summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/LoopInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopInfo.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/LoopInfo.cpp687
1 files changed, 687 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopInfo.cpp b/contrib/llvm/lib/Analysis/LoopInfo.cpp
new file mode 100644
index 0000000..f1ad650
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/LoopInfo.cpp
@@ -0,0 +1,687 @@
+//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the LoopInfo class that is used to identify natural loops
+// and determine the loop depth of various nodes of the CFG. Note that the
+// loops identified may actually be several natural loops that share the same
+// header node... not just a single natural loop.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfoImpl.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include <algorithm>
+using namespace llvm;
+
+// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
+template class llvm::LoopBase<BasicBlock, Loop>;
+template class llvm::LoopInfoBase<BasicBlock, Loop>;
+
+// Always verify loopinfo if expensive checking is enabled.
+#ifdef XDEBUG
+static bool VerifyLoopInfo = true;
+#else
+static bool VerifyLoopInfo = false;
+#endif
+static cl::opt<bool,true>
+VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
+ cl::desc("Verify loop info (time consuming)"));
+
+char LoopInfo::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
+
+//===----------------------------------------------------------------------===//
+// Loop implementation
+//
+
+/// isLoopInvariant - Return true if the specified value is loop invariant
+///
+bool Loop::isLoopInvariant(Value *V) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return !contains(I);
+ return true; // All non-instructions are loop invariant
+}
+
+/// hasLoopInvariantOperands - Return true if all the operands of the
+/// specified instruction are loop invariant.
+bool Loop::hasLoopInvariantOperands(Instruction *I) const {
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!isLoopInvariant(I->getOperand(i)))
+ return false;
+
+ return true;
+}
+
+/// makeLoopInvariant - If the given value is an instruciton inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the value after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Value *V, bool &Changed,
+ Instruction *InsertPt) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return makeLoopInvariant(I, Changed, InsertPt);
+ return true; // All non-instructions are loop-invariant.
+}
+
+/// makeLoopInvariant - If the given instruction is inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the instruction after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
+ Instruction *InsertPt) const {
+ // Test if the value is already loop-invariant.
+ if (isLoopInvariant(I))
+ return true;
+ if (!isSafeToSpeculativelyExecute(I))
+ return false;
+ if (I->mayReadFromMemory())
+ return false;
+ // The landingpad instruction is immobile.
+ if (isa<LandingPadInst>(I))
+ return false;
+ // Determine the insertion point, unless one was given.
+ if (!InsertPt) {
+ BasicBlock *Preheader = getLoopPreheader();
+ // Without a preheader, hoisting is not feasible.
+ if (!Preheader)
+ return false;
+ InsertPt = Preheader->getTerminator();
+ }
+ // Don't hoist instructions with loop-variant operands.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
+ return false;
+
+ // Hoist.
+ I->moveBefore(InsertPt);
+ Changed = true;
+ return true;
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable: an integer recurrence that starts at 0 and increments
+/// by one each time through the loop. If so, return the phi node that
+/// corresponds to it.
+///
+/// The IndVarSimplify pass transforms loops to have a canonical induction
+/// variable.
+///
+PHINode *Loop::getCanonicalInductionVariable() const {
+ BasicBlock *H = getHeader();
+
+ BasicBlock *Incoming = 0, *Backedge = 0;
+ pred_iterator PI = pred_begin(H);
+ assert(PI != pred_end(H) &&
+ "Loop must have at least one backedge!");
+ Backedge = *PI++;
+ if (PI == pred_end(H)) return 0; // dead loop
+ Incoming = *PI++;
+ if (PI != pred_end(H)) return 0; // multiple backedges?
+
+ if (contains(Incoming)) {
+ if (contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical indvar.
