summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ScalarEvolution.cpp302
1 files changed, 163 insertions, 139 deletions
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
index 205227c..a654648 100644
--- a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -826,8 +826,7 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
- cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
- getEffectiveSCEVType(Ty))));
+ cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
// trunc(trunc(x)) --> trunc(x)
if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
@@ -879,13 +878,6 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
}
- // As a special case, fold trunc(undef) to undef. We don't want to
- // know too much about SCEVUnknowns, but this special case is handy
- // and harmless.
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
- if (isa<UndefValue>(U->getValue()))
- return getSCEV(UndefValue::get(Ty));
-
// The cast wasn't folded; create an explicit cast node. We can reuse
// the existing insert position since if we get here, we won't have
// made any changes which would invalidate it.
@@ -906,8 +898,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
- cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
- getEffectiveSCEVType(Ty))));
+ cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
// zext(zext(x)) --> zext(x)
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
@@ -976,12 +967,15 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no unsigned overflow.
const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *Add = getAddExpr(Start, ZMul);
+ const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
+ const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
+ const SCEV *WideMaxBECount =
+ getZeroExtendExpr(CastedMaxBECount, WideTy);
const SCEV *OperandExtendedAdd =
- getAddExpr(getZeroExtendExpr(Start, WideTy),
- getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
getZeroExtendExpr(Step, WideTy)));
- if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
+ if (ZAdd == OperandExtendedAdd) {
// Cache knowledge of AR NUW, which is propagated to this AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
// Return the expression with the addrec on the outside.
@@ -991,13 +985,11 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
}
// Similar to above, only this time treat the step value as signed.
// This covers loops that count down.
- const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
- Add = getAddExpr(Start, SMul);
OperandExtendedAdd =
- getAddExpr(getZeroExtendExpr(Start, WideTy),
- getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
getSignExtendExpr(Step, WideTy)));
- if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
+ if (ZAdd == OperandExtendedAdd) {
// Cache knowledge of AR NW, which is propagated to this AddRec.
// Negative step causes unsigned wrap, but it still can't self-wrap.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
@@ -1164,8 +1156,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
- cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
- getEffectiveSCEVType(Ty))));
+ cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
// sext(sext(x)) --> sext(x)
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
@@ -1242,12 +1233,15 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no signed overflow.
const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *Add = getAddExpr(Start, SMul);
+ const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
+ const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
+ const SCEV *WideMaxBECount =
+ getZeroExtendExpr(CastedMaxBECount, WideTy);
const SCEV *OperandExtendedAdd =
- getAddExpr(getSignExtendExpr(Start, WideTy),
- getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
getSignExtendExpr(Step, WideTy)));
- if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
+ if (SAdd == OperandExtendedAdd) {
// Cache knowledge of AR NSW, which is propagated to this AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
// Return the expression with the addrec on the outside.
@@ -1257,13 +1251,11 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
}
// Similar to above, only this time treat the step value as unsigned.
// This covers loops that count up with an unsigned step.
- const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
- Add = getAddExpr(Start, UMul);
OperandExtendedAdd =
- getAddExpr(getSignExtendExpr(Start, WideTy),
- getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
getZeroExtendExpr(Step, WideTy)));
- if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
+ if (SAdd == OperandExtendedAdd) {
// Cache knowledge of AR NSW, which is propagated to this AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
// Return the expression with the addrec on the outside.
@@ -1345,13 +1337,6 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
}
- // As a special case, fold anyext(undef) to undef. We don't want to
- // know too much about SCEVUnknowns, but this special case is handy
- // and harmless.
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
- if (isa<UndefValue>(U->getValue()))
- return getSCEV(UndefValue::get(Ty));
-
// If the expression is obviously signed, use the sext cast value.
if (isa<SCEVSMaxExpr>(Op))
return SExt;
@@ -1839,7 +1824,7 @@ static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
/// Compute the result of "n choose k", the binomial coefficient. If an
/// intermediate computation overflows, Overflow will be set and the return will
-/// be garbage. Overflow is not cleared on absense of overflow.
+/// be garbage. Overflow is not cleared on absence of overflow.
static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
// We use the multiplicative formula:
// n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
@@ -2038,63 +2023,67 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
for (unsigned OtherIdx = Idx+1;
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
- if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
- // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
- // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
- // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
- // ]]],+,...up to x=2n}.
- // Note that the arguments to choose() are always integers with values
- // known at compile time, never SCEV objects.
- //
- // The implementation avoids pointless extra computations when the two
- // addrec's are of different length (mathematically, it's equivalent to
- // an infinite stream of zeros on the right).
