ // defined if the sign bit is shifted off the end.
+ else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
+ // shr exact can only shift out zero bits.
+ PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
+ if (BO->isExact())
+ return isKnownNonZero(X, TD, Depth, Q);
+
+ bool XKnownNonNegative, XKnownNegative;
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
+ if (XKnownNegative)
+ return true;
+ }
+ // div exact can only produce a zero if the dividend is zero.
+ else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
+ return isKnownNonZero(X, TD, Depth, Q);
+ }
+ // X + Y.
+ else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ bool XKnownNonNegative, XKnownNegative;
+ bool YKnownNonNegative, YKnownNegative;
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
+
+ // If X and Y are both non-negative (as signed values) then their sum is not
+ // zero unless both X and Y are zero.
+ if (XKnownNonNegative && YKnownNonNegative)
+ if (isKnownNonZero(X, TD, Depth, Q) ||
+ isKnownNonZero(Y, TD, Depth, Q))
+ return true;
+
+ // If X and Y are both negative (as signed values) then their sum is not
+ // zero unless both X and Y equal INT_MIN.
+ if (BitWidth && XKnownNegative && YKnownNegative) {
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ APInt Mask = APInt::getSignedMaxValue(BitWidth);
+ // The sign bit of X is set. If some other bit is set then X is not equal
+ // to INT_MIN.
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ if ((KnownOne & Mask) != 0)
+ return true;
+ // The sign bit of Y is set. If some other bit is set then Y is not equal
+ // to INT_MIN.
+ computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
+ if ((KnownOne & Mask) != 0)
+ return true;
+ }
+
+ // The sum of a non-negative number and a power of two is not zero.
+ if (XKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
+ return true;
+ if (YKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
+ return true;
+ }
+ // X * Y.
+ else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
+ isKnownNonZero(X, TD, Depth, Q) &&
+ isKnownNonZero(Y, TD, Depth, Q))
+ return true;
+ }
+ // (C ? X : Y) != 0 if X != 0 and Y != 0.
+ else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
+ return true;
+ }
+
+ if (!BitWidth) return false;
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ return KnownOne != 0;
+}
+
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool MaskedValueIsZero(Value *V, const APInt &Mask,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
+ APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ return (KnownZero & Mask) == Mask;
+}
+
+
+
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign bit
+/// (itself), but other cases can give us information. For example, immediately
+/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
+/// other, so we return 3.
+///
+/// 'Op' must have a scalar integer type.
+///
+unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, const Query &Q) {
+ assert((TD || V->getType()->isIntOrIntVectorTy()) &&
+ "ComputeNumSignBits requires a DataLayout object to operate "
+ "on non-integer values!");
+ Type *Ty = V->getType();
+ unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
+ Ty->getScalarSizeInBits();
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ // Note that ConstantInt is handled by the general computeKnownBits case
+ // below.
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ Operator *U = dyn_cast<Operator>(V);
+ switch (Operator::getOpcode(V)) {
+ default: break;
+ case Instruction::SExt:
+ Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
+ return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
+
+ case Instruction::AShr: {
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ // ashr X, C -> adds C sign bits. Vectors too.
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ Tmp += ShAmt->getZExtValue();
+ if (Tmp > TyBits) Tmp = TyBits;
+ }
+ return Tmp;
+ }
+ case Instruction::Shl: {
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp2 = ShAmt->getZExtValue();
+ if (Tmp2 >= TyBits || // Bad shift.
+ Tmp2 >= Tmp) break; // Shifted all sign bits out.
+ return Tmp - Tmp2;
+ }
+ break;
+ }
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // computeKnownBits, and pick whichever answer is better.
+ }
+ break;
+
+ case Instruction::Select:
+ Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
+ return std::min(Tmp, Tmp2);
+
+ case Instruction::Add:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ if (Tmp == 1) return 1; // Early out.
+
+ // Special case decrementing a value (ADD X, -1):
+ if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
+ return TyBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (KnownZero.isNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ if (Tmp2 == 1) return 1;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::Sub:
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ if (Tmp2 == 1) return 1;
+
+ // Handle NEG.
+ if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
+ if (CLHS->isNullValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
+ return TyBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (KnownZero.isNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ if (Tmp == 1) return 1; // Early out.