+ for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
+ if (CI->isNullValue())
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
+ if (Inc->getOpcode() == Instruction::Add &&
+ Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1))
+ return PN;
+ }
+ return 0;
+}
+
+/// isLCSSAForm - Return true if the Loop is in LCSSA form
+bool Loop::isLCSSAForm(DominatorTree &DT) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
+
+ for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
+ BasicBlock *BB = *BI;
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ User *U = *UI;
+ BasicBlock *UserBB = cast<Instruction>(U)->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(U))
+ UserBB = P->getIncomingBlock(UI);
+
+ // Check the current block, as a fast-path, before checking whether
+ // the use is anywhere in the loop. Most values are used in the same
+ // block they are defined in. Also, blocks not reachable from the
+ // entry are special; uses in them don't need to go through PHIs.
+ if (UserBB != BB &&
+ !LoopBBs.count(UserBB) &&
+ DT.isReachableFromEntry(UserBB))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// isLoopSimplifyForm - Return true if the Loop is in the form that
+/// the LoopSimplify form transforms loops to, which is sometimes called
+/// normal form.
+bool Loop::isLoopSimplifyForm() const {
+ // Normal-form loops have a preheader, a single backedge, and all of their
+ // exits have all their predecessors inside the loop.
+ return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
+}
+
+/// isSafeToClone - Return true if the loop body is safe to clone in practice.
+/// Routines that reform the loop CFG and split edges often fail on indirectbr.
+bool Loop::isSafeToClone() const {
+ // Return false if any loop blocks contain indirectbrs, or there are any calls
+ // to noduplicate functions.
+ for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
+ if (isa<IndirectBrInst>((*I)->getTerminator())) {
+ return false;
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
+ if (II->hasFnAttr(Attribute::NoDuplicate))
+ return false;
+ }
+
+ for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
+ if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
+ if (CI->hasFnAttr(Attribute::NoDuplicate))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool Loop::isAnnotatedParallel() const {
+
+ BasicBlock *latch = getLoopLatch();
+ if (latch == NULL)
+ return false;
+
+ MDNode *desiredLoopIdMetadata =
+ latch->getTerminator()->getMetadata("llvm.loop.parallel");
+
+ if (!desiredLoopIdMetadata)
+ return false;
+
+ // The loop branch contains the parallel loop metadata. In order to ensure
+ // that any parallel-loop-unaware optimization pass hasn't added loop-carried
+ // dependencies (thus converted the loop back to a sequential loop), check
+ // that all the memory instructions in the loop contain parallelism metadata
+ // that point to the same unique "loop id metadata" the loop branch does.
+ for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
+ for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
+ II != EE; II++) {
+
+ if (!II->mayReadOrWriteMemory())
+ continue;
+
+ if (!II->getMetadata("llvm.mem.parallel_loop_access"))
+ return false;
+
+ // The memory instruction can refer to the loop identifier metadata
+ // directly or indirectly through another list metadata (in case of
+ // nested parallel loops). The loop identifier metadata refers to
+ // itself so we can check both cases with the same routine.
+ MDNode *loopIdMD =
+ dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
+ bool loopIdMDFound = false;
+ for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
+ if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
+ loopIdMDFound = true;
+ break;
+ }
+ }
+
+ if (!loopIdMDFound)
+ return false;
+ }
+ }
+ return true;
+}
+
+
+/// hasDedicatedExits - Return true if no exit block for the loop
+/// has a predecessor that is outside the loop.
+bool Loop::hasDedicatedExits() const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
+ // Each predecessor of each exit block of a normal loop is contained
+ // within the loop.
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ for (pred_iterator PI = pred_begin(ExitBlocks[i]),
+ PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
+ if (!LoopBBs.count(*PI))
+ return false;
+ // All the requirements are met.
+ return true;
+}
+
+/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
+/// These are the blocks _outside of the current loop_ which are branched to.
+/// This assumes that loop exits are in canonical form.
+///
+void
+Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
+ assert(hasDedicatedExits() &&
+ "getUniqueExitBlocks assumes the loop has canonical form exits!");
+
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ SmallVector<BasicBlock *, 32> switchExitBlocks;
+
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
+
+ BasicBlock *current = *BI;
+ switchExitBlocks.clear();
+
+ for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
+ // If block is inside the loop then it is not a exit block.
