diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp b/contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp new file mode 100644 index 0000000..c1afe8f --- /dev/null +++ b/contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp @@ -0,0 +1,358 @@ +//===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the (beginning) of an implementation of a loop dependence analysis +// framework, which is used to detect dependences in memory accesses in loops. +// +// Please note that this is work in progress and the interface is subject to +// change. +// +// TODO: adapt as implementation progresses. +// +// TODO: document lingo (pair, subscript, index) +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "lda" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopDependenceAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Instructions.h" +#include "llvm/Operator.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetData.h" +using namespace llvm; + +STATISTIC(NumAnswered, "Number of dependence queries answered"); +STATISTIC(NumAnalysed, "Number of distinct dependence pairs analysed"); +STATISTIC(NumDependent, "Number of pairs with dependent accesses"); +STATISTIC(NumIndependent, "Number of pairs with independent accesses"); +STATISTIC(NumUnknown, "Number of pairs with unknown accesses"); + +LoopPass *llvm::createLoopDependenceAnalysisPass() { + return new LoopDependenceAnalysis(); +} + +INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda", + "Loop Dependence Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda", + "Loop Dependence Analysis", false, true) +char LoopDependenceAnalysis::ID = 0; + +//===----------------------------------------------------------------------===// +// Utility Functions +//===----------------------------------------------------------------------===// + +static inline bool IsMemRefInstr(const Value *V) { + const Instruction *I = dyn_cast<const Instruction>(V); + return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); +} + +static void GetMemRefInstrs(const Loop *L, + SmallVectorImpl<Instruction*> &Memrefs) { + for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); + b != be; ++b) + for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); + i != ie; ++i) + if (IsMemRefInstr(i)) + Memrefs.push_back(i); +} + +static bool IsLoadOrStoreInst(Value *I) { + return isa<LoadInst>(I) || isa<StoreInst>(I); +} + +static Value *GetPointerOperand(Value *I) { + if (LoadInst *i = dyn_cast<LoadInst>(I)) + return i->getPointerOperand(); + if (StoreInst *i = dyn_cast<StoreInst>(I)) + return i->getPointerOperand(); + llvm_unreachable("Value is no load or store instruction!"); + // Never reached. + return 0; +} + +static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA, + const Value *A, + const Value *B) { + const Value *aObj = GetUnderlyingObject(A); + const Value *bObj = GetUnderlyingObject(B); + return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()), + bObj, AA->getTypeStoreSize(bObj->getType())); +} + +static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) { + return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L); +} + +//===----------------------------------------------------------------------===// +// Dependence Testing +//===----------------------------------------------------------------------===// + +bool LoopDependenceAnalysis::isDependencePair(const Value *A, + const Value *B) const { + return IsMemRefInstr(A) && + IsMemRefInstr(B) && + (cast<const Instruction>(A)->mayWriteToMemory() || + cast<const Instruction>(B)->mayWriteToMemory()); +} + +bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A, + Value *B, + DependencePair *&P) { + void *insertPos = 0; + FoldingSetNodeID id; + id.AddPointer(A); + id.AddPointer(B); + + P = Pairs.FindNodeOrInsertPos(id, insertPos); + if (P) return true; + + P = new (PairAllocator) DependencePair(id, A, B); + Pairs.InsertNode(P, insertPos); + return false; +} + +void LoopDependenceAnalysis::getLoops(const SCEV *S, + DenseSet<const Loop*>* Loops) const { + // Refactor this into an SCEVVisitor, if efficiency becomes a concern. + for (const Loop *L = this->L; L != 0; L = L->getParentLoop()) + if (!SE->isLoopInvariant(S, L)) + Loops->insert(L); +} + +bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const { + DenseSet<const Loop*> loops; + getLoops(S, &loops); + return loops.empty(); +} + +bool LoopDependenceAnalysis::isAffine(const SCEV *S) const { + const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S); + return isLoopInvariant(S) || (rec && rec->isAffine()); +} + +bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const { + return isLoopInvariant(A) && isLoopInvariant(B); +} + +bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const { + DenseSet<const Loop*> loops; + getLoops(A, &loops); + getLoops(B, &loops); + return loops.size() == 1; +} + +LoopDependenceAnalysis::DependenceResult +LoopDependenceAnalysis::analyseZIV(const SCEV *A, + const SCEV *B, + Subscript *S) const { + assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!"); + return A == B ? Dependent : Independent; +} + +LoopDependenceAnalysis::DependenceResult +LoopDependenceAnalysis::analyseSIV(const SCEV *A, + const SCEV *B, + Subscript *S) const { + return Unknown; // TODO: Implement. +} + +LoopDependenceAnalysis::DependenceResult +LoopDependenceAnalysis::analyseMIV(const SCEV *A, + const SCEV *B, + Subscript *S) const { + return Unknown; // TODO: Implement. +} + +LoopDependenceAnalysis::DependenceResult +LoopDependenceAnalysis::analyseSubscript(const SCEV *A, + const