summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ValueTracking.cpp1898
1 files changed, 913 insertions, 985 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp
index a83e207..f2b4078 100644
--- a/contrib/llvm/lib/Analysis/ValueTracking.cpp
+++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp
@@ -18,7 +18,9 @@
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
@@ -36,40 +38,19 @@
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <array>
#include <cstring>
using namespace llvm;
using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6;
-/// Enable an experimental feature to leverage information about dominating
-/// conditions to compute known bits. The individual options below control how
-/// hard we search. The defaults are chosen to be fairly aggressive. If you
-/// run into compile time problems when testing, scale them back and report
-/// your findings.
-static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
- cl::Hidden, cl::init(false));
-
-// This is expensive, so we only do it for the top level query value.
-// (TODO: evaluate cost vs profit, consider higher thresholds)
-static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
- cl::Hidden, cl::init(1));
-
-/// How many dominating blocks should be scanned looking for dominating
-/// conditions?
-static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
- cl::Hidden,
- cl::init(20));
-
// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
cl::Hidden, cl::init(20));
-// If true, don't consider only compares whose only use is a branch.
-static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
- cl::Hidden, cl::init(false));
-
/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
/// 0). For vector types, returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
@@ -79,34 +60,45 @@ static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
return DL.getPointerTypeSizeInBits(Ty);
}
-// Many of these functions have internal versions that take an assumption
-// exclusion set. This is because of the potential for mutual recursion to
-// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
-// classic case of this is assume(x = y), which will attempt to determine
-// bits in x from bits in y, which will attempt to determine bits in y from
-// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
-// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
-// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
-typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
-
namespace {
// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
- ExclInvsSet ExclInvs;
+ const DataLayout &DL;
AssumptionCache *AC;
const Instruction *CxtI;
const DominatorTree *DT;
- Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr)
- : AC(AC), CxtI(CxtI), DT(DT) {}
+ /// Set of assumptions that should be excluded from further queries.
+ /// This is because of the potential for mutual recursion to cause
+ /// computeKnownBits to repeatedly visit the same assume intrinsic. The
+ /// classic case of this is assume(x = y), which will attempt to determine
+ /// bits in x from bits in y, which will attempt to determine bits in y from
+ /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
+ /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
+ /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
+ /// on.
+ std::array<const Value*, MaxDepth> Excluded;
+ unsigned NumExcluded;
+
+ Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT)
+ : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Query(const Query &Q, const Value *NewExcl)
- : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
- ExclInvs.insert(NewExcl);
+ : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
+ Excluded = Q.Excluded;
+ Excluded[NumExcluded++] = NewExcl;
+ assert(NumExcluded <= Excluded.size());
+ }
+
+ bool isExcluded(const Value *Value) const {
+ if (NumExcluded == 0)
+ return false;
+ auto End = Excluded.begin() + NumExcluded;
+ return std::find(Excluded.begin(), End, Value) != End;
}
};
} // end anonymous namespace
@@ -128,15 +120,14 @@ static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
}
static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth,
- const Query &Q);
+ unsigned Depth, const Query &Q);
void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
+ ::computeKnownBits(V, KnownZero, KnownOne, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT));
}
bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
@@ -155,35 +146,33 @@ bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
}
static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth,
- const Query &Q);
+ unsigned Depth, const Query &Q);
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
+ ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT));
}
static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q, const DataLayout &DL);
+ const Query &Q);
bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
- Query(AC, safeCxtI(V, CxtI), DT), DL);
+ Query(DL, AC, safeCxtI(V, CxtI), DT));
}
-static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q);
+static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
}
bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
@@ -194,42 +183,59 @@ bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
return NonNegative;
}
-static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
- const Query &Q);
+bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ if (auto *CI = dyn_cast<ConstantInt>(V))
+ return CI->getValue().isStrictlyPositive();
+
+ // TODO: We'd doing two recursive queries here. We should factor this such
+ // that only a single query is needed.
+ return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
+ isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
+}
+
+bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool NonNegative, Negative;
+ ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
+ return Negative;
+}
+
+static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- return ::isKnownNonEqual(V1, V2, DL, Query(AC,
- safeCxtI(V1, safeCxtI(V2, CxtI)),
- DT));
+ return ::isKnownNonEqual(V1, V2, Query(DL, AC,
+ safeCxtI(V1, safeCxtI(V2, CxtI)),
+ DT));
}
-static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth, const Query &Q);
+static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q);
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT) {
- return ::MaskedValueIsZero(V, Mask, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
+ return ::MaskedValueIsZero(V, Mask, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT));
}
-static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
- unsigned Depth, const Query &Q);
+static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
- return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
}
static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout &DL, unsigned Depth,
- const Query &Q) {
+ unsigned Depth, const Query &Q) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
@@ -240,7 +246,7 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -259,8 +265,8 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// If an initial sequence of bits in the result is not needed, the
// corresponding bits in the operands are not needed.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
- computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
// Carry in a 1 for a subtract, rather than a 0.
APInt CarryIn(BitWidth, 0);
@@ -308,11 +314,10 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout &DL, unsigned Depth,
- const Query &Q) {
+ unsigned Depth, const Query &Q) {
unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -333,9 +338,9 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, DL, Depth, Q)) ||
+ isKnownNonZero(Op0, Depth, Q)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, DL, Depth, Q));
+ isKnownNonZero(Op1, Depth, Q));
}
}
@@ -451,7 +456,8 @@ static bool isAssumeLikeIntrinsic(const Instruction *I) {
return false;
}
-static bool isValidAssumeForContext(Value *V, const Query &Q) {
+static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
+ const DominatorTree *DT) {
Instruction *Inv = cast<Instruction>(V);
// There are two restrictions on the use of an assume:
@@ -462,43 +468,43 @@ static bool isValidAssumeForContext(Value *V, const Query &Q) {
// feeding the assume is trivially true, thus causing the removal of
// the assume).
- if (Q.DT) {
- if (Q.DT->dominates(Inv, Q.CxtI)) {
+ if (DT) {
+ if (DT->dominates(Inv, CxtI)) {
return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ } else if (Inv->getParent() == CxtI->getParent()) {
// The context comes first, but they're both in the same block. Make sure
// there is nothing in between that might interrupt the control flow.
for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
+ std::next(BasicBlock::const_iterator(CxtI)),
IE(Inv); I != IE; ++I)
if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
+ return !isEphemeralValueOf(Inv, CxtI);
}
return false;
}
// When we don't have a DT, we do a limited search...
- if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
+ if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ } else if (Inv->getParent() == CxtI->getParent()) {
// Search forward from the assume until we reach the context (or the end
// of the block); the common case is that the assume will come first.
for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
IE = Inv->getParent()->end(); I != IE; ++I)
- if (&*I == Q.CxtI)
+ if (&*I == CxtI)
return true;
// The context must come first...
for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
+ std::next(BasicBlock::const_iterator(CxtI)),
IE(Inv); I != IE; ++I)
if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
+ return !isEphemeralValueOf(Inv, CxtI);
}
return false;
@@ -507,226 +513,12 @@ static bool isValidAssumeForContext(Value *V, const Query &Q) {
bool llvm::isValidAssumeForContext(const Instruction *I,
const Instruction *CxtI,
const DominatorTree *DT) {
- return ::isValidAssumeForContext(const_cast<Instruction *>(I),
- Query(nullptr, CxtI, DT));
-}
-
-template<typename LHS, typename RHS>
-inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
- CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
-m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
-}
-
-template<typename LHS, typename RHS>
-inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
- BinaryOp_match<RHS, LHS, Instruction::And>>
-m_c_And(const LHS &L, const RHS &R) {
- return m_CombineOr(m_And(L, R), m_And(R, L));
-}
-
-template<typename LHS, typename RHS>
-inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
- BinaryOp_match<RHS, LHS, Instruction::Or>>
-m_c_Or(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Or(L, R), m_Or(R, L));
-}
-
-template<typename LHS, typename RHS>
-inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
- BinaryOp_match<RHS, LHS, Instruction::Xor>>
-m_c_Xor(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
-}
-
-/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
-/// true (at the context instruction.) This is mostly a utility function for
-/// the prototype dominating conditions reasoning below.