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ continue;
+
+ pred_iterator PI = pred_begin(*I);
+ BasicBlock *firstPred = *PI;
+
+ // If current basic block is this exit block's first predecessor
+ // then only insert exit block in to the output ExitBlocks vector.
+ // This ensures that same exit block is not inserted twice into
+ // ExitBlocks vector.
+ if (current != firstPred)
+ continue;
+
+ // If a terminator has more then two successors, for example SwitchInst,
+ // then it is possible that there are multiple edges from current block
+ // to one exit block.
+ if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
+ ExitBlocks.push_back(*I);
+ continue;
+ }
+
+ // In case of multiple edges from current block to exit block, collect
+ // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
+ // duplicate edges.
+ if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
+ == switchExitBlocks.end()) {
+ switchExitBlocks.push_back(*I);
+ ExitBlocks.push_back(*I);
+ }
+ }
+ }
+}
+
+/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
+/// block, return that block. Otherwise return null.
+BasicBlock *Loop::getUniqueExitBlock() const {
+ SmallVector<BasicBlock *, 8> UniqueExitBlocks;
+ getUniqueExitBlocks(UniqueExitBlocks);
+ if (UniqueExitBlocks.size() == 1)
+ return UniqueExitBlocks[0];
+ return 0;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void Loop::dump() const {
+ print(dbgs());
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// UnloopUpdater implementation
+//
+
+namespace {
+/// Find the new parent loop for all blocks within the "unloop" whose last
+/// backedges has just been removed.
+class UnloopUpdater {
+ Loop *Unloop;
+ LoopInfo *LI;
+
+ LoopBlocksDFS DFS;
+
+ // Map unloop's immediate subloops to their nearest reachable parents. Nested
+ // loops within these subloops will not change parents. However, an immediate
+ // subloop's new parent will be the nearest loop reachable from either its own
+ // exits *or* any of its nested loop's exits.
+ DenseMap<Loop*, Loop*> SubloopParents;
+
+ // Flag the presence of an irreducible backedge whose destination is a block
+ // directly contained by the original unloop.
+ bool FoundIB;
+
+public:
+ UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
+ Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
+
+ void updateBlockParents();
+
+ void removeBlocksFromAncestors();
+
+ void updateSubloopParents();
+
+protected:
+ Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
+};
+} // end anonymous namespace
+
+/// updateBlockParents - Update the parent loop for all blocks that are directly
+/// contained within the original "unloop".
+void UnloopUpdater::updateBlockParents() {
+ if (Unloop->getNumBlocks()) {
+ // Perform a post order CFG traversal of all blocks within this loop,
+ // propagating the nearest loop from sucessors to predecessors.
+ LoopBlocksTraversal Traversal(DFS, LI);
+ for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
+ POE = Traversal.end(); POI != POE; ++POI) {
+
+ Loop *L = LI->getLoopFor(*POI);
+ Loop *NL = getNearestLoop(*POI, L);
+
+ if (NL != L) {
+ // For reducible loops, NL is now an ancestor of Unloop.
+ assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
+ "uninitialized successor");
+ LI->changeLoopFor(*POI, NL);
+ }
+ else {
+ // Or the current block is part of a subloop, in which case its parent
+ // is unchanged.
+ assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
+ }
+ }
+ }
+ // Each irreducible loop within the unloop induces a round of iteration using
+ // the DFS result cached by Traversal.
+ bool Changed = FoundIB;
+ for (unsigned NIters = 0; Changed; ++NIters) {
+ assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
+
+ // Iterate over the postorder list of blocks, propagating the nearest loop
+ // from successors to predecessors as before.
+ Changed = false;
+ for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
+ POE = DFS.endPostorder(); POI != POE; ++POI) {
+
+ Loop *L = LI->getLoopFor(*POI);
+ Loop *NL = getNearestLoop(*POI, L);
+ if (NL != L) {
+ assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
+ "uninitialized successor");
+ LI->changeLoopFor(*POI, NL);
+ Changed = true;
+ }
+ }
+ }
+}
+
+/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
+/// their new parents.