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(U);
+ unsigned NumIncomingValues = PN->getNumIncomingValues();
+ // Don't analyze large in-degree PHIs.
+ if (NumIncomingValues > 4) break;
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (NumIncomingValues == 0) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
+ for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ Tmp = std::min(Tmp,
+ ComputeNumSignBits(PN->getIncomingValue(i), TD,
+ Depth+1, Q));
+ }
+ return Tmp;
+ }
+
+ case Instruction::Trunc:
+ // FIXME: it's tricky to do anything useful for this, but it is an important
+ // case for targets like X86.
+ break;
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask;
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+
+ if (KnownZero.isNegative()) { // sign bit is 0
+ Mask = KnownZero;
+ } else if (KnownOne.isNegative()) { // sign bit is 1;
+ Mask = KnownOne;
+ } else {
+ // Nothing known.
+ return FirstAnswer;
+ }
+
+ // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
+ // the number of identical bits in the top of the input value.
+ Mask = ~Mask;
+ Mask <<= Mask.getBitWidth()-TyBits;
+ // Return # leading zeros. We use 'min' here in case Val was zero before
+ // shifting. We don't want to return '64' as for an i32 "0".
+ return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
+}
+
+/// This function computes the integer multiple of Base that equals V.
+/// If successful, it returns true and returns the multiple in
+/// Multiple. If unsuccessful, it returns false. It looks
+/// through SExt instructions only if LookThroughSExt is true.
+bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
+ bool LookThroughSExt, unsigned Depth) {
+ const unsigned MaxDepth = 6;
+
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
+
+ Type *T = V->getType();
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+
+ if (Base == 0)
+ return false;
+
+ if (Base == 1) {
+ Multiple = V;
+ return true;
+ }
+
+ ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
+ Constant *BaseVal = ConstantInt::get(T, Base);
+ if (CO && CO == BaseVal) {
+ // Multiple is 1.
+ Multiple = ConstantInt::get(T, 1);
+ return true;
+ }
+
+ if (CI && CI->getZExtValue() % Base == 0) {
+ Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
+ return true;
+ }
+
+ if (Depth == MaxDepth) return false; // Limit search depth.
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::SExt:
+ if (!LookThroughSExt) return false;
+ // otherwise fall through to ZExt
+ case Instruction::ZExt:
+ return ComputeMultiple(I->getOperand(0), Base, Multiple,
+ LookThroughSExt, Depth+1);
+ case Instruction::Shl:
+ case Instruction::Mul: {
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+
+ if (I->getOpcode() == Instruction::Shl) {
+ ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
+ if (!Op1CI) return false;
+ // Turn Op0 << Op1 into Op0 * 2^Op1
+ APInt Op1Int = Op1CI->getValue();
+ uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
+ APInt API(Op1Int.getBitWidth(), 0);
+ API.setBit(BitToSet);
+ Op1 = ConstantInt::get(V->getContext(), API);
+ }
+
+ Value *Mul0 = nullptr;
+ if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1))
+ if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
+ if (Op1C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
+ if (Op1C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
+
+ // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
+ Multiple = ConstantExpr::getMul(MulC, Op1C);
+ return true;
+ }
+
+ if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
+ if (Mul0CI->getValue() == 1) {
+ // V == Base * Op1, so return Op1
+ Multiple = Op1;
+ return true;
+ }
+ }
+
+ Value *Mul1 = nullptr;
+ if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
+ if (Constant *Op0C = dyn_cast<Constant>(Op0))
+ if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
+ if (Op0C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
+ if (Op0C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
+
+ // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
+ Multiple = ConstantExpr::getMul(MulC, Op0C);
+ return true;
+ }
+
+ if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
+ if (Mul1CI->getValue() == 1) {
+ // V == Base * Op0, so return Op0
+ Multiple = Op0;
+ return true;
+ }
+ }
+ }
+ }
+
+ // We could not determine if V is a multiple of Base.
+ return false;
+}
+
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
+///
+/// NOTE: this function will need to be revisited when we support non-default
+/// rounding modes!