-static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
- APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- // TODO: We could potentially be more aggressive here. This would be worth
- // evaluating. If we can, explore commoning this code with the assume
- // handling logic.
- if (LHS != V && RHS != V)
- return;
-
- const unsigned BitWidth = KnownZero.getBitWidth();
-
- switch (Cmp->getPredicate()) {
- default:
- // We know nothing from this condition
- break;
- // TODO: implement unsigned bound from below (known one bits)
- // TODO: common condition check implementations with assumes
- // TODO: implement other patterns from assume (e.g. V & B == A)
- case ICmpInst::ICMP_SGT:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- }
- break;
- case ICmpInst::ICMP_EQ:
- {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- if (LHS == V)
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- else if (RHS == V)
- computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- else
- llvm_unreachable("missing use?");
- KnownZero |= KnownZeroTemp;
- KnownOne |= KnownOneTemp;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- // The known zero bits carry over
- unsigned SignBits = KnownZeroTemp.countLeadingOnes();
- KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
- }
- break;
- case ICmpInst::ICMP_ULT:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- // Whatever high bits in rhs are zero are known to be zero (if rhs is a
- // power of 2, then one more).
- unsigned SignBits = KnownZeroTemp.countLeadingOnes();
- if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
- SignBits++;
- KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
- }
- break;
- };
-}
-
-/// Compute known bits in 'V' from conditions which are known to be true along
-/// all paths leading to the context instruction. In particular, look for
-/// cases where one branch of an interesting condition dominates the context
-/// instruction. This does not do general dataflow.
-/// NOTE: This code is EXPERIMENTAL and currently off by default.
-static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout &DL,
- unsigned Depth,
- const Query &Q) {
- // Need both the dominator tree and the query location to do anything useful
- if (!Q.DT || !Q.CxtI)
- return;
- Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
- // The context instruction might be in a statically unreachable block. If
- // so, asking dominator queries may yield suprising results. (e.g. the block
- // may not have a dom tree node)
- if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
- return;
-
- // Avoid useless work
- if (auto VI = dyn_cast<Instruction>(V))
- if (VI->getParent() == Cxt->getParent())
- return;
-
- // Note: We currently implement two options. It's not clear which of these
- // will survive long term, we need data for that.
- // Option 1 - Try walking the dominator tree looking for conditions which
- // might apply. This works well for local conditions (loop guards, etc..),
- // but not as well for things far from the context instruction (presuming a
- // low max blocks explored). If we can set an high enough limit, this would
- // be all we need.
- // Option 2 - We restrict out search to those conditions which are uses of
- // the value we're interested in. This is independent of dom structure,
- // but is slightly less powerful without looking through lots of use chains.
- // It does handle conditions far from the context instruction (e.g. early
- // function exits on entry) really well though.
-
- // Option 1 - Search the dom tree
- unsigned NumBlocksExplored = 0;
- BasicBlock *Current = Cxt->getParent();
- while (true) {
- // Stop searching if we've gone too far up the chain
- if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
- break;
- NumBlocksExplored++;
-
- if (!Q.DT->getNode(Current)->getIDom())
- break;
- Current = Q.DT->getNode(Current)->getIDom()->getBlock();
- if (!Current)
- // found function entry
- break;
-
- BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
- if (!BI || BI->isUnconditional())
- continue;
- ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
- if (!Cmp)
- continue;
-
- // We're looking for conditions that are guaranteed to hold at the context
- // instruction. Finding a condition where one path dominates the context
- // isn't enough because both the true and false cases could merge before
- // the context instruction we're actually interested in. Instead, we need
- // to ensure that the taken *edge* dominates the context instruction. We
- // know that the edge must be reachable since we started from a reachable
- // block.
- BasicBlock *BB0 = BI->getSuccessor(0);
- BasicBlockEdge Edge(BI->getParent(), BB0);
- if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
- continue;
-
- computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
- Q);
- }
-
- // Option 2 - Search the other uses of V
- unsigned NumUsesExplored = 0;
- for (auto U : V->users()) {
- // Avoid massive lists
- if (NumUsesExplored >= DomConditionsMaxUses)
- break;
- NumUsesExplored++;
- // Consider only compare instructions uniquely controlling a branch
- ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
- if (!Cmp)
- continue;
-
- if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
- continue;
-
- for (auto *CmpU : Cmp->users()) {
- BranchInst *BI = dyn_cast<BranchInst>(CmpU);
- if (!BI || BI->isUnconditional())
- continue;
- // We're looking for conditions that are guaranteed to hold at the
- // context instruction. Finding a condition where one path dominates
- // the context isn't enough because both the true and false cases could
- // merge before the context instruction we're actually interested in.
- // Instead, we need to ensure that the taken *edge* dominates the context
- // instruction.
- BasicBlock *BB0 = BI->getSuccessor(0);
- BasicBlockEdge Edge(BI->getParent(), BB0);
- if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
- continue;
-
- computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
- Q);
- }
- }
+ return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
}
static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
- APInt &KnownOne, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
+ APInt &KnownOne, unsigned Depth,
+ const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
@@ -740,7 +532,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
"Got assumption for the wrong function!");
- if (Q.ExclInvs.count(I))
+ if (Q.isExcluded(I))
continue;
// Warning: This loop can end up being somewhat performance sensetive.
@@ -752,7 +544,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Value *Arg = I->getArgOperand(0);
- if (Arg == V && isValidAssumeForContext(I, Q)) {
+ if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
KnownZero.clearAllBits();
KnownOne.setAllBits();
@@ -772,19 +564,20 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
ConstantInt *C;
// assume(v = a)
if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
KnownZero |= RHSKnownZero;
KnownOne |= RHSKnownOne;
// assume(v & b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
// For those bits in the mask that are known to be one, we can propagate
// known bits from the RHS to V.
@@ -793,11 +586,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v & b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
// For those bits in the mask that are known to be one, we can propagate
// inverted known bits from the RHS to V.
@@ -806,11 +600,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v | b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V.
@@ -819,11 +614,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v | b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V.
@@ -832,11 +628,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v ^ b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V. For those bits in B that are known to be one,
@@ -848,11 +645,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v ^ b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V. For those bits in B that are
@@ -864,9 +662,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v << c = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
@@ -874,9 +673,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v << c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
@@ -886,9 +686,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
m_AShr(m_V, m_ConstantInt(C))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
KnownZero |= RHSKnownZero << C->getZExtValue();
@@ -898,18 +699,20 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
m_LShr(m_V, m_ConstantInt(C)),
m_AShr(m_V, m_ConstantInt(C)))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_EQ &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
KnownZero |= RHSKnownOne << C->getZExtValue();
KnownOne |= RHSKnownZero << C->getZExtValue();
// assume(v >=_s c) where c is non-negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_SGE &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
if (RHSKnownZero.isNegative()) {
// We know that the sign bit is zero.
@@ -917,9 +720,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v >_s c) where c is at least -1.
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_SGT &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
// We know that the sign bit is zero.
@@ -927,9 +731,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_s c) where c is negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_SLE &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
if (RHSKnownOne.isNegative()) {
// We know that the sign bit is one.
@@ -937,9 +742,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <_s c) where c is non-positive
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_SLT &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
// We know that the sign bit is one.
@@ -947,22 +753,24 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_ULE &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// Whatever high bits in c are zero are known to be zero.
