diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/ScalarEvolution.cpp | 743 |
1 files changed, 437 insertions, 306 deletions
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp index 413b3b4..b892d85 100644 --- a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp @@ -103,8 +103,8 @@ MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, "derived loop"), cl::init(100)); -static RegisterPass<ScalarEvolution> -R("scalar-evolution", "Scalar Evolution Analysis", false, true); +INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", + "Scalar Evolution Analysis", false, true); char ScalarEvolution::ID = 0; //===----------------------------------------------------------------------===// @@ -251,28 +251,59 @@ void SCEVCommutativeExpr::print(raw_ostream &OS) const { OS << "("; for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { OS << **I; - if (next(I) != E) + if (llvm::next(I) != E) OS << OpStr; } OS << ")"; } bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - if (!getOperand(i)->dominates(BB, DT)) + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + if (!(*I)->dominates(BB, DT)) return false; - } return true; } bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - if (!getOperand(i)->properlyDominates(BB, DT)) + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + if (!(*I)->properlyDominates(BB, DT)) return false; - } return true; } +bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const { + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + if (!(*I)->isLoopInvariant(L)) + return false; + return true; +} + +// hasComputableLoopEvolution - N-ary expressions have computable loop +// evolutions iff they have at least one operand that varies with the loop, +// but that all varying operands are computable. +bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const { + bool HasVarying = false; + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { + const SCEV *S = *I; + if (!S->isLoopInvariant(L)) { + if (S->hasComputableLoopEvolution(L)) + HasVarying = true; + else + return false; + } + } + return HasVarying; +} + +bool SCEVNAryExpr::hasOperand(const SCEV *O) const { + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { + const SCEV *S = *I; + if (O == S || S->hasOperand(O)) + return true; + } + return false; +} + bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); } @@ -303,10 +334,14 @@ bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { if (QueryLoop->contains(L)) return false; + // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop. + if (L->contains(QueryLoop)) + return true; + // This recurrence is variant w.r.t. QueryLoop if any of its operands // are variant. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (!getOperand(i)->isLoopInvariant(QueryLoop)) + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + if (!(*I)->isLoopInvariant(QueryLoop)) return false; // Otherwise it's loop-invariant. @@ -337,12 +372,36 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const { OS << ">"; } +void SCEVUnknown::deleted() { + // Clear this SCEVUnknown from ValuesAtScopes. + SE->ValuesAtScopes.erase(this); + + // Remove this SCEVUnknown from the uniquing map. + SE->UniqueSCEVs.RemoveNode(this); + + // Release the value. + setValPtr(0); +} + +void SCEVUnknown::allUsesReplacedWith(Value *New) { + // Clear this SCEVUnknown from ValuesAtScopes. + SE->ValuesAtScopes.erase(this); + + // Remove this SCEVUnknown from the uniquing map. + SE->UniqueSCEVs.RemoveNode(this); + + // Update this SCEVUnknown to point to the new value. This is needed + // because there may still be outstanding SCEVs which still point to + // this SCEVUnknown. + setValPtr(New); +} + bool SCEVUnknown::isLoopInvariant(const Loop *L) const { // All non-instruction values are loop invariant. All instructions are loop // invariant if they are not contained in the specified loop. // Instructions are never considered invariant in the function body // (null loop) because they are defined within the "loop". - if (Instruction *I = dyn_cast<Instruction>(V)) + if (Instruction *I = dyn_cast<Instruction>(getValue())) return L && !L->contains(I); return true; } @@ -360,11 +419,11 @@ bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { } const Type *SCEVUnknown::getType() const { - return V->getType(); + return getValue()->getType(); } bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) + if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) if (VCE->getOpcode() == Instruction::PtrToInt) if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) if (CE->getOpcode() == Instruction::GetElementPtr && @@ -381,7 +440,7 @@ bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { } bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) + if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) if (VCE->getOpcode() == Instruction::PtrToInt) if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) if (CE->getOpcode() == Instruction::GetElementPtr && @@ -406,7 +465,7 @@ bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { } bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) + if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) if (VCE->getOpcode() == Instruction::PtrToInt) if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) if (CE->getOpcode() == Instruction::GetElementPtr && @@ -448,166 +507,183 @@ void SCEVUnknown::print(raw_ostream &OS) const { } // Otherwise just print it normally. - WriteAsOperand(OS, V, false); + WriteAsOperand(OS, getValue(), false); } //===----------------------------------------------------------------------===// // SCEV Utilities //===----------------------------------------------------------------------===// -static bool CompareTypes(const Type *A, const Type *B) { - if (A->getTypeID() != B->getTypeID()) - return A->getTypeID() < B->getTypeID(); - if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { - const IntegerType *BI = cast<IntegerType>(B); - return AI->getBitWidth() < BI->getBitWidth(); - } - if (const PointerType *AI = dyn_cast<PointerType>(A)) { - const PointerType *BI = cast<PointerType>(B); - return CompareTypes(AI->getElementType(), BI->getElementType()); - } - if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { - const ArrayType *BI = cast<ArrayType>(B); - if (AI->getNumElements() != BI->getNumElements()) - return AI->getNumElements() < BI->getNumElements(); - return CompareTypes(AI->getElementType(), BI->getElementType()); - } - if (const VectorType *AI = dyn_cast<VectorType>(A)) { - const VectorType *BI = cast<VectorType>(B); - if (AI->getNumElements() != BI->getNumElements()) - return AI->getNumElements() < BI->getNumElements(); - return CompareTypes(AI->getElementType(), BI->getElementType()); - } - if (const StructType *AI = dyn_cast<StructType>(A)) { - const StructType *BI = cast<StructType>(B); - if (AI->getNumElements() != BI->getNumElements()) - return AI->getNumElements() < BI->getNumElements(); - for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) - if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || - CompareTypes(BI->getElementType(i), AI->getElementType(i))) - return CompareTypes(AI->getElementType(i), BI->getElementType(i)); - } - return false; -} - namespace { /// SCEVComplexityCompare - Return true if the complexity of the LHS is less /// than the complexity of the RHS. This comparator is used to canonicalize /// expressions. class SCEVComplexityCompare { - LoopInfo *LI; + const LoopInfo *const LI; public: - explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} + explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} + // Return true or false if LHS is less than, or at least RHS, respectively. bool operator()(const SCEV *LHS, const SCEV *RHS) const { + return compare(LHS, RHS) < 0; + } + + // Return negative, zero, or positive, if LHS is less than, equal to, or + // greater than RHS, respectively. A three-way result allows recursive + // comparisons to be more efficient. + int compare(const SCEV *LHS, const SCEV *RHS) const { // Fast-path: SCEVs are uniqued so we can do a quick equality check. if (LHS == RHS) - return false; + return 0; // Primarily, sort the SCEVs by their getSCEVType(). - if (LHS->getSCEVType() != RHS->getSCEVType()) - return LHS->getSCEVType() < RHS->getSCEVType(); + unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); + if (LType != RType) + return (int)LType - (int)RType; // Aside from the getSCEVType() ordering, the particular ordering // isn't very important except that it's beneficial to be consistent, // so that (a + b) and (b + a) don't end up as different expressions. - - // Sort SCEVUnknown values with some loose heuristics. TODO: This is - // not as complete as it could be. - if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { + switch (LType) { + case scUnknown: { + const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); + // Sort SCEVUnknown values with some loose heuristics. TODO: This is + // not as complete as it could be. + const Value *LV = LU->getValue(), *RV = RU->getValue(); + // Order pointer values after integer values. This helps SCEVExpander // form GEPs. - if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) - return false; - if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) - return true; + bool LIsPointer = LV->getType()->isPointerTy(), + RIsPointer = RV->getType()->isPointerTy(); + if (LIsPointer != RIsPointer) + return (int)LIsPointer - (int)RIsPointer; // Compare getValueID values. - if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) - return LU->getValue()->getValueID() < RU->getValue()->getValueID(); + unsigned LID = LV->getValueID(), + RID = RV->getValueID(); + if (LID != RID) + return (int)LID - (int)RID; // Sort arguments by their position. - if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { - const Argument *RA = cast<Argument>(RU->getValue()); - return LA->getArgNo() < RA->getArgNo(); + if (const Argument *LA = dyn_cast<Argument>(LV)) { + const Argument *RA = cast<Argument>(RV); + unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); + return (int)LArgNo - (int)RArgNo; } - // For instructions, compare their loop depth, and their opcode. - // This is pretty loose. - if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { - Instruction *RV = cast<Instruction>(RU->getValue()); + // For instructions, compare their loop depth, and their operand + // count. This is pretty loose. + if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { + const Instruction *RInst = cast<Instruction>(RV); // Compare loop depths. - if (LI->getLoopDepth(LV->getParent()) != - LI->getLoopDepth(RV->getParent())) - return LI->getLoopDepth(LV->getParent()) < - LI->getLoopDepth(RV->getParent()); - - // Compare opcodes. - if (LV->getOpcode() != RV->getOpcode()) - return LV->getOpcode() < RV->getOpcode(); + const BasicBlock *LParent = LInst->getParent(), + *RParent = RInst->getParent(); + if (LParent != RParent) { + unsigned LDepth = LI->getLoopDepth(LParent), + RDepth = LI->getLoopDepth(RParent); + if (LDepth != RDepth) + return (int)LDepth - (int)RDepth; + } // Compare the number of operands. - if (LV->getNumOperands() != RV->getNumOperands()) - return LV->getNumOperands() < RV->getNumOperands(); + unsigned LNumOps = LInst->getNumOperands(), + RNumOps = RInst->getNumOperands(); + return (int)LNumOps - (int)RNumOps; } - return false; + return 0; } - // Compare constant values. - if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { + case scConstant: { + const SCEVConstant *LC = cast<SCEVConstant>(LHS); const SCEVConstant *RC = cast<SCEVConstant>(RHS); - if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) - return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); - return LC->getValue()->getValue().ult(RC->getValue()->getValue()); + + // Compare constant values. + const APInt &LA = LC->getValue()->getValue(); + const APInt &RA = RC->getValue()->getValue(); + unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); + if (LBitWidth != RBitWidth) + return (int)LBitWidth - (int)RBitWidth; + return LA.ult(RA) ? -1 : 1; } - // Compare addrec loop depths. - if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { + case scAddRecExpr: { + const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); - if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) - return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); + + // Compare addrec loop depths. + const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); + if (LLoop != RLoop) { + unsigned LDepth = LLoop->getLoopDepth(), + RDepth = RLoop->getLoopDepth(); + if (LDepth != RDepth) + return (int)LDepth - (int)RDepth; + } + + // Addrec complexity grows with operand count. + unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); + if (LNumOps != RNumOps) + return (int)LNumOps - (int)RNumOps; + + // Lexicographically compare. + for (unsigned i = 0; i != LNumOps; ++i) { + long X = compare(LA->getOperand(i), RA->getOperand(i)); + if (X != 0) + return X; + } + + return 0; } - // Lexicographically compare n-ary expressions. - if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { + case scAddExpr: + case scMulExpr: + case scSMaxExpr: + case scUMaxExpr: { + const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); - for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { - if (i >= RC->getNumOperands()) - return false; - if (operator()(LC->getOperand(i), RC->getOperand(i))) - return true; - if (operator()(RC->getOperand(i), LC->getOperand(i))) - return false; + + // Lexicographically compare n-ary expressions. + unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); + for (unsigned i = 0; i != LNumOps; ++i) { + if (i >= RNumOps) + return 1; + long X = compare(LC->getOperand(i), RC->getOperand(i)); + if (X != 0) + return X; } - return LC->getNumOperands() < RC->getNumOperands(); + return (int)LNumOps - (int)RNumOps; } - // Lexicographically compare udiv expressions. - if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { + case scUDivExpr: { + const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); - if (operator()(LC->getLHS(), RC->getLHS())) - return true; - if (operator()(RC->getLHS(), LC->getLHS())) - return false; - if (operator()(LC->getRHS(), RC->getRHS())) - return true; - if (operator()(RC->getRHS(), LC->getRHS())) - return false; - return false; + + // Lexicographically compare udiv expressions. + long X = compare(LC->getLHS(), RC->getLHS()); + if (X != 0) + return X; + return compare(LC->getRHS(), RC->getRHS()); } - // Compare cast expressions by operand. - if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { + case scTruncate: + case scZeroExtend: + case scSignExtend: { + const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); - return operator()(LC->getOperand(), RC->getOperand()); + + // Compare cast expressions by operand. + return compare(LC->getOperand(), RC->getOperand()); + } + + default: + break; } llvm_unreachable("Unknown SCEV kind!"); - return false; + return 0; } }; } @@ -628,8 +704,9 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, if (Ops.size() == 2) { // This is the common case, which also happens to be trivially simple. // Special case it. - if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) - std::swap(Ops[0], Ops[1]); + const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; + if (SCEVComplexityCompare(LI)(RHS, LHS)) + std::swap(LHS, RHS); return; } @@ -845,6 +922,13 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, return getAddRecExpr(Operands, AddRec->getLoop()); } + // As a special case, fold trunc(undef) to undef. We don't want to + // know too much about SCEVUnknowns, but this special case is handy + // and harmless. + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) + if (isa<UndefValue>(U->getValue())) + return getSCEV(UndefValue::get(Ty)); + // The cast wasn't folded; create an explicit cast node. We can reuse // the existing insert position since if we get here, we won't have // made any changes which would invalidate it. @@ -1163,6 +1247,13 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, return getAddRecExpr(Ops, AR->getLoop()); } + // As a special case, fold anyext(undef) to undef. We don't want to + // know too much about SCEVUnknowns, but this special case is handy + // and harmless. + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) + if (isa<UndefValue>(U->getValue())) + return getSCEV(UndefValue::get(Ty)); + // If the expression is obviously signed, use the sext cast value. if (isa<SCEVSMaxExpr>(Op)) return SExt; @@ -1287,8 +1378,9 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, // If HasNSW is true and all the operands are non-negative, infer HasNUW. if (!HasNUW && HasNSW) { bool All = true; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (!isKnownNonNegative(Ops[i])) { + for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), + E = Ops.end(); I != E; ++I) + if (!isKnownNonNegative(*I)) { All = false; break; } @@ -1321,22 +1413,29 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, if (Ops.size() == 1) return Ops[0]; } - // Okay, check to see if the same value occurs in the operand list twice. If - // so, merge them together into an multiply expression. Since we