+///
+bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegZero();
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ // Check if the nsz fast-math flag is set
+ if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
+ if (FPO->hasNoSignedZeros())
+ return true;
+
+ // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
+ if (I->getOpcode() == Instruction::FAdd)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
+ if (CFP->isNullValue())
+ return true;
+
+ // sitofp and uitofp turn into +0.0 for zero.
+ if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
+ return true;
+
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ // sqrt(-0.0) = -0.0, no other negative results are possible.
+ if (II->getIntrinsicID() == Intrinsic::sqrt)
+ return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
+
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (const Function *F = CI->getCalledFunction()) {
+ if (F->isDeclaration()) {
+ // abs(x) != -0.0
+ if (F->getName() == "abs") return true;
+ // fabs[lf](x) != -0.0
+ if (F->getName() == "fabs") return true;
+ if (F->getName() == "fabsf") return true;
+ if (F->getName() == "fabsl") return true;
+ if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
+ F->getName() == "sqrtl")
+ return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
+ }
+ }
+
+ return false;
+}
+
+/// If the specified value can be set by repeating the same byte in memory,
+/// return the i8 value that it is represented with. This is
+/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
+/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
+/// byte store (e.g. i16 0x1234), return null.
+Value *llvm::isBytewiseValue(Value *V) {
+ // All byte-wide stores are splatable, even of arbitrary variables.
+ if (V->getType()->isIntegerTy(8)) return V;
+
+ // Handle 'null' ConstantArrayZero etc.
+ if (Constant *C = dyn_cast<Constant>(V))
+ if (C->isNullValue())
+ return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
+
+ // Constant float and double values can be handled as integer values if the
+ // corresponding integer value is "byteable". An important case is 0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ if (CFP->getType()->isFloatTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
+ if (CFP->getType()->isDoubleTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
+ // Don't handle long double formats, which have strange constraints.
+ }
+
+ // We can handle constant integers that are power of two in size and a
+ // multiple of 8 bits.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ unsigned Width = CI->getBitWidth();
+ if (isPowerOf2_32(Width) && Width > 8) {
+ // We can handle this value if the recursive binary decomposition is the
+ // same at all levels.
+ APInt Val = CI->getValue();
+ APInt Val2;
+ while (Val.getBitWidth() != 8) {
+ unsigned NextWidth = Val.getBitWidth()/2;
+ Val2 = Val.lshr(NextWidth);
+ Val2 = Val2.trunc(Val.getBitWidth()/2);
+ Val = Val.trunc(Val.getBitWidth()/2);
+
+ // If the top/bottom halves aren't the same, reject it.
+ if (Val != Val2)
+ return nullptr;
+ }
+ return ConstantInt::get(V->getContext(), Val);
+ }
+ }
+
+ // A ConstantDataArray/Vector is splatable if all its members are equal and
+ // also splatable.
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
+ Value *Elt = CA->getElementAsConstant(0);
+ Value *Val = isBytewiseValue(Elt);
+ if (!Val)
+ return nullptr;
+
+ for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
+ if (CA->getElementAsConstant(I) != Elt)
+ return nullptr;
+
+ return Val;
+ }
+
+ // Conceptually, we could handle things like:
+ // %a = zext i8 %X to i16
+ // %b = shl i16 %a, 8
+ // %c = or i16 %a, %b
+ // but until there is an example that actually needs this, it doesn't seem
+ // worth worrying about.
+ return nullptr;
+}
+
+
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
+ SmallVectorImpl<unsigned> &Idxs,
+ unsigned IdxSkip,
+ Instruction *InsertBefore) {
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
+ if (STy) {
+ // Save the original To argument so we can modify it
+ Value *OrigTo = To;
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ Value *PrevTo = To;
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
+ InsertBefore);
+ Idxs.pop_back();
+ if (!To) {
+ // Couldn't find any inserted value for this index? Cleanup
+ while (PrevTo != OrigTo) {
+ InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
+ PrevTo = Del->getAggregateOperand();
+ Del->eraseFromParent();
+ }
+ // Stop processing elements
+ break;
+ }
+ }
+ // If we successfully found a value for each of our subaggregates
+ if (To)
+ return To;
+ }
+ // Base case, the type indexed by SourceIdxs is not a struct, or not all of
+ // the struct's elements had a value that was inserted directly. In the latter
+ // case, perhaps we can't determine each of the subelements individually, but
+ // we might be able to find the complete struct somewhere.
