summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/LoopInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopInfo.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/LoopInfo.cpp419
1 files changed, 419 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopInfo.cpp b/contrib/llvm/lib/Analysis/LoopInfo.cpp
new file mode 100644
index 0000000..0583140
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/LoopInfo.cpp
@@ -0,0 +1,419 @@
+//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the LoopInfo class that is used to identify natural loops
+// and determine the loop depth of various nodes of the CFG. Note that the
+// loops identified may actually be several natural loops that share the same
+// header node... not just a single natural loop.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <algorithm>
+using namespace llvm;
+
+// Always verify loopinfo if expensive checking is enabled.
+#ifdef XDEBUG
+static bool VerifyLoopInfo = true;
+#else
+static bool VerifyLoopInfo = false;
+#endif
+static cl::opt<bool,true>
+VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
+ cl::desc("Verify loop info (time consuming)"));
+
+char LoopInfo::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
+
+//===----------------------------------------------------------------------===//
+// Loop implementation
+//
+
+/// isLoopInvariant - Return true if the specified value is loop invariant
+///
+bool Loop::isLoopInvariant(Value *V) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return !contains(I);
+ return true; // All non-instructions are loop invariant
+}
+
+/// hasLoopInvariantOperands - Return true if all the operands of the
+/// specified instruction are loop invariant.
+bool Loop::hasLoopInvariantOperands(Instruction *I) const {
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!isLoopInvariant(I->getOperand(i)))
+ return false;
+
+ return true;
+}
+
+/// makeLoopInvariant - If the given value is an instruciton inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the value after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Value *V, bool &Changed,
+ Instruction *InsertPt) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return makeLoopInvariant(I, Changed, InsertPt);
+ return true; // All non-instructions are loop-invariant.
+}
+
+/// makeLoopInvariant - If the given instruction is inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the instruction after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
+ Instruction *InsertPt) const {
+ // Test if the value is already loop-invariant.
+ if (isLoopInvariant(I))
+ return true;
+ if (!I->isSafeToSpeculativelyExecute())
+ return false;
+ if (I->mayReadFromMemory())
+ return false;
+ // Determine the insertion point, unless one was given.
+ if (!InsertPt) {
+ BasicBlock *Preheader = getLoopPreheader();
+ // Without a preheader, hoisting is not feasible.
+ if (!Preheader)
+ return false;
+ InsertPt = Preheader->getTerminator();
+ }
+ // Don't hoist instructions with loop-variant operands.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
+ return false;
+
+ // Hoist.
+ I->moveBefore(InsertPt);
+ Changed = true;
+ return true;
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable: an integer recurrence that starts at 0 and increments
+/// by one each time through the loop. If so, return the phi node that
+/// corresponds to it.
+///
+/// The IndVarSimplify pass transforms loops to have a canonical induction
+/// variable.
+///
+PHINode *Loop::getCanonicalInductionVariable() const {
+ BasicBlock *H = getHeader();
+
+ BasicBlock *Incoming = 0, *Backedge = 0;
+ pred_iterator PI = pred_begin(H);
+ assert(PI != pred_end(H) &&
+ "Loop must have at least one backedge!");
+ Backedge = *PI++;
+ if (PI == pred_end(H)) return 0; // dead loop
+ Incoming = *PI++;
+ if (PI != pred_end(H)) return 0; // multiple backedges?
+
+ if (contains(Incoming)) {
+ if (contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical indvar.
+ for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
+ if (CI->isNullValue())
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
+ if (Inc->getOpcode() == Instruction::Add &&
+ Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1))
+ return PN;
+ }
+ return 0;
+}
+
+/// getTripCount - Return a loop-invariant LLVM value indicating the number of
+/// times the loop will be executed. Note that this means that the backedge
+/// of the loop executes N-1 times. If the trip-count cannot be determined,
+/// this returns null.
+///
+/// The IndVarSimplify pass transforms loops to have a form that this
+/// function easily understands.
+///
+Value *Loop::getTripCount() const {
+ // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
+ // canonical induction variable and V is the trip count of the loop.
+ PHINode *IV = getCanonicalInductionVariable();
+ if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
+
+ bool P0InLoop = contains(IV->getIncomingBlock(0));
+ Value *Inc = IV->getIncomingValue(!P0InLoop);
+ BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
+ if (BI->isConditional()) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getOperand(0) == Inc) {
+ if (BI->getSuccessor(0) == getHeader()) {
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ return ICI->getOperand(1);
+ } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+ return ICI->getOperand(1);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// getSmallConstantTripCount - Returns the trip count of this loop as a
+/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
+/// or not constant. Will also return 0 if the trip count is very large
+/// (>= 2^32)
+unsigned Loop::getSmallConstantTripCount() const {
+ Value* TripCount = this->getTripCount();
+ if (TripCount) {
+ if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
+ // Guard against huge trip counts.
+ if (TripCountC->getValue().getActiveBits() <= 32) {
+ return (unsigned)TripCountC->getZExtValue();
+ }
+ }
+ }
+ return 0;
+}
+
+/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
+/// trip count of this loop as a normal unsigned value, if possible. This
+/// means that the actual trip count is always a multiple of the returned
+/// value (don't forget the trip count could very well be zero as well!).
+///
+/// Returns 1 if the trip count is unknown or not guaranteed to be the
+/// multiple of a constant (which is also the case if the trip count is simply
+/// constant, use getSmallConstantTripCount for that case), Will also return 1
+/// if the trip count is very large (>= 2^32).