sorted the - // list, these values are required to be adjacent. + // Okay, check to see if the same value occurs in the operand list more than + // once. If so, merge them together into an multiply expression. Since we + // sorted the list, these values are required to be adjacent. const Type *Ty = Ops[0]->getType(); - for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + bool FoundMatch = false; + for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 - // Found a match, merge the two values into a multiply, and add any - // remaining values to the result. - const SCEV *Two = getConstant(Ty, 2); - const SCEV *Mul = getMulExpr(Ops[i], Two); - if (Ops.size() == 2) + // Scan ahead to count how many equal operands there are. + unsigned Count = 2; + while (i+Count != e && Ops[i+Count] == Ops[i]) + ++Count; + // Merge the values into a multiply. + const SCEV *Scale = getConstant(Ty, Count); + const SCEV *Mul = getMulExpr(Scale, Ops[i]); + if (Ops.size() == Count) return Mul; - Ops.erase(Ops.begin()+i, Ops.begin()+i+2); - Ops.push_back(Mul); - return getAddExpr(Ops, HasNUW, HasNSW); + Ops[i] = Mul; + Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); + --i; e -= Count - 1; + FoundMatch = true; } + if (FoundMatch) + return getAddExpr(Ops, HasNUW, HasNSW); // Check for truncates. If all the operands are truncated from the same // type, see if factoring out the truncate would permit the result to be @@ -1433,7 +1532,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, // re-generate the operands list. Group the operands by constant scale, // to avoid multiplying by the same constant scale multiple times. std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; - for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), + for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), E = NewOps.end(); I != E; ++I) MulOpLists[M.find(*I)->second].push_back(*I); // Re-generate the operands list. @@ -1460,20 +1559,23 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { const SCEV *MulOpSCEV = Mul->getOperand(MulOp); + if (isa<SCEVConstant>(MulOpSCEV)) + continue; for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) - if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { + if (MulOpSCEV == Ops[AddOp]) { // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) const SCEV *InnerMul = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { // If the multiply has more than two operands, we must get the // Y*Z term. - SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); - MulOps.erase(MulOps.begin()+MulOp); + SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), + Mul->op_begin()+MulOp); + MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); InnerMul = getMulExpr(MulOps); } const SCEV *One = getConstant(Ty, 1); - const SCEV *AddOne = getAddExpr(InnerMul, One); - const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); + const SCEV *AddOne = getAddExpr(One, InnerMul); + const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); if (Ops.size() == 2) return OuterMul; if (AddOp < Idx) { Ops.erase(Ops.begin()+AddOp); @@ -1500,15 +1602,15 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), - Mul->op_end()); - MulOps.erase(MulOps.begin()+MulOp); + Mul->op_begin()+MulOp); + MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); InnerMul1 = getMulExpr(MulOps); } const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); if (OtherMul->getNumOperands() != 2) { SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), - OtherMul->op_end()); - MulOps.erase(MulOps.begin()+OMulOp); + OtherMul->op_begin()+OMulOp); + MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); InnerMul2 = getMulExpr(MulOps); } const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); @@ -1574,30 +1676,31 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, // there are multiple AddRec's with the same loop induction variable being // added together. If so, we can fold them. for (unsigned OtherIdx = Idx+1; - OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) - if (OtherIdx != Idx) { - const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); - if (AddRecLoop == OtherAddRec->getLoop()) { - // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} - SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), - AddRec->op_end()); - for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { - if (i >= NewOps.size()) { - NewOps.append(OtherAddRec->op_begin()+i, - OtherAddRec->op_end()); - break; + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); + ++OtherIdx) + if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { + // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> + SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), + AddRec->op_end()); + for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); + ++OtherIdx) + if (const SCEVAddRecExpr *OtherAddRec = + dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) + if (OtherAddRec->getLoop() == AddRecLoop) { + for (unsigned i = 0, e = OtherAddRec->getNumOperands(); + i != e; ++i) { + if (i >= AddRecOps.size()) { + AddRecOps.append(OtherAddRec->op_begin()+i, + OtherAddRec->op_end()); + break; + } + AddRecOps[i] = getAddExpr(AddRecOps[i], + OtherAddRec->getOperand(i)); + } + Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; } - NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); - } - const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); - - if (Ops.size() == 2) return NewAddRec; - - Ops.erase(Ops.begin()+Idx); - Ops.erase(Ops.begin()+OtherIdx-1); - Ops.push_back(NewAddRec); - return getAddExpr(Ops); - } + Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop); + return getAddExpr(Ops); } // Otherwise couldn't fold anything into this recurrence. Move onto the @@ -1633,17 +1736,18 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, assert(!Ops.empty() && "Cannot get empty mul!