KnownZero |=
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
// assume(v <_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
+ Pred == ICmpInst::ICMP_ULT &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
KnownZero |=
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
else
@@ -984,20 +792,19 @@ template <typename KZFunctor, typename KOFunctor>
static void computeKnownBitsFromShiftOperator(Operator *I,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout &DL, unsigned Depth, const Query &Q,
- KZFunctor KZF, KOFunctor KOF) {
+ unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
unsigned BitWidth = KnownZero.getBitWidth();
if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
KnownZero = KZF(KnownZero, ShiftAmt);
KnownOne = KOF(KnownOne, ShiftAmt);
return;
}
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
// Note: We cannot use KnownZero.getLimitedValue() here, because if
// BitWidth > 64 and any upper bits are known, we'll end up returning the
@@ -1007,7 +814,8 @@ static void computeKnownBitsFromShiftOperator(Operator *I,
// It would be more-clearly correct to use the two temporaries for this
// calculation. Reusing the APInts here to prevent unnecessary allocations.
- KnownZero.clearAllBits(), KnownOne.clearAllBits();
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
// If we know the shifter operand is nonzero, we can sometimes infer more
// known bits. However this is expensive to compute, so be lazy about it and
@@ -1017,12 +825,12 @@ static void computeKnownBitsFromShiftOperator(Operator *I,
// Early exit if we can't constrain any well-defined shift amount.
if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
ShifterOperandIsNonZero =
- isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
+ isKnownNonZero(I->getOperand(1), Depth + 1, Q);
if (!*ShifterOperandIsNonZero)
return;
}
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
@@ -1038,7 +846,7 @@ static void computeKnownBitsFromShiftOperator(Operator *I,
if (ShiftAmt == 0) {
if (!ShifterOperandIsNonZero.hasValue())
ShifterOperandIsNonZero =
- isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
+ isKnownNonZero(I->getOperand(1), Depth + 1, Q);
if (*ShifterOperandIsNonZero)
continue;
}
@@ -1052,13 +860,15 @@ static void computeKnownBitsFromShiftOperator(Operator *I,
// return anything we'd like, but we need to make sure the sets of known bits
// stay disjoint (it should be better for some other code to actually
// propagate the undef than to pick a value here using known bits).
- if ((KnownZero & KnownOne) != 0)
- KnownZero.clearAllBits(), KnownOne.clearAllBits();
+ if ((KnownZero & KnownOne) != 0) {
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
+ }
}
static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
- APInt &KnownOne, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
+ APInt &KnownOne, unsigned Depth,
+ const Query &Q) {
unsigned BitWidth = KnownZero.getBitWidth();
APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
@@ -1070,8 +880,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
@@ -1089,15 +899,15 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
m_Value(Y)))) {
APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
- computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q);
+ computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
if (KnownOne3.countTrailingOnes() > 0)
KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
}
break;
}
case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
@@ -1106,8 +916,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
}
case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
@@ -1119,19 +929,19 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, Depth, Q);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
@@ -1141,8 +951,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
}
case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
@@ -1166,12 +976,12 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
- SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
+ SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -1181,12 +991,11 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
- if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
- SrcTy->isFloatingPointTy()) &&
+ if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
break;
}
break;
@@ -1197,7 +1006,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -1221,8 +1030,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
};
computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
- KnownZero2, KnownOne2, DL, Depth, Q,
- KZF, KOF);
+ KnownZero2, KnownOne2, Depth, Q, KZF,
+ KOF);
break;
}
case Instruction::LShr: {
@@ -1238,8 +1047,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
};
computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
- KnownZero2, KnownOne2, DL, Depth, Q,
- KZF, KOF);
+ KnownZero2, KnownOne2, Depth, Q, KZF,
+ KOF);
break;
}
case Instruction::AShr: {
@@ -1253,22 +1062,22 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
};
computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
- KnownZero2, KnownOne2, DL, Depth, Q,
- KZF, KOF);
+ KnownZero2, KnownOne2, Depth, Q, KZF,
+ KOF);
break;
}
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
+ Q);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
+ Q);
break;
}
case Instruction::SRem:
@@ -1276,7 +1085,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Q);
// The low bits of the first operand are unchanged by the srem.
@@ -1301,8 +1110,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
- Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
+ Q);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -1311,11 +1120,10 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
case Instruction::URem: {
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue();
+ const APInt &RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
- Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -1324,8 +1132,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -1338,7 +1146,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
AllocaInst *AI = cast<AllocaInst>(I);
unsigned Align = AI->getAlignment();
if (Align == 0)
- Align = DL.getABITypeAlignment(AI->getType()->getElementType());
+ Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
@@ -1348,8 +1156,8 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
- Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
+ Q);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -1367,7 +1175,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min<unsigned>(TrailZ,
countTrailingZeros(Offset));
@@ -1379,10 +1187,9 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
}
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
+ uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
- Q);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -1424,11 +1231,11 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
+ computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
+ computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -1459,8 +1266,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
- MaxDepth - 1, Q);
+ computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -1473,17 +1279,21 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
}
case Instruction::Call:
case Instruction::Invoke:
+ // If range metadata is attached to this call, set known bits from that,
+ // and then intersect with known bits based on other properties of the
+ // function.
if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
- // If a range metadata is attached to this IntrinsicInst, intersect the
- // explicit range specified by the metadata and the implicit range of
- // the intrinsic.
+ if (Value *RV = CallSite(I).getReturnedArgOperand()) {
+ computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
+ KnownZero |= KnownZero2;
+ KnownOne |= KnownOne2;
+ }
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::bswap:
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
- Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
KnownZero |= KnownZero2.byteSwap();
KnownOne |= KnownOne2.byteSwap();
break;
@@ -1497,8 +1307,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
break;
}
case Intrinsic::ctpop: {
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
- Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
// We can bound the space the count needs. Also, bits known to be zero
// can't contribute to the population.
unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
@@ -1511,12 +1320,6 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
// of bits which might be set provided by popcnt KnownOne2.
break;
}
- case Intrinsic::fabs: {
- Type *Ty = II->getType();
- APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
- KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
- break;
- }
case Intrinsic::x86_sse42_crc32_64_64:
KnownZero |= APInt::getHighBitsSet(64, 32);
break;
@@ -1534,19 +1337,19 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
+ Q);
break;
}
}
@@ -1554,46 +1357,6 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
}
}
-static unsigned getAlignment(const Value *V, const DataLayout &DL) {
- unsigned Align = 0;
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- Align = GO->getAlignment();
- if (Align == 0) {
- if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
- Type *ObjectType = GVar->getType()->getElementType();
- if (ObjectType->isSized()) {
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (GVar->isStrongDefinitionForLinker())
- Align = DL.getPreferredAlignment(GVar);
- else
- Align = DL.getABITypeAlignment(ObjectType);
- }
- }
- }
- } else if (const Argument *A = dyn_cast<Argument>(V)) {
- Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
-
- if (!Align && A->hasStructRetAttr()) {
- // An sret parameter has at least the ABI alignment of the return type.
- Type *EltTy = cast<PointerType>(A->getType())->getElementType();
- if (EltTy->isSized())
- Align = DL.getABITypeAlignment(EltTy);
- }
- } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
- Align = AI->getAlignment();
- else if (auto CS = ImmutableCallSite(V))
- Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
- else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
- if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- Align = CI->getLimitedValue();
- }
-
- return Align;
-}
-
/// Determine which bits of V are known to be either zero or one and return
/// them in the KnownZero/KnownOne bit sets.
///
@@ -1610,16 +1373,15 @@ static unsigned getAlignment(const Value *V, const DataLayout &DL) {
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth, const Query &Q) {
+ unsigned Depth, const Query &Q) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
assert((V->getType()->isIntOrIntVectorTy() ||
- V->getType()->isFPOrFPVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
- "Not integer, floating point, or pointer type!");
- assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ "Not integer or pointer type!");
+ assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
@@ -1633,15 +1395,13 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
return;
}
// Null and aggregate-zero are all-zeros.
- if (isa<ConstantPointerNull>(V) ||
- isa<ConstantAggregateZero>(V)) {
+ if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
KnownOne.clearAllBits();
KnownZero = APInt::getAllOnesValue(BitWidth);
return;
}
// Handle a constant vector by taking the intersection of the known bits of
- // each element. There is no real need to handle ConstantVector here, because
- // we don't handle undef in any particularly useful way.