- bool OpsModified = false;
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
- if (const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
- if (OtherAddRec->getLoop() == AddRecLoop) {
- bool Overflow = false;
- Type *Ty = AddRec->getType();
- bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
- SmallVector<const SCEV*, 7> AddRecOps;
- for (int x = 0, xe = AddRec->getNumOperands() +
- OtherAddRec->getNumOperands() - 1;
- x != xe && !Overflow; ++x) {
- const SCEV *Term = getConstant(Ty, 0);
- for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
- uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
- for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
- ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
- z < ze && !Overflow; ++z) {
- uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
- uint64_t Coeff;
- if (LargerThan64Bits)
- Coeff = umul_ov(Coeff1, Coeff2, Overflow);
- else
- Coeff = Coeff1*Coeff2;
- const SCEV *CoeffTerm = getConstant(Ty, Coeff);
- const SCEV *Term1 = AddRec->getOperand(y-z);
- const SCEV *Term2 = OtherAddRec->getOperand(z);
- Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
- }
- }
- AddRecOps.push_back(Term);
- }
- if (!Overflow) {
- const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
- AddRec->getLoop(),
- SCEV::FlagAnyWrap);
- if (Ops.size() == 2) return NewAddRec;
- Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- OpsModified = true;
- }
+ if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
+ continue;
+
+ // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
+ // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
+ // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
+ // ]]],+,...up to x=2n}.
+ // Note that the arguments to choose() are always integers with values
+ // known at compile time, never SCEV objects.
+ //
+ // The implementation avoids pointless extra computations when the two
+ // addrec's are of different length (mathematically, it's equivalent to
+ // an infinite stream of zeros on the right).
+ bool OpsModified = false;
+ for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
+ ++OtherIdx) {
+ const SCEVAddRecExpr *OtherAddRec =
+ dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+ if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
+ continue;
+
+ bool Overflow = false;
+ Type *Ty = AddRec->getType();
+ bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
+ SmallVector<const SCEV*, 7> AddRecOps;
+ for (int x = 0, xe = AddRec->getNumOperands() +
+ OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
+ const SCEV *Term = getConstant(Ty, 0);
+ for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
+ uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
+ for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
+ ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
+ z < ze && !Overflow; ++z) {
+ uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
+ uint64_t Coeff;
+ if (LargerThan64Bits)
+ Coeff = umul_ov(Coeff1, Coeff2, Overflow);
+ else
+ Coeff = Coeff1*Coeff2;
+ const SCEV *CoeffTerm = getConstant(Ty, Coeff);
+ const SCEV *Term1 = AddRec->getOperand(y-z);
+ const SCEV *Term2 = OtherAddRec->getOperand(z);
+ Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
}
- if (OpsModified)
- return getMulExpr(Ops);
+ }
+ AddRecOps.push_back(Term);
+ }
+ if (!Overflow) {
+ const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
+ SCEV::FlagAnyWrap);
+ if (Ops.size() == 2) return NewAddRec;
+ Ops[Idx] = NewAddRec;
+ Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+ OpsModified = true;
+ AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
+ if (!AddRec)
+ break;
+ }
}
+ if (OpsModified)
+ return getMulExpr(Ops);
}
// Otherwise couldn't fold anything into this recurrence. Move onto the
@@ -2723,7 +2712,7 @@ const SCEV *ScalarEvolution::getCouldNotCompute() {
const SCEV *ScalarEvolution::getSCEV(Value *V) {
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
- ValueExprMapType::const_iterator I = ValueExprMap.find(V);
+ ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
if (I != ValueExprMap.end()) return I->second;
const SCEV *S = createSCEV(V);
@@ -2960,7 +2949,7 @@ ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
if (!Visited.insert(I)) continue;
ValueExprMapType::iterator It =
- ValueExprMap.find(static_cast<Value *>(I));
+ ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
const SCEV *Old = It->second;
@@ -3017,7 +3006,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (BEValueV && StartValueV) {
// While we are analyzing this PHI node, handle its value symbolically.
const SCEV *SymbolicName = getUnknown(PN);
- assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
+ assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
"PHI node already processed?");
ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
@@ -4081,7 +4070,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
if (!Visited.insert(I)) continue;
ValueExprMapType::iterator It =
- ValueExprMap.find(static_cast<Value *>(I));
+ ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
const SCEV *Old = It->second;
@@ -4132,7 +4121,8 @@ void ScalarEvolution::forgetLoop(const Loop *L) {
Instruction *I = Worklist.pop_back_val();
if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
+ ValueExprMapType::iterator It =
+ ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
forgetMemoizedResults(It->second);
ValueExprMap.erase(It);
@@ -4165,7 +4155,8 @@ void ScalarEvolution::forgetValue(Value *V) {
I = Worklist.pop_back_val();
if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
+ ValueExprMapType::iterator It =
+ ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
forgetMemoizedResults(It->second);
ValueExprMap.erase(It);
@@ -5379,6 +5370,12 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
SqrtTerm *= B;
SqrtTerm -= Four * (A * C);
+ if (SqrtTerm.isNegative()) {
+ // The loop is provably infinite.