+
+ // Find the value that is at that particular spot
+ Value *V = FindInsertedValue(From, Idxs);
+
+ if (!V)
+ return nullptr;
+
+ // Insert the value in the new (sub) aggregrate
+ return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
+ "tmp", InsertBefore);
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an insertvalue for each element in the resulting
+// struct, as opposed to just inserting a single struct. This will only work if
+// each of the elements of the substruct are known (ie, inserted into From by an
+// insertvalue instruction somewhere).
+//
+// All inserted insertvalue instructions are inserted before InsertBefore
+static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ assert(InsertBefore && "Must have someplace to insert!");
+ Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
+ idx_range);
+ Value *To = UndefValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// Given an aggregrate and an sequence of indices, see if
+/// the scalar value indexed is already around as a register, for example if it
+/// were inserted directly into the aggregrate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion).
+ if (idx_range.empty())
+ return V;
+ // We have indices, so V should have an indexable type.
+ assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
+ "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
+ "Invalid indices for type?");
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = C->getAggregateElement(idx_range[0]);
+ if (!C) return nullptr;
+ return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
+ }
+
+ if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_range.begin();
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i, ++req_idx) {
+ if (req_idx == idx_range.end()) {
+ // We can't handle this without inserting insertvalues
+ if (!InsertBefore)
+ return nullptr;
+
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
+ InsertBefore);
+ }
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregrate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindInsertedValue(I->getAggregateOperand(), idx_range,
+ InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindInsertedValue(I->getInsertedValueOperand(),
+ makeArrayRef(req_idx, idx_range.end()),
+ InsertBefore);
+ }
+
+ if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregrate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + idx_range.size();
+ // Allocate some space to put the new indices in
+ SmallVector<unsigned, 5> Idxs;
+ Idxs.reserve(size);
+ // Add indices from the extract value instruction
+ Idxs.append(I->idx_begin(), I->idx_end());
+
+ // Add requested indices
+ Idxs.append(idx_range.begin(), idx_range.end());
+
+ assert(Idxs.size() == size
+ && "Number of indices added not correct?");
+
+ return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return nullptr;
+}
+
+/// Analyze the specified pointer to see if it can be expressed as a base
+/// pointer plus a constant offset. Return the base and offset to the caller.
+Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
+ const DataLayout *DL) {
+ // Without DataLayout, conservatively assume 64-bit offsets, which is
+ // the widest we support.
+ unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
+ APInt ByteOffset(BitWidth, 0);
+ while (1) {
+ if (Ptr->getType()->isVectorTy())
+ break;
+
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ if (DL) {
+ APInt GEPOffset(BitWidth, 0);
+ if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
+ break;
+
+ ByteOffset += GEPOffset;
+ }
+
+ Ptr = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
+ Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
+ Ptr = cast<Operator>(Ptr)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
+ if (GA->mayBeOverridden())
+ break;
+ Ptr = GA->getAliasee();
+ } else {
+ break;
+ }
+ }
+ Offset = ByteOffset.getSExtValue();
+ return Ptr;
+}
+
+
+/// This function computes the length of a null-terminated C string pointed to
+/// by V. If successful, it returns true and returns the string in Str.
+/// If unsuccessful, it returns false.
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset, bool TrimAtNul) {
+ assert(V);
+
+ // Look through bitcast instructions and geps.
+ V = V->stripPointerCasts();
+
+ // If the value is a GEP instructionor constant expression, treat it as an
+ // offset.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of i8.
+ PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
+ ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
+ if (!AT || !AT->getElementType()->isIntegerTy(8))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!FirstIdx || !FirstIdx->isZero())
+ return false;
+
+ // If the second index isn't a ConstantInt, then this is a variable index
+ // into the array. If this occurs, we can't say anything meaningful about
+ // the string.
+ uint64_t StartIdx = 0;
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+ StartIdx = CI->getZExtValue();
+ else
+ return false;
+ return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
+ }
+
+ // The GEP instruction, constant or instruction, must reference a global
+ // variable that is a constant and is initialized. The referenced constant
+ // initializer is the array that we'll use for optimization.