+void UnloopUpdater::removeBlocksFromAncestors() {
+ // Remove all unloop's blocks (including those in nested subloops) from
+ // ancestors below the new parent loop.
+ for (Loop::block_iterator BI = Unloop->block_begin(),
+ BE = Unloop->block_end(); BI != BE; ++BI) {
+ Loop *OuterParent = LI->getLoopFor(*BI);
+ if (Unloop->contains(OuterParent)) {
+ while (OuterParent->getParentLoop() != Unloop)
+ OuterParent = OuterParent->getParentLoop();
+ OuterParent = SubloopParents[OuterParent];
+ }
+ // Remove blocks from former Ancestors except Unloop itself which will be
+ // deleted.
+ for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
+ OldParent = OldParent->getParentLoop()) {
+ assert(OldParent && "new loop is not an ancestor of the original");
+ OldParent->removeBlockFromLoop(*BI);
+ }
+ }
+}
+
+/// updateSubloopParents - Update the parent loop for all subloops directly
+/// nested within unloop.
+void UnloopUpdater::updateSubloopParents() {
+ while (!Unloop->empty()) {
+ Loop *Subloop = *llvm::prior(Unloop->end());
+ Unloop->removeChildLoop(llvm::prior(Unloop->end()));
+
+ assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
+ if (Loop *Parent = SubloopParents[Subloop])
+ Parent->addChildLoop(Subloop);
+ else
+ LI->addTopLevelLoop(Subloop);
+ }
+}
+
+/// getNearestLoop - Return the nearest parent loop among this block's
+/// successors. If a successor is a subloop header, consider its parent to be
+/// the nearest parent of the subloop's exits.
+///
+/// For subloop blocks, simply update SubloopParents and return NULL.
+Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
+
+ // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
+ // is considered uninitialized.
+ Loop *NearLoop = BBLoop;
+
+ Loop *Subloop = 0;
+ if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
+ Subloop = NearLoop;
+ // Find the subloop ancestor that is directly contained within Unloop.
+ while (Subloop->getParentLoop() != Unloop) {
+ Subloop = Subloop->getParentLoop();
+ assert(Subloop && "subloop is not an ancestor of the original loop");
+ }
+ // Get the current nearest parent of the Subloop exits, initially Unloop.
+ NearLoop =
+ SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
+ }
+
+ succ_iterator I = succ_begin(BB), E = succ_end(BB);
+ if (I == E) {
+ assert(!Subloop && "subloop blocks must have a successor");
+ NearLoop = 0; // unloop blocks may now exit the function.
+ }
+ for (; I != E; ++I) {
+ if (*I == BB)
+ continue; // self loops are uninteresting
+
+ Loop *L = LI->getLoopFor(*I);
+ if (L == Unloop) {
+ // This successor has not been processed. This path must lead to an
+ // irreducible backedge.
+ assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
+ FoundIB = true;
+ }
+ if (L != Unloop && Unloop->contains(L)) {
+ // Successor is in a subloop.
+ if (Subloop)
+ continue; // Branching within subloops. Ignore it.
+
+ // BB branches from the original into a subloop header.
+ assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
+
+ // Get the current nearest parent of the Subloop's exits.
+ L = SubloopParents[L];
+ // L could be Unloop if the only exit was an irreducible backedge.
+ }
+ if (L == Unloop) {
+ continue;
+ }
+ // Handle critical edges from Unloop into a sibling loop.
+ if (L && !L->contains(Unloop)) {
+ L = L->getParentLoop();
+ }
+ // Remember the nearest parent loop among successors or subloop exits.