+ // each element.
if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
// We know that CDS must be a vector of integers. Take the intersection of
// each element.
@@ -1655,6 +1415,26 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
return;
}
+ if (auto *CV = dyn_cast<ConstantVector>(V)) {
+ // We know that CV must be a vector of integers. Take the intersection of
+ // each element.
+ KnownZero.setAllBits(); KnownOne.setAllBits();
+ APInt Elt(KnownZero.getBitWidth(), 0);
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
+ Constant *Element = CV->getAggregateElement(i);
+ auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
+ if (!ElementCI) {
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
+ return;
+ }
+ Elt = ElementCI->getValue();
+ KnownZero &= ~Elt;
+ KnownOne &= Elt;
+ }
+ return;
+ }
+
// Start out not knowing anything.
KnownZero.clearAllBits(); KnownOne.clearAllBits();
@@ -1666,33 +1446,26 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
// the bits of its aliasee.
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden())
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
+ if (!GA->isInterposable())
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
return;
}
if (Operator *I = dyn_cast<Operator>(V))
- computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
// Aligned pointers have trailing zeros - refine KnownZero set
if (V->getType()->isPointerTy()) {
- unsigned Align = getAlignment(V, DL);
+ unsigned Align = V->getPointerAlignment(Q.DL);
if (Align)
KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
}
- // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
- // strictly refines KnownZero and KnownOne. Therefore, we run them after
- // computeKnownBitsFromOperator.
+ // computeKnownBitsFromAssume strictly refines KnownZero and
+ // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
// Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
-
- // Check whether there's a dominating condition which implies something about
- // this value at the given context.
- if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
- computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
- Q);
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
@@ -1700,8 +1473,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
/// Determine whether the sign bit is known to be zero or one.
/// Convenience wrapper around computeKnownBits.
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth, const Query &Q) {
- unsigned BitWidth = getBitWidth(V->getType(), DL);
+ unsigned Depth, const Query &Q) {
+ unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
if (!BitWidth) {
KnownZero = false;
KnownOne = false;
@@ -1709,7 +1482,7 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
+ computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -1719,13 +1492,14 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q, const DataLayout &DL) {
+ const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return OrZero;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return CI->getValue().isPowerOf2();
- // TODO: Handle vector constants.
+
+ const APInt *ConstIntOrConstSplatInt;
+ if (match(C, m_APInt(ConstIntOrConstSplatInt)))
+ return ConstIntOrConstSplatInt->isPowerOf2();
}
// 1 << X is clearly a power of two if the one is not shifted off the end. If
@@ -1747,19 +1521,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
// or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_LShr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
@@ -1774,19 +1548,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -1804,7 +1578,7 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q, DL);
+ Depth, Q);
}
return false;
@@ -1816,8 +1590,8 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
-static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
+static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
+ const Query &Q) {
if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
return false;
@@ -1826,7 +1600,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
// If the base pointer is non-null, we cannot walk to a null address with an
// inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
+ if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
return true;
// Walk the GEP operands and see if any operand introduces a non-zero offset.
@@ -1838,7 +1612,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
@@ -1846,7 +1620,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
+ if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
@@ -1865,7 +1639,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
if (Depth++ >= MaxDepth)
continue;
- if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
+ if (isKnownNonZero(GTI.getOperand(), Depth, Q))
return true;
}
@@ -1875,8 +1649,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value? 'RangeType' is
/// is the type of the value described by the range.
-static bool rangeMetadataExcludesValue(MDNode* Ranges,
- const APInt& Value) {
+static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
for (unsigned i = 0; i < NumRanges; ++i) {
@@ -1895,23 +1668,35 @@ static bool rangeMetadataExcludesValue(MDNode* Ranges,
/// For vectors return true if every element is known to be non-zero when
/// defined. Supports values with integer or pointer type and vectors of
/// integers.
-bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- if (Constant *C = dyn_cast<Constant>(V)) {
+bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
+ if (auto *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
// Must be non-zero due to null test above.
return true;
- // TODO: Handle vectors
+
+ // For constant vectors, check that all elements are undefined or known
+ // non-zero to determine that the whole vector is known non-zero.
+ if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
+ for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt || Elt->isNullValue())
+ return false;
+ if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
+ return false;
+ }
+ return true;
+ }
+
return false;
}
- if (Instruction* I = dyn_cast<Instruction>(V)) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
// If the possible ranges don't contain zero, then the value is
// definitely non-zero.
- if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
+ if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
const APInt ZeroValue(Ty->getBitWidth(), 0);
if (rangeMetadataExcludesValue(Ranges, ZeroValue))
return true;
@@ -1926,22 +1711,22 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
// Check for pointer simplifications.
if (V->getType()->isPointerTy()) {
if (isKnownNonNull(V))
- return true;
+ return true;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, DL, Depth, Q))
+ if (isGEPKnownNonNull(GEP, Depth, Q))
return true;
}
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
+ return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
@@ -1949,11 +1734,11 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
// shl nuw can't remove any non-zero bits.
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, DL, Depth, Q);
+ return isKnownNonZero(X, Depth, Q);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
if (KnownOne[0])
return true;
}
@@ -1963,10 +1748,10 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
// shr exact can only shift out zero bits.
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
- return isKnownNonZero(X, DL, Depth, Q);
+ return isKnownNonZero(X, Depth, Q);
bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
if (XKnownNegative)
return true;
@@ -1976,32 +1761,32 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
-
+ computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
+
auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
// Is there a known one in the portion not shifted out?
if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
return true;
// Are all the bits to be shifted out known zero?
if (KnownZero.countTrailingOnes() >= ShiftVal)
- return isKnownNonZero(X, DL, Depth, Q);
+ return isKnownNonZero(X, Depth, Q);
}
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, DL, Depth, Q);
+ return isKnownNonZero(X, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
bool XKnownNonNegative, XKnownNegative;
bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
+ if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
@@ -2012,22 +1797,22 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnownNonNegative &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
return true;
if (YKnownNonNegative &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
return true;
}
// X * Y.
@@ -2036,13 +1821,13 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
+ isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
+ if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), Depth, Q))
return true;
}
// PHI
@@ -2064,18 +1849,23 @@ bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
}
}
}
+ // Check if all incoming values are non-zero constant.
+ bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
+ return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
+ });
+ if (AllNonZeroConstants)
+ return true;
}
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
return KnownOne != 0;
}
/// Return true if V2 == V1 + X, where X is known non-zero.
-static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
- const Query &Q) {
+static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
if (!BO || BO->getOpcode() != Instruction::Add)
return false;
@@ -2086,18 +1876,17 @@ static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
Op = BO->getOperand(0);
else
return false;
- return isKnownNonZero(Op, DL, 0, Q);
+ return isKnownNonZero(Op, 0, Q);
}
/// Return true if it is known that V1 != V2.
-static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
- const Query &Q) {
+static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
if (V1->getType()->isVectorTy() || V1 == V2)
return false;
if (V1->getType() != V2->getType())
// We can't look through casts yet.
return false;
- if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
+ if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
return true;
if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
@@ -2106,10 +1895,10 @@ static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
auto BitWidth = Ty->getBitWidth();
APInt KnownZero1(BitWidth, 0);
APInt KnownOne1(BitWidth, 0);
- computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
+ computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
APInt KnownZero2(BitWidth, 0);
APInt KnownOne2(BitWidth, 0);
- computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
+ computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
if (OppositeBits.getBoolValue())
@@ -2127,26 +1916,48 @@ static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
+bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
return (KnownZero & Mask) == Mask;
}
+/// For vector constants, loop over the elements and find the constant with the
+/// minimum number of sign bits. Return 0 if the value is not a vector constant
+/// or if any element was not analyzed; otherwise, return the count for the
+/// element with the minimum number of sign bits.