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ return false;
+
+ // Handle the all-zeros case
+ if (GV->getInitializer()->isNullValue()) {
+ // This is a degenerate case. The initializer is constant zero so the
+ // length of the string must be zero.
+ Str = "";
+ return true;
+ }
+
+ // Must be a Constant Array
+ const ConstantDataArray *Array =
+ dyn_cast<ConstantDataArray>(GV->getInitializer());
+ if (!Array || !Array->isString())
+ return false;
+
+ // Get the number of elements in the array
+ uint64_t NumElts = Array->getType()->getArrayNumElements();
+
+ // Start out with the entire array in the StringRef.
+ Str = Array->getAsString();
+
+ if (Offset > NumElts)
+ return false;
+
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Offset);
+
+ if (TrimAtNul) {
+ // Trim off the \0 and anything after it. If the array is not nul
+ // terminated, we just return the whole end of string. The client may know
+ // some other way that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
+ }
+ return true;
+}
+
+// These next two are very similar to the above, but also look through PHI
+// nodes.
+// TODO: See if we can integrate these two together.
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
+ // Look through noop bitcast instructions.
+ V = V->stripPointerCasts();
+
+ // If this is a PHI node, there are two cases: either we have already seen it
+ // or we haven't.
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (!PHIs.insert(PN).second)
+ return ~0ULL; // already in the set.
+
+ // If it was new, see if all the input strings are the same length.
+ uint64_t LenSoFar = ~0ULL;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
+ if (Len == 0) return 0; // Unknown length -> unknown.
+
+ if (Len == ~0ULL) continue;
+
+ if (Len != LenSoFar && LenSoFar != ~0ULL)
+ return 0; // Disagree -> unknown.
+ LenSoFar = Len;
+ }
+
+ // Success, all agree.
+ return LenSoFar;
+ }
+
+ // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
+ if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
+ if (Len1 == 0) return 0;
+ uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
+ if (Len2 == 0) return 0;
+ if (Len1 == ~0ULL) return Len2;
+ if (Len2 == ~0ULL) return Len1;
+ if (Len1 != Len2) return 0;
+ return Len1;
+ }
+
+ // Otherwise, see if we can read the string.
+ StringRef StrData;
+ if (!getConstantStringInfo(V, StrData))
+ return 0;
+
+ return StrData.size()+1;
+}
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+uint64_t llvm::GetStringLength(Value *V) {
+ if (!V->getType()->isPointerTy()) return 0;
+
+ SmallPtrSet<PHINode*, 32> PHIs;
+ uint64_t Len = GetStringLengthH(V, PHIs);
+ // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
+ // an empty string as a length.
+ return Len == ~0ULL ? 1 : Len;
+}
+
+Value *
+llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast ||
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
+ return V;
+ V = GA->getAliasee();
+ } else {
+ // See if InstructionSimplify knows any relevant tricks.
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ // TODO: Acquire a DominatorTree and AssumptionCache and use them.
+ if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
+ V = Simplified;
+ continue;
+ }
+
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+void
+llvm::GetUnderlyingObjects(Value *V,
+ SmallVectorImpl<Value *> &Objects,
+ const DataLayout *TD,
+ unsigned MaxLookup) {
+ SmallPtrSet<Value *, 4> Visited;
+ SmallVector<Value *, 4> Worklist;
+ Worklist.push_back(V);
+ do {
+ Value *P = Worklist.pop_back_val();
+ P = GetUnderlyingObject(P, TD, MaxLookup);
+
+ if (!Visited.insert(P).second)
+ continue;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(P)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ Worklist.push_back(PN->getIncomingValue(i));
+ continue;
+ }
+
+ Objects.push_back(P);
+ } while (!Worklist.empty());
+}
+
+/// Return true if the only users of this pointer are lifetime markers.
+bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
+ for (const User *U : V->users()) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ if (!II) return false;
+
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
+ }
+ return true;
+}
+
+bool llvm::isSafeToSpeculativelyExecute(const Value *V,
+ const DataLayout *TD) {
+ const Operator *Inst = dyn_cast<Operator>(V);
+ if (!Inst)
+ return false;
+
+ for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (Inst->getOpcode()) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // x / y is undefined if y == 0.
