diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/ValueTracking.cpp | 238 |
1 files changed, 29 insertions, 209 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp index b4c9884..181c9b0 100644 --- a/contrib/llvm/lib/Analysis/ValueTracking.cpp +++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp @@ -880,19 +880,20 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, } Value *Mul0 = NULL; - Value *Mul1 = NULL; - bool M0 = ComputeMultiple(Op0, Base, Mul0, - LookThroughSExt, Depth+1); - bool M1 = ComputeMultiple(Op1, Base, Mul1, - LookThroughSExt, Depth+1); - - if (M0) { - if (isa<Constant>(Op1) && isa<Constant>(Mul0)) { - // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) - Multiple = ConstantExpr::getMul(cast<Constant>(Mul0), - cast<Constant>(Op1)); - return true; - } + if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) + if (Constant *MulC = dyn_cast<Constant>(Mul0)) { + if (Op1C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); + if (Op1C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); + + // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) + Multiple = ConstantExpr::getMul(MulC, Op1C); + return true; + } if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) if (Mul0CI->getValue() == 1) { @@ -902,13 +903,21 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, } } - if (M1) { - if (isa<Constant>(Op0) && isa<Constant>(Mul1)) { - // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) - Multiple = ConstantExpr::getMul(cast<Constant>(Mul1), - cast<Constant>(Op0)); - return true; - } + Value *Mul1 = NULL; + if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { + if (Constant *Op0C = dyn_cast<Constant>(Op0)) + if (Constant *MulC = dyn_cast<Constant>(Mul1)) { + if (Op0C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); + if (Op0C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); + + // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) + Multiple = ConstantExpr::getMul(MulC, Op0C); + return true; + } if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) if (Mul1CI->getValue() == 1) { @@ -973,195 +982,6 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { return false; } - -/// GetLinearExpression - Analyze the specified value as a linear expression: -/// "A*V + B", where A and B are constant integers. Return the scale and offset -/// values as APInts and return V as a Value*. The incoming Value is known to -/// have IntegerType. Note that this looks through extends, so the high bits -/// may not be represented in the result. -static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, - const TargetData *TD, unsigned Depth) { - assert(V->getType()->isIntegerTy() && "Not an integer value"); - - // Limit our recursion depth. - if (Depth == 6) { - Scale = 1; - Offset = 0; - return V; - } - - if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { - if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { - switch (BOp->getOpcode()) { - default: break; - case Instruction::Or: - // X|C == X+C if all the bits in C are unset in X. Otherwise we can't - // analyze it. - if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD)) - break; - // FALL THROUGH. - case Instruction::Add: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); - Offset += RHSC->getValue(); - return V; - case Instruction::Mul: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); - Offset *= RHSC->getValue(); - Scale *= RHSC->getValue(); - return V; - case Instruction::Shl: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); - Offset <<= RHSC->getValue().getLimitedValue(); - Scale <<= RHSC->getValue().getLimitedValue(); - return V; - } - } - } - - // Since clients don't care about the high bits of the value, just scales and - // offsets, we can look through extensions. - if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { - Value *CastOp = cast<CastInst>(V)->getOperand(0); - unsigned OldWidth = Scale.getBitWidth(); - unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); - Scale.trunc(SmallWidth); - Offset.trunc(SmallWidth); - Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1); - Scale.zext(OldWidth); - Offset.zext(OldWidth); - return Result; - } - - Scale = 1; - Offset = 0; - return V; -} - -/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it -/// into a base pointer with a constant offset and a number of scaled symbolic -/// offsets. -/// -/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in -/// the VarIndices vector) are Value*'s that are known to be scaled by the -/// specified amount, but which may have other unrepresented high bits. As such, -/// the gep cannot necessarily be reconstructed from its decomposed form. -/// -/// When TargetData is around, this function is capable of analyzing everything -/// that Value::getUnderlyingObject() can look through. When not, it just looks -/// through pointer casts. -/// -const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, - SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices, - const TargetData *TD) { - // Limit recursion depth to limit compile time in crazy cases. - unsigned MaxLookup = 6; - - BaseOffs = 0; - do { - // See if this is a bitcast or GEP. - const Operator *Op = dyn_cast<Operator>(V); - if (Op == 0) { - // The only non-operator case we can handle are GlobalAliases. - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { - if (!GA->mayBeOverridden()) { - V = GA->getAliasee(); - continue; - } - } - return V; - } - - if (Op->getOpcode() == Instruction::BitCast) { - V = Op->getOperand(0); - continue; - } - - const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); - if (GEPOp == 0) - return V; - - // Don't attempt to analyze GEPs over unsized objects. - if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) - ->getElementType()->isSized()) - return V; - - // If we are lacking TargetData information, we can't compute the offets of - // elements computed by GEPs. However, we can handle bitcast equivalent - // GEPs. - if (!TD) { - if (!GEPOp->hasAllZeroIndices()) - return V; - V = GEPOp->getOperand(0); - continue; - } - - // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. - gep_type_iterator GTI = gep_type_begin(GEPOp); - for (User::const_op_iterator I = GEPOp->op_begin()+1, - E = GEPOp->op_end(); I != E; ++I) { - Value *Index = *I; - // Compute the (potentially symbolic) offset in bytes for this index. - if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { - // For a struct, add the member offset. - unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); - if (FieldNo == 0) continue; - - BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); - continue; - } - - // For an array/pointer, add the element offset, explicitly scaled. - if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { - if (CIdx->isZero()) continue; - BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); - continue; - } - - uint64_t Scale = TD->getTypeAllocSize(*GTI); - - // Use GetLinearExpression to decompose the index into a C1*V+C2 form. - unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); - APInt IndexScale(Width, 0), IndexOffset(Width, 0); - Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0); - - // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. - // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. - BaseOffs += IndexOffset.getZExtValue()*Scale; - Scale *= IndexScale.getZExtValue(); - - - // If we already had an occurrance of this index variable, merge this - // scale into it. For example, we want to handle: - // A[x][x] -> x*16 + x*4 -> x*20 - // This also ensures that 'x' only appears in the index list once. - for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { - if (VarIndices[i].first == Index) { - Scale += VarIndices[i].second; - VarIndices.erase(VarIndices.begin()+i); - break; - } - } - - // Make sure that we have a scale that makes sense for this target's - // pointer size. - if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { - Scale <<= ShiftBits; - Scale >>= ShiftBits; - } - - if (Scale) - VarIndices.push_back(std::make_pair(Index, Scale)); - } - - // Analyze the base pointer next. - V = GEPOp->getOperand(0); - } while (--MaxLookup); - - // If the chain of expressions is too deep, just return early. - return V; -} - - // This is the recursive version of BuildSubAggregate. It takes a few different // arguments. Idxs is the index within the nested struct From that we are // looking at now (which is of type IndexedType). IdxSkip is the number of |