+static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
+ auto *CV = dyn_cast<Constant>(V);
+ if (!CV || !CV->getType()->isVectorTy())
+ return 0;
+ unsigned MinSignBits = TyBits;
+ unsigned NumElts = CV->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If we find a non-ConstantInt, bail out.
+ auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
+ if (!Elt)
+ return 0;
+
+ // If the sign bit is 1, flip the bits, so we always count leading zeros.
+ APInt EltVal = Elt->getValue();
+ if (EltVal.isNegative())
+ EltVal = ~EltVal;
+ MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
+ }
+
+ return MinSignBits;
+}
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
-/// other, so we return 3.
-///
-/// 'Op' must have a scalar integer type.
-///
-unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
+/// other, so we return 3. For vectors, return the number of sign bits for the
+/// vector element with the mininum number of known sign bits.
+unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
+ unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
@@ -2161,7 +1972,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
+ return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
case Instruction::SDiv: {
const APInt *Denominator;
@@ -2173,7 +1984,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
break;
// Calculate the incoming numerator bits.
- unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// Add floor(log(C)) bits to the numerator bits.
return std::min(TyBits, NumBits + Denominator->logBase2());
@@ -2195,7 +2006,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
// Calculate the incoming numerator bits. SRem by a positive constant
// can't lower the number of sign bits.
unsigned NumrBits =
- ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// Calculate the leading sign bit constraints by examining the
// denominator. Given that the denominator is positive, there are two
@@ -2217,7 +2028,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
}
case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
@@ -2230,7 +2041,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Tmp2 = ShAmt->getZExtValue();
if (Tmp2 >= TyBits || // Bad shift.
Tmp2 >= Tmp) break; // Shifted all sign bits out.
@@ -2242,9 +2053,9 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
@@ -2253,23 +2064,22 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
break;
case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
- Q);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -2282,20 +2092,19 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
return Tmp;
}
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
- Q);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -2311,7 +2120,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
@@ -2325,11 +2134,11 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
Tmp = std::min(
- Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
}
return Tmp;
}
@@ -2342,26 +2151,25 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
+
+ // If we can examine all elements of a vector constant successfully, we're
+ // done (we can't do any better than that). If not, keep trying.
+ if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
+ return VecSignBits;
+
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
-
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
+ computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
+
+ // If we know that the sign bit is either zero or one, determine the number of
+ // identical bits in the top of the input value.
+ if (KnownZero.isNegative())
+ return std::max(FirstAnswer, KnownZero.countLeadingOnes());
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-TyBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
+ if (KnownOne.isNegative())
+ return std::max(FirstAnswer, KnownOne.countLeadingOnes());
+
+ // computeKnownBits gave us no extra information about the top bits.
+ return FirstAnswer;
}
/// This function computes the integer multiple of Base that equals V.
@@ -2484,13 +2292,124 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
return false;
}
+Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
+ const TargetLibraryInfo *TLI) {
+ const Function *F = ICS.getCalledFunction();
+ if (!F)
+ return Intrinsic::not_intrinsic;
+
+ if (F->isIntrinsic())
+ return F->getIntrinsicID();
+
+ if (!TLI)
+ return Intrinsic::not_intrinsic;
+
+ LibFunc::Func Func;
+ // We're going to make assumptions on the semantics of the functions, check
+ // that the target knows that it's available in this environment and it does
+ // not have local linkage.
+ if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
+ return Intrinsic::not_intrinsic;
+
+ if (!ICS.onlyReadsMemory())
+ return Intrinsic::not_intrinsic;
+
+ // Otherwise check if we have a call to a function that can be turned into a
+ // vector intrinsic.
+ switch (Func) {
+ default:
+ break;
+ case LibFunc::sin:
+ case LibFunc::sinf:
+ case LibFunc::sinl:
+ return Intrinsic::sin;
+ case LibFunc::cos:
+ case LibFunc::cosf:
+ case LibFunc::cosl:
+ return Intrinsic::cos;
+ case LibFunc::exp:
+ case LibFunc::expf:
+ case LibFunc::expl:
+ return Intrinsic::exp;
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ case LibFunc::exp2l:
+ return Intrinsic::exp2;
+ case LibFunc::log:
+ case LibFunc::logf:
+ case LibFunc::logl:
+ return Intrinsic::log;
+ case LibFunc::log10:
+ case LibFunc::log10f:
+ case LibFunc::log10l:
+ return Intrinsic::log10;
+ case LibFunc::log2:
+ case LibFunc::log2f:
+ case LibFunc::log2l:
+ return Intrinsic::log2;
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ return Intrinsic::fabs;
+ case LibFunc::fmin:
+ case LibFunc::fminf:
+ case LibFunc::fminl:
+ return Intrinsic::minnum;
+ case LibFunc::fmax:
+ case LibFunc::fmaxf:
+ case LibFunc::fmaxl:
+ return Intrinsic::maxnum;
+ case LibFunc::copysign:
+ case LibFunc::copysignf:
+ case LibFunc::copysignl:
+ return Intrinsic::copysign;
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ return Intrinsic::floor;
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ return Intrinsic::ceil;
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ return Intrinsic::trunc;
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ return Intrinsic::rint;
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ return Intrinsic::nearbyint;
+ case LibFunc::round:
+ case LibFunc::roundf:
+ case LibFunc::roundl:
+ return Intrinsic::round;
+ case LibFunc::pow:
+ case LibFunc::powf:
+ case LibFunc::powl:
+ return Intrinsic::pow;
+ case LibFunc::sqrt:
+ case LibFunc::sqrtf:
+ case LibFunc::sqrtl:
+ if (ICS->hasNoNaNs())
+ return Intrinsic::sqrt;
+ return Intrinsic::not_intrinsic;
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
///
-bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
+bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
@@ -2518,30 +2437,26 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
return true;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
+ switch (IID) {
+ default:
+ break;
// sqrt(-0.0) = -0.0, no other negative results are possible.
- if (II->getIntrinsicID() == Intrinsic::sqrt)
- return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
-
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction()) {
- if (F->isDeclaration()) {
- // abs(x) != -0.0
- if (F->getName() == "abs") return true;
- // fabs[lf](x) != -0.0
- if (F->getName() == "fabs") return true;
- if (F->getName() == "fabsf") return true;
- if (F->getName() == "fabsl") return true;
- if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
- F->getName() == "sqrtl")
- return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
- }
+ case Intrinsic::sqrt:
+ return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
+ // fabs(x) != -0.0
+ case Intrinsic::fabs:
+ return true;
}
+ }
return false;
}
-bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
+bool llvm::CannotBeOrderedLessThanZero(const Value *V,
+ const TargetLibraryInfo *TLI,
+ unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
@@ -2561,52 +2476,53 @@ bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
return true;
case Instruction::FMul:
// x*x is always non-negative or a NaN.
- if (I->getOperand(0) == I->getOperand(1))
+ if (I->getOperand(0) == I->getOperand(1))
return true;
// Fall through
case Instruction::FAdd:
case Instruction::FDiv:
case Instruction::FRem:
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
- CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
+ return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
case Instruction::Select:
- return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
- CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
+ return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
case Instruction::FPExt:
case Instruction::FPTrunc:
// Widening/narrowing never change sign.
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
- case Instruction::Call:
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::maxnum:
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
- CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
- case Intrinsic::minnum:
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
- CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::fabs:
- case Intrinsic::sqrt:
- return true;
- case Intrinsic::powi:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // powi(x,n) is non-negative if n is even.
- if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
- return true;
- }
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- // x*x+y is non-negative if y is non-negative.
- return I->getOperand(0) == I->getOperand(1) &&
- CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
+ return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
+ case Instruction::Call:
+ Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::maxnum:
+ return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
+ CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
+ case Intrinsic::minnum:
+ return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ case Intrinsic::sqrt:
+ return true;
+ case Intrinsic::powi:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // powi(x,n) is non-negative if n is even.
+ if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
+ return true;
}
+ return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // x*x+y is non-negative if y is non-negative.