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG + const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == - getEffectiveSCEVType(Ops[0]->getType()) && + assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && "SCEVMulExpr operand types don't match!"); #endif // If HasNSW is true and all the operands are non-negative, infer HasNUW. if (!HasNUW && HasNSW) { bool All = true; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (!isKnownNonNegative(Ops[i])) { + for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), + E = Ops.end(); I != E; ++I) + if (!isKnownNonNegative(*I)) { All = false; break; } @@ -1740,8 +1844,9 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, // they are loop invariant w.r.t. the recurrence. SmallVector<const SCEV *, 8> LIOps; const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); + const Loop *AddRecLoop = AddRec->getLoop(); for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { + if (Ops[i]->isLoopInvariant(AddRecLoop)) { LIOps.push_back(Ops[i]); Ops.erase(Ops.begin()+i); --i; --e; @@ -1758,7 +1863,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, // Build the new addrec. Propagate the NUW and NSW flags if both the // outer mul and the inner addrec are guaranteed to have no overflow. - const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), + const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, HasNUW && AddRec->hasNoUnsignedWrap(), HasNSW && AddRec->hasNoSignedWrap()); @@ -1778,28 +1883,30 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, // there are multiple AddRec's with the same loop induction variable being // multiplied together. If so, we can fold them. for (unsigned OtherIdx = Idx+1; - OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) - if (OtherIdx != Idx) { - const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); - if (AddRec->getLoop() == OtherAddRec->getLoop()) { - // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} - const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; - const SCEV *NewStart = getMulExpr(F->getStart(), - G->getStart()); - const SCEV *B = F->getStepRecurrence(*this); - const SCEV *D = G->getStepRecurrence(*this); - const SCEV *NewStep = getAddExpr(getMulExpr(F, D), - getMulExpr(G, B), - getMulExpr(B, D)); - const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, - F->getLoop()); - if (Ops.size() == 2) return NewAddRec; - - Ops.erase(Ops.begin()+Idx); - Ops.erase(Ops.begin()+OtherIdx-1); - Ops.push_back(NewAddRec); - return getMulExpr(Ops); - } + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); + ++OtherIdx) + if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { + // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> + // {A*C,+,F*D + G*B + B*D}<L> + for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); + ++OtherIdx) + if (const SCEVAddRecExpr *OtherAddRec = + dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) + if (OtherAddRec->getLoop() == AddRecLoop) { + const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; + const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); + const SCEV *B = F->getStepRecurrence(*this); + const SCEV *D = G->getStepRecurrence(*this); + const SCEV *NewStep = getAddExpr(getMulExpr(F, D), + getMulExpr(G, B), + getMulExpr(B, D)); + const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, + F->getLoop()); + if (Ops.size() == 2) return NewAddRec; + Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); + Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; + } + return getMulExpr(Ops); } // Otherwise couldn't fold anything into this recurrence. Move onto the @@ -1848,7 +1955,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, // TODO: Generalize this to non-constants by using known-bits information. const Type *Ty = LHS->getType(); unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); - unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; + unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; // For non-power-of-two values, effectively round the value up to the // nearest power of two. if (!RHSC->getValue()->getValue().isPowerOf2()) @@ -1955,9 +2062,9 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, bool HasNUW, bool HasNSW) { if (Operands.size() == 1) return Operands[0]; #ifndef NDEBUG + const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); for (unsigned i = 1, e = Operands.size(); i != e; ++i) - assert(getEffectiveSCEVType(Operands[i]->getType()) == - getEffectiveSCEVType(Operands[0]->getType()) && + assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && "SCEVAddRecExpr operand types don't match!"); #endif @@ -1975,8 +2082,9 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, // If HasNSW is true and all the operands are non-negative, infer HasNUW. if (!HasNUW && HasNSW) { bool All = true; - for (unsigned i = 0, e = Operands.size(); i != e; ++i) - if (!isKnownNonNegative(Operands[i])) { + for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), + E = Operands.end(); I != E; ++I) + if (!isKnownNonNegative(*I)) { All = false; break; } @@ -1986,9 +2094,9 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, // Canonicalize nested AddRecs in by nesting them in order of loop depth. if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { const Loop *NestedLoop = NestedAR->getLoop(); - if (L->contains(NestedLoop->getHeader()) ? + if (L->contains(NestedLoop) ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) : - (!NestedLoop->contains(L->getHeader()) && + (!NestedLoop->contains(L) && DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), NestedAR->op_end()); @@ -2055,9 +2163,9 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { assert(!Ops.empty() && "Cannot get empty smax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG + const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == - getEffectiveSCEVType(Ops[0]->getType()) && + assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && "SCEVSMaxExpr operand types don't match!"); #endif @@ -2160,9 +2268,9 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { assert(!Ops.empty() && "Cannot get empty umax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG + const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == - getEffectiveSCEVType(Ops[0]->getType()) && + assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && "SCEVUMaxExpr operand types don't match!"); #endif @@ -2326,8 +2434,14 @@ const SCEV *ScalarEvolution::getUnknown(Value *V) { ID.AddInteger(scUnknown); ID.AddPointer(V); void *IP = 0; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V); + if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { + assert(cast<SCEVUnknown>(S)->getValue() == V && + "Stale SCEVUnknown in uniquing map!"); + return S; + } + SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, + FirstUnknown); + FirstUnknown = cast<SCEVUnknown>(S); UniqueSCEVs.InsertNode(S, IP); return S; } @@ -2391,10 +2505,15 @@ const SCEV *ScalarEvolution::getCouldNotCompute() { const SCEV *ScalarEvolution::getSCEV(Value *V) { assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); - std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); - if (I != Scalars.end()) return I->second; + ValueExprMapType::const_iterator I = ValueExprMap.find(V); + if (I != ValueExprMap.end()) return I->second; const SCEV *S = createSCEV(V); - Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); + + // The process of creating a SCEV for V may have caused other SCEVs + // to have been created, so it's necessary to insert the new entry + // from scratch, rather than trying to remember the insert position + // above. + ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); return S; } @@ -2428,6 +2547,10 @@ const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { /// const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS) { + // Fast path: X - X --> 0. + if (LHS == RHS) + return getConstant(LHS->getType(), 0); + // X - Y --> X + -Y return getAddExpr(LHS, getNegativeSCEV(RHS)); } @@ -2570,12 +2693,12 @@ PushDefUseChildren(Instruction *I, // Push the def-use children onto the Worklist stack. for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) - Worklist.push_back(cast<Instruction>(UI)); + Worklist.push_back(cast<Instruction>(*UI)); } /// ForgetSymbolicValue - This looks up computed SCEV values for all /// instructions that depend on the given instruction and removes them from -/// the Scalars map if they reference SymName. This is used during PHI +/// the ValueExprMapType map if they reference SymName. This is used during PHI /// resolution. void ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { @@ -2588,9 +2711,9 @@ ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { Instruction *I = Worklist.pop_back_val(); if (!Visited.insert(I)) continue; - std::map<SCEVCallbackVH, const SCEV *>::iterator It = - Scalars.find(static_cast<Value *>(I)); - if (It != Scalars.end()) { + ValueExprMapType::iterator It = + ValueExprMap.find(static_cast<Value *>(I)); + if (It != ValueExprMap.end()) { // Short-circuit the def-use traversal if the symbolic name // ceases to appear in expressions. if (It->second != SymName && !It->second->hasOperand(SymName)) @@ -2607,7 +2730,7 @@ ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { !isa<SCEVUnknown>(It->second) || (I != PN && It->second == SymName)) { ValuesAtScopes.erase(It->second); - Scalars.erase(It); + ValueExprMap.erase(It); } } @@ -2644,9 +2767,9 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { if (BEValueV && StartValueV) { // While we are analyzing this PHI node, handle its value symbolically. const SCEV *SymbolicName = getUnknown(PN); - assert(Scalars.find(PN) == Scalars.end() && + assert(ValueExprMap.find(PN) == ValueExprMap.end() && "PHI node already processed?"); - Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); + ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); // Using this symbolic name for the PHI, analyze the value coming around // the back-edge. @@ -2707,7 +2830,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { // to be symbolic. We now need to go back and purge all of the // entries for the scalars that use the symbolic expression. ForgetSymbolicName(PN, SymbolicName); - Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; + ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; return PHISCEV; } } @@ -2732,7 +2855,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { // to be symbolic. We now need to go back and purge all of the // entries for the scalars that use the symbolic expression. ForgetSymbolicName(PN, SymbolicName); - Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; + ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; return PHISCEV; } } @@ -2777,7 +2900,7 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { return getUnknown(GEP); const SCEV *TotalOffset = getConstant(IntPtrTy, 0); gep_type_iterator GTI = gep_type_begin(GEP); - for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), + for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), E = GEP->op_end(); I != E; ++I) { Value *Index = *I; @@ -3200,12 +3323,42 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { Operator *U = cast<Operator>(V); switch (Opcode) { - case Instruction::Add: - return getAddExpr(getSCEV(U->getOperand(0)), - getSCEV(U->getOperand(1))); - case