+unsigned Loop::getSmallConstantTripMultiple() const {
+ Value* TripCount = this->getTripCount();
+ // This will hold the ConstantInt result, if any
+ ConstantInt *Result = NULL;
+ if (TripCount) {
+ // See if the trip count is constant itself
+ Result = dyn_cast<ConstantInt>(TripCount);
+ // if not, see if it is a multiplication
+ if (!Result)
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
+ switch (BO->getOpcode()) {
+ case BinaryOperator::Mul:
+ Result = dyn_cast<ConstantInt>(BO->getOperand(1));
+ break;
+ case BinaryOperator::Shl:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
+ if (CI->getValue().getActiveBits() <= 5)
+ return 1u << CI->getZExtValue();
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ // Guard against huge trip counts.
+ if (Result && Result->getValue().getActiveBits() <= 32) {
+ return (unsigned)Result->getZExtValue();
+ } else {
+ return 1;
+ }
+}
+
+/// isLCSSAForm - Return true if the Loop is in LCSSA form
+bool Loop::isLCSSAForm(DominatorTree &DT) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
+
+ for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
+ BasicBlock *BB = *BI;
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ User *U = *UI;
+ BasicBlock *UserBB = cast<Instruction>(U)->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(U))
+ UserBB = P->getIncomingBlock(UI);
+
+ // Check the current block, as a fast-path, before checking whether
+ // the use is anywhere in the loop. Most values are used in the same
+ // block they are defined in. Also, blocks not reachable from the
+ // entry are special; uses in them don't need to go through PHIs.
+ if (UserBB != BB &&
+ !LoopBBs.count(UserBB) &&
+ DT.isReachableFromEntry(UserBB))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// isLoopSimplifyForm - Return true if the Loop is in the form that
+/// the LoopSimplify form transforms loops to, which is sometimes called
+/// normal form.
+bool Loop::isLoopSimplifyForm() const {
+ // Normal-form loops have a preheader, a single backedge, and all of their
+ // exits have all their predecessors inside the loop.
+ return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
+}
+
+/// hasDedicatedExits - Return true if no exit block for the loop
+/// has a predecessor that is outside the loop.
+bool Loop::hasDedicatedExits() const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
+ // Each predecessor of each exit block of a normal loop is contained
+ // within the loop.
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ for (pred_iterator PI = pred_begin(ExitBlocks[i]),
+ PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
+ if (!LoopBBs.count(*PI))
+ return false;
+ // All the requirements are met.
+ return true;
+}
+
+/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
+/// These are the blocks _outside of the current loop_ which are branched to.
+/// This assumes that loop exits are in canonical form.
+///
+void
+Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
+ assert(hasDedicatedExits() &&
+ "getUniqueExitBlocks assumes the loop has canonical form exits!");
+
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ SmallVector<BasicBlock *, 32> switchExitBlocks;
+
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
+
+ BasicBlock *current = *BI;
+ switchExitBlocks.clear();
+
+ for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
+ // If block is inside the loop then it is not a exit block.
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ continue;
+
+ pred_iterator PI = pred_begin(*I);
+ BasicBlock *firstPred = *PI;
+
+ // If current basic block is this exit block's first predecessor
+ // then only insert exit block in to the output ExitBlocks vector.
+ // This ensures that same exit block is not inserted twice into
+ // ExitBlocks vector.
+ if (current != firstPred)
+ continue;
+
+ // If a terminator has more then two successors, for example SwitchInst,
+ // then it is possible that there are multiple edges from current block
+ // to one exit block.
+ if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
+ ExitBlocks.push_back(*I);
+ continue;
+ }
+
+ // In case of multiple edges from current block to exit block, collect
+ // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
+ // duplicate edges.
+ if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
+ == switchExitBlocks.end()) {
+ switchExitBlocks.push_back(*I);
+ ExitBlocks.push_back(*I);
+ }
+ }
+ }
+}
+
+/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
+/// block, return that block. Otherwise return null.
+BasicBlock *Loop::getUniqueExitBlock() const {
+ SmallVector<BasicBlock *, 8> UniqueExitBlocks;
+ getUniqueExitBlocks(UniqueExitBlocks);
+ if (UniqueExitBlocks.size() == 1)
+ return UniqueExitBlocks[0];
+ return 0;
+}
+
+void Loop::dump() const {
+ print(dbgs());
+}
+
+//===----------------------------------------------------------------------===//
+// LoopInfo implementation
+//
+bool LoopInfo::runOnFunction(Function &) {
+ releaseMemory();
+ LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
+ return false;
+}
+
+void LoopInfo::verifyAnalysis() const {
+ // LoopInfo is a FunctionPass, but verifying every loop in the function
+ // each time verifyAnalysis is called is very expensive. The
+ // -verify-loop-info option can enable this. In order to perform some
+ // checking by default, LoopPass has been taught to call verifyLoop
+ // manually during loop pass sequences.
+
+ if (!VerifyLoopInfo) return;
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
+ (*I)->verifyLoopNest();
+ }
+
+ // TODO: check BBMap consistency.
+}
+
+void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<DominatorTree>();
+}
+
+void LoopInfo::print(raw_ostream &OS, const Module*) const {
+ LI.print(OS);
+}
+
OpenPOWER on IntegriCloud