+ return I->getOperand(0) == I->getOperand(1) &&
+ CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
+ }
break;
}
- return false;
+ return false;
}
/// If the specified value can be set by repeating the same byte in memory,
@@ -2863,7 +2779,7 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Ptr = cast<Operator>(Ptr)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->mayBeOverridden())
+ if (GA->isInterposable())
break;
Ptr = GA->getAliasee();
} else {
@@ -2874,6 +2790,24 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
return Ptr;
}
+bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of i8.
+ ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
+ if (!AT || !AT->getElementType()->isIntegerTy(8))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!FirstIdx || !FirstIdx->isZero())
+ return false;
+
+ return true;
+}
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
@@ -2888,20 +2822,9 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// If the value is a GEP instruction or constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return false;
-
- // Make sure the index-ee is a pointer to array of i8.
- PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
- ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (!AT || !AT->getElementType()->isIntegerTy(8))
- return false;
-
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (!FirstIdx || !FirstIdx->isZero())
+ // The GEP operator should be based on a pointer to string constant, and is
+ // indexing into the string constant.
+ if (!isGEPBasedOnPointerToString(GEP))
return false;
// If the second index isn't a ConstantInt, then this is a variable index
@@ -2923,7 +2846,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
- // Handle the all-zeros case
+ // Handle the all-zeros case.
if (GV->getInitializer()->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
@@ -2931,13 +2854,12 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
return true;
}
- // Must be a Constant Array
- const ConstantDataArray *Array =
- dyn_cast<ConstantDataArray>(GV->getInitializer());
+ // This must be a ConstantDataArray.
+ const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
if (!Array || !Array->isString())
return false;
- // Get the number of elements in the array
+ // Get the number of elements in the array.
uint64_t NumElts = Array->getType()->getArrayNumElements();
// Start out with the entire array in the StringRef.
@@ -3060,10 +2982,16 @@ Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
V = cast<Operator>(V)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
+ if (GA->isInterposable())
return V;
V = GA->getAliasee();
} else {
+ if (auto CS = CallSite(V))
+ if (Value *RV = CS.getReturnedArgOperand()) {
+ V = RV;
+ continue;
+ }
+
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and AssumptionCache and use them.
@@ -3133,213 +3061,9 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
return true;
}
-static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
- Type *Ty, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- assert(Offset.isNonNegative() && "offset can't be negative");
- assert(Ty->isSized() && "must be sized");
-
- APInt DerefBytes(Offset.getBitWidth(), 0);
- bool CheckForNonNull = false;
- if (const Argument *A = dyn_cast<Argument>(BV)) {
- DerefBytes = A->getDereferenceableBytes();
- if (!DerefBytes.getBoolValue()) {
- DerefBytes = A->getDereferenceableOrNullBytes();
- CheckForNonNull = true;
- }
- } else if (auto CS = ImmutableCallSite(BV)) {
- DerefBytes = CS.getDereferenceableBytes(0);
- if (!DerefBytes.getBoolValue()) {
- DerefBytes = CS.getDereferenceableOrNullBytes(0);
- CheckForNonNull = true;
- }
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
- if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- if (!DerefBytes.getBoolValue()) {
- if (MDNode *MD =
- LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- CheckForNonNull = true;
- }
- }
-
- if (DerefBytes.getBoolValue())
- if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
- if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
- return true;
-
- return false;
-}
-
-static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- Type *VTy = V->getType();
- Type *Ty = VTy->getPointerElementType();
- if (!Ty->isSized())
- return false;
-
- APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
- return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
-}
-
-static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
- const DataLayout &DL) {
- APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
-
- if (!BaseAlign) {
- Type *Ty = Base->getType()->getPointerElementType();
- if (!Ty->isSized())
- return false;
- BaseAlign = DL.getABITypeAlignment(Ty);
- }
-
- APInt Alignment(Offset.getBitWidth(), Align);
-
- assert(Alignment.isPowerOf2() && "must be a power of 2!");
- return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
-}
-
-static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
- Type *Ty = Base->getType();
- assert(Ty->isSized() && "must be sized");
- APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
- return isAligned(Base, Offset, Align, DL);
-}
-
-/// Test if V is always a pointer to allocated and suitably aligned memory for
-/// a simple load or store.
-static bool isDereferenceableAndAlignedPointer(
- const Value *V, unsigned Align, const DataLayout &DL,
- const Instruction *CtxI, const DominatorTree *DT,
- const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
- // Note that it is not safe to speculate into a malloc'd region because
- // malloc may return null.
-
- // These are obviously ok if aligned.
- if (isa<AllocaInst>(V))
- return isAligned(V, Align, DL);
-
- // It's not always safe to follow a bitcast, for example:
- // bitcast i8* (alloca i8) to i32*
- // would result in a 4-byte load from a 1-byte alloca. However,
- // if we're casting from a pointer from a type of larger size
- // to a type of smaller size (or the same size), and the alignment
- // is at least as large as for the resulting pointer type, then
- // we can look through the bitcast.
- if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
- Type *STy = BC->getSrcTy()->getPointerElementType(),
- *DTy = BC->getDestTy()->getPointerElementType();
- if (STy->isSized() && DTy->isSized() &&
- (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
- (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
- return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
- CtxI, DT, TLI, Visited);
- }
-
- // Global variables which can't collapse to null are ok.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- if (!GV->hasExternalWeakLinkage())
- return isAligned(V, Align, DL);
-
- // byval arguments are okay.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr())
- return isAligned(V, Align, DL);
-
- if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
- return isAligned(V, Align, DL);
-
- // For GEPs, determine if the indexing lands within the allocated object.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- Type *VTy = GEP->getType();
- Type *Ty = VTy->getPointerElementType();
- const Value *Base = GEP->getPointerOperand();
-
- // Conservatively require that the base pointer be fully dereferenceable
- // and aligned.
- if (!Visited.insert(Base).second)
- return false;
- if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
- Visited))
- return false;
-
- APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
- if (!GEP->accumulateConstantOffset(DL, Offset))
- return false;
-
- // Check if the load is within the bounds of the underlying object
- // and offset is aligned.
- uint64_t LoadSize = DL.getTypeStoreSize(Ty);
- Type *BaseType = Base->getType()->getPointerElementType();
- assert(isPowerOf2_32(Align) && "must be a power of 2!");
- return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
- !(Offset & APInt(Offset.getBitWidth(), Align-1));
- }
-
- // For gc.relocate, look through relocations
- if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
- return isDereferenceableAndAlignedPointer(
- RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
-
- if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
- return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
- CtxI, DT, TLI, Visited);
-
- // If we don't know, assume the worst.
- return false;
-}
-
-bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
- const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- // When dereferenceability information is provided by a dereferenceable
- // attribute, we know exactly how many bytes are dereferenceable. If we can
- // determine the exact offset to the attributed variable, we can use that
- // information here.
- Type *VTy = V->getType();
- Type *Ty = VTy->getPointerElementType();
-
- // Require ABI alignment for loads without alignment specification
- if (Align == 0)
- Align = DL.getABITypeAlignment(Ty);
-
- if (Ty->isSized()) {
- APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
- const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
-
- if (Offset.isNonNegative())
- if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
- isAligned(BV, Offset, Align, DL))
- return true;
- }
-
- SmallPtrSet<const Value *, 32> Visited;
- return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
- Visited);
-}
-
-bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
-}
-
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
+ const DominatorTree *DT) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
@@ -3383,15 +3107,13 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
const LoadInst *LI = cast<LoadInst>(Inst);
if (!LI->isUnordered() ||
// Speculative load may create a race that did not exist in the source.
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeThread) ||
+ LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
// Speculative load may load data from dirty regions.
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress))
+ LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
return false;
const DataLayout &DL = LI->getModule()->getDataLayout();
- return isDereferenceableAndAlignedPointer(
- LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
+ return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
+ LI->getAlignment(), DL, CtxI, DT);
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
@@ -3416,17 +3138,29 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
case Intrinsic::umul_with_overflow:
case Intrinsic::usub_with_overflow:
return true;
- // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
- // errno like libm sqrt would.
