summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp198
1 files changed, 139 insertions, 59 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index b70de00..c661c7b 100644
--- a/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -177,15 +177,21 @@ void LoopAccessInfo::RuntimePointerCheck::print(
}
}
-bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
+unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks(
const SmallVectorImpl<int> *PtrPartition) const {
unsigned NumPointers = Pointers.size();
+ unsigned CheckCount = 0;
for (unsigned I = 0; I < NumPointers; ++I)
for (unsigned J = I + 1; J < NumPointers; ++J)
if (needsChecking(I, J, PtrPartition))
- return true;
- return false;
+ CheckCount++;
+ return CheckCount;
+}
+
+bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
+ const SmallVectorImpl<int> *PtrPartition) const {
+ return getNumberOfChecks(PtrPartition) != 0;
}
namespace {
@@ -220,10 +226,11 @@ public:
}
/// \brief Check whether we can check the pointers at runtime for
- /// non-intersection.
+ /// non-intersection. Returns true when we have 0 pointers
+ /// (a check on 0 pointers for non-intersection will always return true).
bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
- unsigned &NumComparisons, ScalarEvolution *SE,
- Loop *TheLoop, const ValueToValueMap &Strides,
+ bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop,
+ const ValueToValueMap &Strides,
bool ShouldCheckStride = false);
/// \brief Goes over all memory accesses, checks whether a RT check is needed
@@ -289,29 +296,23 @@ static bool hasComputableBounds(ScalarEvolution *SE,
return AR->isAffine();
}
-/// \brief Check the stride of the pointer and ensure that it does not wrap in
-/// the address space.
-static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
- const ValueToValueMap &StridesMap);
-
bool AccessAnalysis::canCheckPtrAtRT(
- LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons,
+ LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck,
ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
bool ShouldCheckStride) {
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
bool CanDoRT = true;
+ NeedRTCheck = false;
+ if (!IsRTCheckNeeded) return true;
+
bool IsDepCheckNeeded = isDependencyCheckNeeded();
- NumComparisons = 0;
// We assign a consecutive id to access from different alias sets.
// Accesses between different groups doesn't need to be checked.
unsigned ASId = 1;
for (auto &AS : AST) {
- unsigned NumReadPtrChecks = 0;
- unsigned NumWritePtrChecks = 0;
-
// We assign consecutive id to access from different dependence sets.
// Accesses within the same set don't need a runtime check.
unsigned RunningDepId = 1;
@@ -322,11 +323,6 @@ bool AccessAnalysis::canCheckPtrAtRT(
bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
MemAccessInfo Access(Ptr, IsWrite);
- if (IsWrite)
- ++NumWritePtrChecks;
- else
- ++NumReadPtrChecks;
-
if (hasComputableBounds(SE, StridesMap, Ptr) &&
// When we run after a failing dependency check we have to make sure
// we don't have wrapping pointers.
@@ -354,16 +350,15 @@ bool AccessAnalysis::canCheckPtrAtRT(
}
}
- if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
- NumComparisons += 0; // Only one dependence set.
- else {
- NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
- NumWritePtrChecks - 1));
- }
-
++ASId;
}
+ // We need a runtime check if there are any accesses that need checking.
+ // However, some accesses cannot be checked (for example because we
+ // can't determine their bounds). In these cases we would need a check
+ // but wouldn't be able to add it.
+ NeedRTCheck = !CanDoRT || RtCheck.needsAnyChecking(nullptr);
+
// If the pointers that we would use for the bounds comparison have different
// address spaces, assume the values aren't directly comparable, so we can't
// use them for the runtime check. We also have to assume they could
@@ -510,8 +505,8 @@ static bool isInBoundsGep(Value *Ptr) {
}
/// \brief Check whether the access through \p Ptr has a constant stride.
-static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
- const ValueToValueMap &StridesMap) {
+int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
+ const ValueToValueMap &StridesMap) {
const Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Unexpected non-ptr");
@@ -678,6 +673,42 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
return false;
}
+/// \brief Check the dependence for two accesses with the same stride \p Stride.
+/// \p Distance is the positive distance and \p TypeByteSize is type size in
+/// bytes.
+///
+/// \returns true if they are independent.
+static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
+ unsigned TypeByteSize) {
+ assert(Stride > 1 && "The stride must be greater than 1");
+ assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
+ assert(Distance > 0 && "The distance must be non-zero");
+
+ // Skip if the distance is not multiple of type byte size.
+ if (Distance % TypeByteSize)
+ return false;
+
+ unsigned ScaledDist = Distance / TypeByteSize;
+
+ // No dependence if the scaled distance is not multiple of the stride.
+ // E.g.
+ // for (i = 0; i < 1024 ; i += 4)
+ // A[i+2] = A[i] + 1;
+ //
+ // Two accesses in memory (scaled distance is 2, stride is 4):
+ // | A[0] | | | | A[4] | | | |
+ // | | | A[2] | | | | A[6] | |
+ //
+ // E.g.