Instruction::Mul: - return getMulExpr(getSCEV(U->getOperand(0)), - getSCEV(U->getOperand(1))); + case Instruction::Add: { + // The simple thing to do would be to just call getSCEV on both operands + // and call getAddExpr with the result. However if we're looking at a + // bunch of things all added together, this can be quite inefficient, + // because it leads to N-1 getAddExpr calls for N ultimate operands. + // Instead, gather up all the operands and make a single getAddExpr call. + // LLVM IR canonical form means we need only traverse the left operands. + SmallVector<const SCEV *, 4> AddOps; + AddOps.push_back(getSCEV(U->getOperand(1))); + for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { + unsigned Opcode = Op->getValueID() - Value::InstructionVal; + if (Opcode != Instruction::Add && Opcode != Instruction::Sub) + break; + U = cast<Operator>(Op); + const SCEV *Op1 = getSCEV(U->getOperand(1)); + if (Opcode == Instruction::Sub) + AddOps.push_back(getNegativeSCEV(Op1)); + else + AddOps.push_back(Op1); + } + AddOps.push_back(getSCEV(U->getOperand(0))); + return getAddExpr(AddOps); + } + case Instruction::Mul: { + // See the Add code above. + SmallVector<const SCEV *, 4> MulOps; + MulOps.push_back(getSCEV(U->getOperand(1))); + for (Value *Op = U->getOperand(0); + Op->getValueID() == Instruction::Mul + Value::InstructionVal; + Op = U->getOperand(0)) { + U = cast<Operator>(Op); + MulOps.push_back(getSCEV(U->getOperand(1))); + } + MulOps.push_back(getSCEV(U->getOperand(0))); + return getMulExpr(MulOps); + } case Instruction::UDiv: return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); @@ -3467,7 +3620,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { const SCEV *LDiff = getMinusSCEV(LA, LS); const SCEV *RDiff = getMinusSCEV(RA, One); if (LDiff == RDiff) - return getAddExpr(getUMaxExpr(LS, One), LDiff); + return getAddExpr(getUMaxExpr(One, LS), LDiff); } break; case ICmpInst::ICMP_EQ: @@ -3482,7 +3635,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { const SCEV *LDiff = getMinusSCEV(LA, One); const SCEV *RDiff = getMinusSCEV(RA, LS); if (LDiff == RDiff) - return getAddExpr(getUMaxExpr(LS, One), LDiff); + return getAddExpr(getUMaxExpr(One, LS), LDiff); } break; default: @@ -3579,9 +3732,9 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { Instruction *I = Worklist.pop_back_val(); if (!Visited.insert(I)) continue; - std::map<SCEVCallbackVH, const SCEV *>::iterator It = - Scalars.find(static_cast<Value *>(I)); - if (It != Scalars.end()) { + ValueExprMapType::iterator It = + ValueExprMap.find(static_cast<Value *>(I)); + if (It != ValueExprMap.end()) { // SCEVUnknown for a PHI either means that it has an unrecognized // structure, or it's a PHI that's in the progress of being computed // by createNodeForPHI. In the former case, additional loop trip @@ -3590,7 +3743,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { // own when it gets to that point. if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { ValuesAtScopes.erase(It->second); - Scalars.erase(It); + ValueExprMap.erase(It); } if (PHINode *PN = dyn_cast<PHINode>(I)) ConstantEvolutionLoopExitValue.erase(PN); @@ -3619,11 +3772,10 @@ void ScalarEvolution::forgetLoop(const Loop *L) { Instruction *I = Worklist.pop_back_val(); if (!Visited.insert(I)) continue; - std::map<SCEVCallbackVH, const SCEV *>::iterator It = - Scalars.find(static_cast<Value *>(I)); - if (It != Scalars.end()) { + ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); + if (It != ValueExprMap.end()) { ValuesAtScopes.erase(It->second); - Scalars.erase(It); + ValueExprMap.erase(It); if (PHINode *PN = dyn_cast<PHINode>(I)) ConstantEvolutionLoopExitValue.erase(PN); } @@ -3648,35 +3800,14 @@ void ScalarEvolution::forgetValue(Value *V) { I = Worklist.pop_back_val(); if (!Visited.insert(I)) continue; - std::map<SCEVCallbackVH, const SCEV *>::iterator It = - Scalars.find(static_cast<Value *>(I)); - if (It != Scalars.end()) { + ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); + if (It != ValueExprMap.end()) { ValuesAtScopes.erase(It->second); - Scalars.erase(It); + ValueExprMap.erase(It); if (PHINode *PN = dyn_cast<PHINode>(I)) ConstantEvolutionLoopExitValue.erase(PN); } - // If there's a SCEVUnknown tying this value into the SCEV - // space, remove it from the folding set map. The SCEVUnknown - // object and any other SCEV objects which reference it - // (transitively) remain allocated, effectively leaked until - // the underlying BumpPtrAllocator is freed. - // - // This permits SCEV pointers to be used as keys in maps - // such as the ValuesAtScopes map. - FoldingSetNodeID ID; - ID.AddInteger(scUnknown); - ID.AddPointer(I); - void *IP; - if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { - UniqueSCEVs.RemoveNode(S); - - // This isn't necessary, but we might as well remove the - // value from the ValuesAtScopes map too. - ValuesAtScopes.erase(S); - } - PushDefUseChildren(I, Worklist); } } @@ -3816,14 +3947,13 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, else MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { - // Both conditions must be true for the loop to exit. + // Both conditions must be true at the same time for the loop to exit. + // For now, be conservative. assert(L->contains(FBB) && "Loop block has no successor in loop!"); - if (BTI0.Exact != getCouldNotCompute() && - BTI1.Exact != getCouldNotCompute()) - BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); - if (BTI0.Max != getCouldNotCompute() && - BTI1.Max != getCouldNotCompute()) - MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); + if (BTI0.Max == BTI1.Max) + MaxBECount = BTI0.Max; + if (BTI0.Exact == BTI1.Exact) + BECount = BTI0.Exact; } return