+ // These intrinsics are defined to have the same behavior as libm
+ // functions except for setting errno.
case Intrinsic::sqrt:
case Intrinsic::fma:
case Intrinsic::fmuladd:
+ return true;
+ // These intrinsics are defined to have the same behavior as libm
+ // functions, and the corresponding libm functions never set errno.
+ case Intrinsic::trunc:
+ case Intrinsic::copysign:
case Intrinsic::fabs:
case Intrinsic::minnum:
case Intrinsic::maxnum:
return true;
- // TODO: some fp intrinsics are marked as having the same error handling
- // as libm. They're safe to speculate when they won't error.
+ // These intrinsics are defined to have the same behavior as libm
+ // functions, which never overflow when operating on the IEEE754 types
+ // that we support, and never set errno otherwise.
+ case Intrinsic::ceil:
+ case Intrinsic::floor:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint:
+ case Intrinsic::round:
+ return true;
// TODO: are convert_{from,to}_fp16 safe?
// TODO: can we list target-specific intrinsics here?
default: break;
@@ -3464,7 +3198,7 @@ bool llvm::mayBeMemoryDependent(const Instruction &I) {
}
/// Return true if we know that the specified value is never null.
-bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
+bool llvm::isKnownNonNull(const Value *V) {
assert(V->getType()->isPointerTy() && "V must be pointer type");
// Alloca never returns null, malloc might.
@@ -3481,7 +3215,7 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
return !GV->hasExternalWeakLinkage() &&
GV->getType()->getAddressSpace() == 0;
- // A Load tagged w/nonnull metadata is never null.
+ // A Load tagged with nonnull metadata is never null.
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
return LI->getMetadata(LLVMContext::MD_nonnull);
@@ -3498,41 +3232,31 @@ static bool isKnownNonNullFromDominatingCondition(const Value *V,
assert(V->getType()->isPointerTy() && "V must be pointer type");
unsigned NumUsesExplored = 0;
- for (auto U : V->users()) {
+ for (auto *U : V->users()) {
// Avoid massive lists
if (NumUsesExplored >= DomConditionsMaxUses)
break;
NumUsesExplored++;
// Consider only compare instructions uniquely controlling a branch
- const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
- if (!Cmp)
- continue;
-
- if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
+ CmpInst::Predicate Pred;
+ if (!match(const_cast<User *>(U),
+ m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
+ (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
continue;
- for (auto *CmpU : Cmp->users()) {
- const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
- if (!BI)
- continue;
-
- assert(BI->isConditional() && "uses a comparison!");
-
- BasicBlock *NonNullSuccessor = nullptr;
- CmpInst::Predicate Pred;
-
- if (match(const_cast<ICmpInst*>(Cmp),
- m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
- if (Pred == ICmpInst::ICMP_EQ)
- NonNullSuccessor = BI->getSuccessor(1);
- else if (Pred == ICmpInst::ICMP_NE)
- NonNullSuccessor = BI->getSuccessor(0);
- }
+ for (auto *CmpU : U->users()) {
+ if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
+ assert(BI->isConditional() && "uses a comparison!");
- if (NonNullSuccessor) {
+ BasicBlock *NonNullSuccessor =
+ BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
return true;
+ } else if (Pred == ICmpInst::ICMP_NE &&
+ match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
+ DT->dominates(cast<Instruction>(CmpU), CtxI)) {
+ return true;
}
}
}
@@ -3541,8 +3265,8 @@ static bool isKnownNonNullFromDominatingCondition(const Value *V,
}
bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
- const DominatorTree *DT, const TargetLibraryInfo *TLI) {
- if (isKnownNonNull(V, TLI))
+ const DominatorTree *DT) {
+ if (isKnownNonNull(V))
return true;
return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
@@ -3671,6 +3395,67 @@ static OverflowResult computeOverflowForSignedAdd(
return OverflowResult::MayOverflow;
}
+bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
+#ifndef NDEBUG
+ auto IID = II->getIntrinsicID();
+ assert((IID == Intrinsic::sadd_with_overflow ||
+ IID == Intrinsic::uadd_with_overflow ||
+ IID == Intrinsic::ssub_with_overflow ||
+ IID == Intrinsic::usub_with_overflow ||
+ IID == Intrinsic::smul_with_overflow ||
+ IID == Intrinsic::umul_with_overflow) &&
+ "Not an overflow intrinsic!");
+#endif
+
+ SmallVector<BranchInst *, 2> GuardingBranches;
+ SmallVector<ExtractValueInst *, 2> Results;
+
+ for (User *U : II->users()) {
+ if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
+ assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
+
+ if (EVI->getIndices()[0] == 0)
+ Results.push_back(EVI);
+ else {
+ assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
+
+ for (auto *U : EVI->users())
+ if (auto *B = dyn_cast<BranchInst>(U)) {
+ assert(B->isConditional() && "How else is it using an i1?");
+ GuardingBranches.push_back(B);
+ }
+ }
+ } else {
+ // We are using the aggregate directly in a way we don't want to analyze
+ // here (storing it to a global, say).
+ return false;
+ }
+ }
+
+ auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
+ BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
+ if (!NoWrapEdge.isSingleEdge())
+ return false;
+
+ // Check if all users of the add are provably no-wrap.
+ for (auto *Result : Results) {
+ // If the extractvalue itself is not executed on overflow, the we don't
+ // need to check each use separately, since domination is transitive.
+ if (DT.dominates(NoWrapEdge, Result->getParent()))
+ continue;
+
+ for (auto &RU : Result->uses())
+ if (!DT.dominates(NoWrapEdge, RU))
+ return false;
+ }
+
+ return true;
+ };
+
+ return any_of(GuardingBranches, AllUsesGuardedByBranch);
+}
+
+
OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
@@ -3689,16 +3474,46 @@ OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
- // FIXME: This conservative implementation can be relaxed. E.g. most
- // atomic operations are guaranteed to terminate on most platforms
- // and most functions terminate.
-
- return !I->isAtomic() && // atomics may never succeed on some platforms
- !isa<CallInst>(I) && // could throw and might not terminate
- !isa<InvokeInst>(I) && // might not terminate and could throw to
- // non-successor (see bug 24185 for details).
- !isa<ResumeInst>(I) && // has no successors
- !isa<ReturnInst>(I); // has no successors
+ // A memory operation returns normally if it isn't volatile. A volatile
+ // operation is allowed to trap.
+ //
+ // An atomic operation isn't guaranteed to return in a reasonable amount of
+ // time because it's possible for another thread to interfere with it for an
+ // arbitrary length of time, but programs aren't allowed to rely on that.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ return !LI->isVolatile();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(I))
+ return !SI->isVolatile();
+ if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
+ return !CXI->isVolatile();
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
+ return !RMWI->isVolatile();
+ if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
+ return !MII->isVolatile();
+
+ // If there is no successor, then execution can't transfer to it.
+ if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
+ return !CRI->unwindsToCaller();
+ if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
+ return !CatchSwitch->unwindsToCaller();
+ if (isa<ResumeInst>(I))
+ return false;
+ if (isa<ReturnInst>(I))
+ return false;
+
+ // Calls can throw, or contain an infinite loop, or kill the process.
+ if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
+ // Calls which don't write to arbitrary memory are safe.
+ // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
+ // but it's consistent with other passes. See http://llvm.org/PR965 .
+ // FIXME: This isn't aggressive enough; a call which only writes to a
+ // global is guaranteed to return.
+ return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
+ match(I, m_Intrinsic<Intrinsic::assume>());
+ }
+
+ // Other instructions return normally.
+ return true;
}
bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
@@ -3775,6 +3590,11 @@ bool llvm::propagatesFullPoison(const Instruction *I) {
return false;
}
+ case Instruction::ICmp:
+ // Comparing poison with any value yields poison. This is why, for
+ // instance, x s< (x +nsw 1) can be folded to true.