+ if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
+ NearLoop = L;
+ }
+ if (Subloop) {
+ SubloopParents[Subloop] = NearLoop;
+ return BBLoop;
+ }
+ return NearLoop;
+}
+
+//===----------------------------------------------------------------------===//
+// LoopInfo implementation
+//
+bool LoopInfo::runOnFunction(Function &) {
+ releaseMemory();
+ LI.Analyze(getAnalysis<DominatorTree>().getBase());
+ return false;
+}
+
+/// updateUnloop - The last backedge has been removed from a loop--now the
+/// "unloop". Find a new parent for the blocks contained within unloop and
+/// update the loop tree. We don't necessarily have valid dominators at this
+/// point, but LoopInfo is still valid except for the removal of this loop.
+///
+/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
+/// checking first is illegal.
+void LoopInfo::updateUnloop(Loop *Unloop) {
+
+ // First handle the special case of no parent loop to simplify the algorithm.
+ if (!Unloop->getParentLoop()) {
+ // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
+ for (Loop::block_iterator I = Unloop->block_begin(),
+ E = Unloop->block_end(); I != E; ++I) {
+
+ // Don't reparent blocks in subloops.
+ if (getLoopFor(*I) != Unloop)
+ continue;
+
+ // Blocks no longer have a parent but are still referenced by Unloop until
+ // the Unloop object is deleted.
+ LI.changeLoopFor(*I, 0);
+ }
+
+ // Remove the loop from the top-level LoopInfo object.
+ for (LoopInfo::iterator I = LI.begin();; ++I) {
+ assert(I != LI.end() && "Couldn't find loop");
+ if (*I == Unloop) {
+ LI.removeLoop(I);
+ break;
+ }
+ }
+
+ // Move all of the subloops to the top-level.
+ while (!Unloop->empty())
+ LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
+
+ return;
+ }
+
+ // Update the parent loop for all blocks within the loop. Blocks within
+ // subloops will not change parents.
+ UnloopUpdater Updater(Unloop, this);
+ Updater.updateBlockParents();
+
+ // Remove blocks from former ancestor loops.
+ Updater.removeBlocksFromAncestors();
+
+ // Add direct subloops as children in their new parent loop.
+ Updater.updateSubloopParents();
+
+ // Remove unloop from its parent loop.
+ Loop *ParentLoop = Unloop->getParentLoop();
+ for (Loop::iterator I = ParentLoop->begin();; ++I) {
+ assert(I != ParentLoop->end() && "Couldn't find loop");
+ if (*I == Unloop) {
+ ParentLoop->removeChildLoop(I);
+ break;
+ }
+ }
+}
+
+void LoopInfo::verifyAnalysis() const {
+ // LoopInfo is a FunctionPass, but verifying every loop in the function
+ // each time verifyAnalysis is called is very expensive. The
+ // -verify-loop-info option can enable this. In order to perform some
+ // checking by default, LoopPass has been taught to call verifyLoop
+ // manually during loop pass sequences.
+
+ if (!VerifyLoopInfo) return;
+
+ DenseSet<const Loop*> Loops;
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
+ (*I)->verifyLoopNest(&Loops);
+ }
+
+ // Verify that blocks are mapped to valid loops.
+ for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
+ E = LI.BBMap.end(); I != E; ++I) {
+ assert(Loops.count(I->second) && "orphaned loop");
+ assert(I->second->contains(I->first) && "orphaned block");
+ }
+}
+
+void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<DominatorTree>();
+}
+
+void LoopInfo::print(raw_ostream &OS, const Module*) const {
+ LI.print(OS);
+}
+
+//===----------------------------------------------------------------------===//
+// LoopBlocksDFS implementation
+//
+
+/// Traverse the loop blocks and store the DFS result.
+/// Useful for clients that just want the final DFS result and don't need to
+/// visit blocks during the initial traversal.
+void LoopBlocksDFS::perform(LoopInfo *LI) {
+ LoopBlocksTraversal Traversal(*this, LI);
+ for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
+ POE = Traversal.end(); POI != POE; ++POI) ;
+}
OpenPOWER on IntegriCloud