+ const SCEV *CNC = SE.getCouldNotCompute();
+ return std::make_pair(CNC, CNC);
+ }
+
// Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
// integer value or else APInt::sqrt() will assert.
APInt SqrtVal(SqrtTerm.sqrt());
@@ -5481,7 +5478,7 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
// We have not yet seen any such cases.
const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
- if (StepC == 0)
+ if (StepC == 0 || StepC->getValue()->equalsInt(0))
return getCouldNotCompute();
// For positive steps (counting up until unsigned overflow):
@@ -5602,9 +5599,14 @@ static bool HasSameValue(const SCEV *A, const SCEV *B) {
/// predicate Pred. Return true iff any changes were made.
///
bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
- const SCEV *&LHS, const SCEV *&RHS) {
+ const SCEV *&LHS, const SCEV *&RHS,
+ unsigned Depth) {
bool Changed = false;
+ // If we hit the max recursion limit bail out.
+ if (Depth >= 3)
+ return false;
+
// Canonicalize a constant to the right side.
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
// Check for both operands constant.
@@ -5642,6 +5644,16 @@ bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
+ // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
+ if (!RA)
+ if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
+ if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
+ if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
+ ME->getOperand(0)->isAllOnesValue()) {
+ RHS = AE->getOperand(1);
+ LHS = ME->getOperand(1);
+ Changed = true;
+ }
break;
case ICmpInst::ICMP_UGE:
if ((RA - 1).isMinValue()) {
@@ -5843,6 +5855,11 @@ bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
// TODO: More simplifications are possible here.
+ // Recursively simplify until we either hit a recursion limit or nothing
+ // changes.
+ if (Changed)
+ return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
+
return Changed;
trivially_true:
@@ -6040,12 +6057,34 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
return false;
}
+/// RAII wrapper to prevent recursive application of isImpliedCond.
+/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
+/// currently evaluating isImpliedCond.
+struct MarkPendingLoopPredicate {
+ Value *Cond;
+ DenseSet<Value*> &LoopPreds;
+ bool Pending;
+
+ MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
+ : Cond(C), LoopPreds(LP) {
+ Pending = !LoopPreds.insert(Cond).second;
+ }
+ ~MarkPendingLoopPredicate() {
+ if (!Pending)
+ LoopPreds.erase(Cond);
+ }
+};
+
/// isImpliedCond - Test whether the condition described by Pred, LHS,
/// and RHS is true whenever the given Cond value evaluates to true.
bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
Value *FoundCondValue,
bool Inverse) {
+ MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
+ if (Mark.Pending)
+ return false;
+
// Recursively handle And and Or conditions.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
if (BO->getOpcode() == Instruction::And) {
@@ -6572,6 +6611,8 @@ void ScalarEvolution::releaseMemory() {
I->second.clear();
}
+ assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
+
BackedgeTakenCounts.clear();
ConstantEvolutionLoopExitValue.clear();
ValuesAtScopes.clear();
@@ -6859,44 +6900,27 @@ bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
}
-bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
- switch (S->getSCEVType()) {
- case scConstant:
- return false;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend: {
- const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
- const SCEV *CastOp = Cast->getOperand();
- return Op == CastOp || hasOperand(CastOp, Op);
- }
- case scAddRecExpr:
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- const SCEV *NAryOp = *I;
- if (NAryOp == Op || hasOperand(NAryOp, Op))
- return true;
- }
- return false;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
- return LHS == Op || hasOperand(LHS, Op) ||
- RHS == Op || hasOperand(RHS, Op);
- }
- case scUnknown:
- return false;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default:
- llvm_unreachable("Unknown SCEV kind!");
+namespace {
+// Search for a SCEV expression node within an expression tree.
+// Implements SCEVTraversal::Visitor.
+struct SCEVSearch {
+ const SCEV *Node;
+ bool IsFound;
+
+ SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
+
+ bool follow(const SCEV *S) {
+ IsFound |= (S == Node);
+ return !IsFound;
}
+ bool isDone() const { return IsFound; }
+};
+}
+
+bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
+ SCEVSearch Search(Op);
+ visitAll(S, Search);
+ return Search.IsFound;
}
void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
OpenPOWER on IntegriCloud