+ return true;
+
case Instruction::GetElementPtr:
// A GEP implicitly represents a sequence of additions, subtractions,
// truncations, sign extensions and multiplications. The multiplications
@@ -3827,26 +3647,44 @@ bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
// Set of instructions that we have proved will yield poison if PoisonI
// does.
SmallSet<const Value *, 16> YieldsPoison;
+ SmallSet<const BasicBlock *, 4> Visited;
YieldsPoison.insert(PoisonI);
+ Visited.insert(PoisonI->getParent());
- for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
- I != E; ++I) {
- if (&*I != PoisonI) {
- const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
- if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
- return false;
+ BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
+
+ unsigned Iter = 0;
+ while (Iter++ < MaxDepth) {
+ for (auto &I : make_range(Begin, End)) {
+ if (&I != PoisonI) {
+ const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
+ if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
+ return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ return false;
+ }
+
+ // Mark poison that propagates from I through uses of I.
+ if (YieldsPoison.count(&I)) {
+ for (const User *User : I.users()) {
+ const Instruction *UserI = cast<Instruction>(User);
+ if (propagatesFullPoison(UserI))
+ YieldsPoison.insert(User);
+ }
+ }
}
- // Mark poison that propagates from I through uses of I.
- if (YieldsPoison.count(&*I)) {
- for (const User *User : I->users()) {
- const Instruction *UserI = cast<Instruction>(User);
- if (UserI->getParent() == BB && propagatesFullPoison(UserI))
- YieldsPoison.insert(User);
+ if (auto *NextBB = BB->getSingleSuccessor()) {
+ if (Visited.insert(NextBB).second) {
+ BB = NextBB;
+ Begin = BB->getFirstNonPHI()->getIterator();
+ End = BB->end();
+ continue;
}
}
- }
+
+ break;
+ };
return false;
}
@@ -3979,10 +3817,11 @@ static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
}
}
-
+
// Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
- if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
+ if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
+ ~C1->getValue() == C2->getValue() &&
(match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
LHS = TrueVal;
@@ -4001,12 +3840,11 @@ static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
Instruction::CastOps *CastOp) {
CastInst *CI = dyn_cast<CastInst>(V1);
Constant *C = dyn_cast<Constant>(V2);
- CastInst *CI2 = dyn_cast<CastInst>(V2);
if (!CI)
return nullptr;
*CastOp = CI->getOpcode();
- if (CI2) {
+ if (auto *CI2 = dyn_cast<CastInst>(V2)) {
// If V1 and V2 are both the same cast from the same type, we can look
// through V1.
if (CI2->getOpcode() == CI->getOpcode() &&
@@ -4017,43 +3855,48 @@ static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
return nullptr;
}
- if (isa<SExtInst>(CI) && CmpI->isSigned()) {
- Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
- // This is only valid if the truncated value can be sign-extended
- // back to the original value.
- if (ConstantExpr::getSExt(T, C->getType()) == C)
- return T;
- return nullptr;
- }
+ Constant *CastedTo = nullptr;
+
if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
- return ConstantExpr::getTrunc(C, CI->getSrcTy());
+ CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
+
+ if (isa<SExtInst>(CI) && CmpI->isSigned())
+ CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
if (isa<TruncInst>(CI))
- return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
+ CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
+
+ if (isa<FPTruncInst>(CI))
+ CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
+
+ if (isa<FPExtInst>(CI))
+ CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
if (isa<FPToUIInst>(CI))
- return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
+ CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
if (isa<FPToSIInst>(CI))
- return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
+ CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
if (isa<UIToFPInst>(CI))
- return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
+ CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
if (isa<SIToFPInst>(CI))
- return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
+ CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
- if (isa<FPTruncInst>(CI))
- return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
+ if (!CastedTo)
+ return nullptr;
- if (isa<FPExtInst>(CI))
- return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
+ Constant *CastedBack =
+ ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
+ // Make sure the cast doesn't lose any information.
+ if (CastedBack != C)
+ return nullptr;
- return nullptr;
+ return CastedTo;
}
-SelectPatternResult llvm::matchSelectPattern(Value *V,
- Value *&LHS, Value *&RHS,
+SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
@@ -4172,46 +4015,105 @@ static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
}
/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
-/// ALHS ARHS" is true.
-static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
- Value *ARHS, Value *BLHS, Value *BRHS,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
+/// ALHS ARHS" is true. Otherwise, return None.
+static Optional<bool>
+isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
+ Value *BLHS, Value *BRHS, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT) {
switch (Pred) {
default:
- return false;
+ return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
- return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
- DT) &&
- isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
- DT);
+ if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
+ DT) &&
+ isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
+ return true;
+ return None;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
- return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
- DT) &&
- isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
- DT);
+ if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
+ DT) &&
+ isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
+ return true;
+ return None;
}
}
-bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- assert(LHS->getType() == RHS->getType() && "mismatched type");
+/// Return true if the operands of the two compares match. IsSwappedOps is true
+/// when the operands match, but are swapped.
+static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
+ bool &IsSwappedOps) {
+
+ bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
+ IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
+ return IsMatchingOps || IsSwappedOps;
+}
+
+/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
+/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
+/// BRHS" is false. Otherwise, return None if we can't infer anything.
+static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
+ Value *ALHS, Value *ARHS,
+ CmpInst::Predicate BPred,
+ Value *BLHS, Value *BRHS,
+ bool IsSwappedOps) {
+ // Canonicalize the operands so they're matching.
+ if (IsSwappedOps) {
+ std::swap(BLHS, BRHS);
+ BPred = ICmpInst::getSwappedPredicate(BPred);
+ }
+ if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
+ return true;
+ if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
+ return false;
+
+ return None;
+}
+
+/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
+/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
+/// C2" is false. Otherwise, return None if we can't infer anything.
+static Optional<bool>
+isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
+ ConstantInt *C1, CmpInst::Predicate BPred,
+ Value *BLHS, ConstantInt *C2) {
+ assert(ALHS == BLHS && "LHS operands must match.");
+ ConstantRange DomCR =
+ ConstantRange::makeExactICmpRegion(APred, C1->getValue());
+ ConstantRange CR =
+ ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
+ ConstantRange Intersection = DomCR.intersectWith(CR);
+ ConstantRange Difference = DomCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return false;
+ if (Difference.isEmptySet())
+ return true;
+ return None;
+}
+
+Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
+ const DataLayout &DL, bool InvertAPred,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
+ if (LHS->getType() != RHS->getType())
+ return None;
+
Type *OpTy = LHS->getType();
assert(OpTy->getScalarType()->isIntegerTy(1));
// LHS ==> RHS by definition
- if (LHS == RHS) return true;
+ if (!InvertAPred && LHS == RHS)
+ return true;
if (OpTy->isVectorTy())
// TODO: extending the code below to handle vectors
- return false;
+ return None;
assert(OpTy->isIntegerTy(1) && "implied by above");
ICmpInst::Predicate APred, BPred;
@@ -4220,11 +4122,37 @@ bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
!match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
- return false;
+ return None;
+
+ if (InvertAPred)
+ APred = CmpInst::getInversePredicate(APred);
+
+ // Can we infer anything when the two compares have matching operands?
+ bool IsSwappedOps;
+ if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
+ if (Optional<bool> Implication = isImpliedCondMatchingOperands(
+ APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
+ return Implication;
+ // No amount of additional analysis will infer the second condition, so
+ // early exit.
+ return None;
+ }
+
+ // Can we infer anything when the LHS operands match and the RHS operands are
+ // constants (not necessarily matching)?
+ if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
+ if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
+ APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
+ cast<ConstantInt>(BRHS)))
+ return Implication;
+ // No amount of additional analysis will infer the second condition, so
+ // early exit.
+ return None;
+ }
if (APred == BPred)
return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
CxtI, DT);
- return false;
+ return None;
}
OpenPOWER on IntegriCloud