+ const APInt *V;
+ if (match(Inst->getOperand(1), m_APInt(V)))
+ return *V != 0;
+ return false;
+ }
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ // x / y is undefined if y == 0 or x == INT_MIN and y == -1
+ const APInt *X, *Y;
+ if (match(Inst->getOperand(1), m_APInt(Y))) {
+ if (*Y != 0) {
+ if (*Y == -1) {
+ // The numerator can't be MinSignedValue if the denominator is -1.
+ if (match(Inst->getOperand(0), m_APInt(X)))
+ return !Y->isMinSignedValue();
+ // The numerator *might* be MinSignedValue.
+ return false;
+ }
+ // The denominator is not 0 or -1, it's safe to proceed.
+ return true;
+ }
+ }
+ return false;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(Inst);
+ if (!LI->isUnordered() ||
+ // Speculative load may create a race that did not exist in the source.
+ LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
+ return false;
+ return LI->getPointerOperand()->isDereferenceablePointer(TD);
+ }
+ case Instruction::Call: {
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ // These synthetic intrinsics have no side-effects and just mark
+ // information about their operands.
+ // FIXME: There are other no-op synthetic instructions that potentially
+ // should be considered at least *safe* to speculate...
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ return true;
+
+ case Intrinsic::bswap:
+ case Intrinsic::ctlz:
+ case Intrinsic::ctpop:
+ case Intrinsic::cttz:
+ case Intrinsic::objectsize:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ return true;
+ // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
+ // errno like libm sqrt would.
+ case Intrinsic::sqrt:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ return true;
+ // TODO: some fp intrinsics are marked as having the same error handling
+ // as libm. They're safe to speculate when they won't error.
+ // TODO: are convert_{from,to}_fp16 safe?
+ // TODO: can we list target-specific intrinsics here?
+ default: break;
+ }
+ }
+ return false; // The called function could have undefined behavior or
+ // side-effects, even if marked readnone nounwind.
+ }
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::LandingPad:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::Resume:
+ return false; // Misc instructions which have effects
+ }
+}
+
+/// Return true if we know that the specified value is never null.
+bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V)) return true;
+
+ // A byval, inalloca, or nonnull argument is never null.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
+
+ // Global values are not null unless extern weak.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return !GV->hasExternalWeakLinkage();
+
+ // A Load tagged w/nonnull metadata is never null.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ return LI->getMetadata(LLVMContext::MD_nonnull);
+
+ if (ImmutableCallSite CS = V)
+ if (CS.isReturnNonNull())
+ return true;
+
+ // operator new never returns null.
+ if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
+ return true;
+
+ return false;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
+ const DataLayout *DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading zero bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ // Note that underestimating the number of zero bits gives a more
+ // conservative answer.
+ unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
+ RHSKnownZero.countLeadingOnes();
+ // First handle the easy case: if we have enough zero bits there's
+ // definitely no overflow.
+ if (ZeroBits >= BitWidth)
+ return OverflowResult::NeverOverflows;
+
+ // Get the largest possible values for each operand.
+ APInt LHSMax = ~LHSKnownZero;
+ APInt RHSMax = ~RHSKnownZero;
+
+ // We know the multiply operation doesn't overflow if the maximum values for
+ // each operand will not overflow after we multiply them together.
+ bool MaxOverflow;
+ LHSMax.umul_ov(RHSMax, MaxOverflow);
+ if (!MaxOverflow)
+ return OverflowResult::NeverOverflows;
+
+ // We know it always overflows if multiplying the smallest possible values for
+ // the operands also results in overflow.
+ bool MinOverflow;
+ LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
+ if (MinOverflow)
+ return OverflowResult::AlwaysOverflows;
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
+ const DataLayout *DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool LHSKnownNonNegative, LHSKnownNegative;
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+ if (LHSKnownNonNegative || LHSKnownNegative) {
+ bool RHSKnownNonNegative, RHSKnownNegative;
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::AlwaysOverflows;
+ }
+
+ if (LHSKnownNonNegative && RHSKnownNonNegative) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::NeverOverflows;
+ }
+ }
+
+ return OverflowResult::MayOverflow;
+}
OpenPOWER on IntegriCloud