SCEV *B, + Subscript *S) const { + DEBUG(dbgs() << " Testing subscript: " << *A << ", " << *B << "\n"); + + if (A == B) { + DEBUG(dbgs() << " -> [D] same SCEV\n"); + return Dependent; + } + + if (!isAffine(A) || !isAffine(B)) { + DEBUG(dbgs() << " -> [?] not affine\n"); + return Unknown; + } + + if (isZIVPair(A, B)) + return analyseZIV(A, B, S); + + if (isSIVPair(A, B)) + return analyseSIV(A, B, S); + + return analyseMIV(A, B, S); +} + +LoopDependenceAnalysis::DependenceResult +LoopDependenceAnalysis::analysePair(DependencePair *P) const { + DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n"); + + // We only analyse loads and stores but no possible memory accesses by e.g. + // free, call, or invoke instructions. + if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) { + DEBUG(dbgs() << "--> [?] no load/store\n"); + return Unknown; + } + + Value *aPtr = GetPointerOperand(P->A); + Value *bPtr = GetPointerOperand(P->B); + + switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) { + case AliasAnalysis::MayAlias: + case AliasAnalysis::PartialAlias: + // We can not analyse objects if we do not know about their aliasing. + DEBUG(dbgs() << "---> [?] may alias\n"); + return Unknown; + + case AliasAnalysis::NoAlias: + // If the objects noalias, they are distinct, accesses are independent. + DEBUG(dbgs() << "---> [I] no alias\n"); + return Independent; + + case AliasAnalysis::MustAlias: + break; // The underlying objects alias, test accesses for dependence. + } + + const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr); + const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr); + + if (!aGEP || !bGEP) + return Unknown; + + // FIXME: Is filtering coupled subscripts necessary? + + // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding + // trailing zeroes to the smaller GEP, if needed. + typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy; + GEPOpdPairsTy opds; + for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(), + aEnd = aGEP->idx_end(), + bIdx = bGEP->idx_begin(), + bEnd = bGEP->idx_end(); + aIdx != aEnd && bIdx != bEnd; + aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) { + const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE); + const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE); + opds.push_back(std::make_pair(aSCEV, bSCEV)); + } + + if (!opds.empty() && opds[0].first != opds[0].second) { + // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting + // + // TODO: this could be relaxed by adding the size of the underlying object + // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we + // know that x is a [100 x i8]*, we could modify the first subscript to be + // (i, 200-i) instead of (i, -i). + return Unknown; + } + + // Now analyse the collected operand pairs (skipping the GEP ptr offsets). + for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end(); + i != end; ++i) { + Subscript subscript; + DependenceResult result = analyseSubscript(i->first, i->second, &subscript); + if (result != Dependent) { + // We either proved independence or failed to analyse this subscript. + // Further subscripts will not improve the situation, so abort early. + return result; + } + P->Subscripts.push_back(subscript); + } + // We successfully analysed all subscripts but failed to prove independence. + return Dependent; +} + +bool LoopDependenceAnalysis::depends(Value *A, Value *B) { + assert(isDependencePair(A, B) && "Values form no dependence pair!"); + ++NumAnswered; + + DependencePair *p; + if (!findOrInsertDependencePair(A, B, p)) { + // The pair is not cached, so analyse it. + ++NumAnalysed; + switch (p->Result = analysePair(p)) { + case Dependent: ++NumDependent; break; + case Independent: ++NumIndependent; break; + case Unknown: ++NumUnknown; break; + } + } + return p->Result != Independent; +} + +//===----------------------------------------------------------------------===// +// LoopDependenceAnalysis Implementation +//===----------------------------------------------------------------------===// + +bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { + this->L = L; + AA = &getAnalysis<AliasAnalysis>(); + SE = &getAnalysis<ScalarEvolution>(); + return false; +} + +void LoopDependenceAnalysis::releaseMemory() { + Pairs.clear(); + PairAllocator.Reset(); +} + +void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<AliasAnalysis>(); + AU.addRequiredTransitive<ScalarEvolution>(); +} + +static void PrintLoopInfo(raw_ostream &OS, + LoopDependenceAnalysis *LDA, const Loop *L) { + if (!L->empty()) return; // ignore non-innermost loops + + SmallVector<Instruction*, 8> memrefs; + GetMemRefInstrs(L, memrefs); + + OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; + WriteAsOperand(OS, L->getHeader(), false); + OS << "\n"; + + OS << " Load/store instructions: " << memrefs.size() << "\n"; + for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), + end = memrefs.end(); x != end; ++x) + OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n"; + + OS << " Pairwise dependence results:\n"; + for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), + end = memrefs.end(); x != end; ++x) + for (SmallVector<Instruction*, 8>::const_iterator y = x + 1; + y != end; ++y) + if (LDA->isDependencePair(*x, *y)) + OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) + << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") + << "\n"; +} + +void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { + // TODO: doc why const_cast is safe + PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L); +} |