BackedgeTakenInfo(BECount, MaxBECount); @@ -3851,14 +3981,13 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, else MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { - // Both conditions must be false for the loop to exit. + // Both conditions must be false at the same time for the loop to exit. + // For now, be conservative. assert(L->contains(TBB) && "Loop block has no successor in loop!"); - if (BTI0.Exact != getCouldNotCompute() && - BTI1.Exact != getCouldNotCompute()) - BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); - if (BTI0.Max != getCouldNotCompute() && - BTI1.Max != getCouldNotCompute()) - MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); + if (BTI0.Max == BTI1.Max) + MaxBECount = BTI0.Max; + if (BTI0.Exact == BTI1.Exact) + BECount = BTI0.Exact; } return BackedgeTakenInfo(BECount, MaxBECount); @@ -4203,7 +4332,7 @@ Constant * ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, const Loop *L) { - std::map<PHINode*, Constant*>::iterator I = + std::map<PHINode*, Constant*>::const_iterator I = ConstantEvolutionLoopExitValue.find(PN); if (I != ConstantEvolutionLoopExitValue.end()) return I->second; @@ -5185,7 +5314,8 @@ ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, LoopContinuePredicate->isUnconditional()) return false; - return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, + return isImpliedCond(Pred, LHS, RHS, + LoopContinuePredicate->getCondition(), LoopContinuePredicate->getSuccessor(0) != L->getHeader()); } @@ -5214,7 +5344,8 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, LoopEntryPredicate->isUnconditional()) continue; - if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, + if (isImpliedCond(Pred, LHS, RHS, + LoopEntryPredicate->getCondition(), LoopEntryPredicate->getSuccessor(0) != Pair.second)) return true; } @@ -5224,24 +5355,24 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, /// isImpliedCond - Test whether the condition described by Pred, LHS, /// and RHS is true whenever the given Cond value evaluates to true. -bool ScalarEvolution::isImpliedCond(Value *CondValue, - ICmpInst::Predicate Pred, +bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, + Value *FoundCondValue, bool Inverse) { // Recursively handle And and Or conditions. - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { if (BO->getOpcode() == Instruction::And) { if (!Inverse) - return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || - isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); + return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || + isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); } else if (BO->getOpcode() == Instruction::Or) { if (Inverse) - return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || - isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); + return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || + isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); } } - ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); + ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); if (!ICI) return false; // Bail if the ICmp's operands' types are wider than the needed type @@ -5658,20 +5789,19 @@ void ScalarEvolution::SCEVCallbackVH::deleted() { assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->Scalars.erase(getValPtr()); + SE->ValueExprMap.erase(getValPtr()); // this now dangles! } -void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { +void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); // Forget all the expressions associated with users of the old value, // so that future queries will recompute the expressions using the new // value. + Value *Old = getValPtr(); SmallVector<User *, 16> Worklist; SmallPtrSet<User *, 8> Visited; - Value *Old = getValPtr(); - bool DeleteOld = false; for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); UI != UE; ++UI) Worklist.push_back(*UI); @@ -5679,27 +5809,22 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { User *U = Worklist.pop_back_val(); // Deleting the Old value will cause this to dangle. Postpone // that until everything else is done. - if (U == Old) { - DeleteOld = true; + if (U == Old) continue; - } if (!Visited.insert(U)) continue; if (PHINode *PN = dyn_cast<PHINode>(U)) SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->Scalars.erase(U); + SE->ValueExprMap.erase(U); for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); UI != UE; ++UI) Worklist.push_back(*UI); } - // Delete the Old value if it (indirectly) references itself. - if (DeleteOld) { - if (PHINode *PN = dyn_cast<PHINode>(Old)) - SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->Scalars.erase(Old); - // this now dangles! - } - // this may dangle! + // Delete the Old value. + if (PHINode *PN = dyn_cast<PHINode>(Old)) + SE->ConstantEvolutionLoopExitValue.erase(PN); + SE->ValueExprMap.erase(Old); + // this now dangles! } ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) @@ -5710,7 +5835,7 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) //===----------------------------------------------------------------------===// ScalarEvolution::ScalarEvolution() - : FunctionPass(&ID) { + : FunctionPass(ID), FirstUnknown(0) { } bool ScalarEvolution::runOnFunction(Function &F) { @@ -5722,7 +5847,13 @@ bool ScalarEvolution::runOnFunction(Function &F) { } void ScalarEvolution::releaseMemory() { - Scalars.clear(); + // Iterate through all the SCEVUnknown instances and call their + // destructors, so that they release their references to their values. + for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) + U->~SCEVUnknown(); + FirstUnknown = 0; + + ValueExprMap.clear(); BackedgeTakenCounts.clear(); ConstantEvolutionLoopExitValue.clear(); ValuesAtScopes.clear(); |