+ // for (i = 0; i < 1024 ; i += 3)
+ // A[i+4] = A[i] + 1;
+ //
+ // Two accesses in memory (scaled distance is 4, stride is 3):
+ // | A[0] | | | A[3] | | | A[6] | | |
+ // | | | | | A[4] | | | A[7] | |
+ return ScaledDist % Stride;
+}
+
MemoryDepChecker::Dependence::DepType
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
const MemAccessInfo &B, unsigned BIdx,
@@ -778,34 +809,87 @@ MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
unsigned Distance = (unsigned) Val.getZExtValue();
+ unsigned Stride = std::abs(StrideAPtr);
+ if (Stride > 1 &&
+ areStridedAccessesIndependent(Distance, Stride, TypeByteSize))
+ return Dependence::NoDep;
+
// Bail out early if passed-in parameters make vectorization not feasible.
unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
VectorizerParams::VectorizationFactor : 1);
unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
VectorizerParams::VectorizationInterleave : 1);
+ // The minimum number of iterations for a vectorized/unrolled version.
+ unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
+
+ // It's not vectorizable if the distance is smaller than the minimum distance
+ // needed for a vectroized/unrolled version. Vectorizing one iteration in
+ // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
+ // TypeByteSize (No need to plus the last gap distance).
+ //
+ // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
+ // foo(int *A) {
+ // int *B = (int *)((char *)A + 14);
+ // for (i = 0 ; i < 1024 ; i += 2)
+ // B[i] = A[i] + 1;
+ // }
+ //
+ // Two accesses in memory (stride is 2):
+ // | A[0] | | A[2] | | A[4] | | A[6] | |
+ // | B[0] | | B[2] | | B[4] |
+ //
+ // Distance needs for vectorizing iterations except the last iteration:
+ // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
+ // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
+ //
+ // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
+ // 12, which is less than distance.
+ //
+ // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
+ // the minimum distance needed is 28, which is greater than distance. It is
+ // not safe to do vectorization.
+ unsigned MinDistanceNeeded =
+ TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
+ if (MinDistanceNeeded > Distance) {
+ DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
+ << '\n');
+ return Dependence::Backward;
+ }
- // The distance must be bigger than the size needed for a vectorized version
- // of the operation and the size of the vectorized operation must not be
- // bigger than the currrent maximum size.
- if (Distance < 2*TypeByteSize ||
- 2*TypeByteSize > MaxSafeDepDistBytes ||
- Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
- DEBUG(dbgs() << "LAA: Failure because of Positive distance "
- << Val.getSExtValue() << '\n');
+ // Unsafe if the minimum distance needed is greater than max safe distance.
+ if (MinDistanceNeeded > MaxSafeDepDistBytes) {
+ DEBUG(dbgs() << "LAA: Failure because it needs at least "
+ << MinDistanceNeeded << " size in bytes");
return Dependence::Backward;
}
// Positive distance bigger than max vectorization factor.
- MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
- Distance : MaxSafeDepDistBytes;
+ // FIXME: Should use max factor instead of max distance in bytes, which could
+ // not handle different types.
+ // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
+ // void foo (int *A, char *B) {
+ // for (unsigned i = 0; i < 1024; i++) {
+ // A[i+2] = A[i] + 1;
+ // B[i+2] = B[i] + 1;
+ // }
+ // }
+ //
+ // This case is currently unsafe according to the max safe distance. If we
+ // analyze the two accesses on array B, the max safe dependence distance
+ // is 2. Then we analyze the accesses on array A, the minimum distance needed
+ // is 8, which is less than 2 and forbidden vectorization, But actually
+ // both A and B could be vectorized by 2 iterations.
+ MaxSafeDepDistBytes =
+ Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
if (IsTrueDataDependence &&
couldPreventStoreLoadForward(Distance, TypeByteSize))
return Dependence::BackwardVectorizableButPreventsForwarding;
- DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
- " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
+ DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
+ << " with max VF = "
+ << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
return Dependence::BackwardVectorizable;
}
@@ -1066,7 +1150,7 @@ void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
if (Seen.insert(Ptr).second) {
++NumReadWrites;
- AliasAnalysis::Location Loc = AA->getLocation(ST);
+ AliasAnalysis::Location Loc = MemoryLocation::get(ST);
// The TBAA metadata could have a control dependency on the predication
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
@@ -1102,7 +1186,7 @@ void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
IsReadOnlyPtr = true;
}
- AliasAnalysis::Location Loc = AA->getLocation(LD);
+ AliasAnalysis::Location Loc = MemoryLocation::get(LD);
// The TBAA metadata could have a control dependency on the predication
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
@@ -1123,22 +1207,17 @@ void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
// Build dependence sets and check whether we need a runtime pointer bounds
// check.
Accesses.buildDependenceSets();
- bool NeedRTCheck = Accesses.isRTCheckNeeded();
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
- bool CanDoRT = false;
- if (NeedRTCheck)
- CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
- Strides);
-
- DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
- " pointer comparisons.\n");
+ bool NeedRTCheck;
+ bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck,
+ NeedRTCheck, SE,
+ TheLoop, Strides);
- // If we only have one set of dependences to check pointers among we don't
- // need a runtime check.
- if (NumComparisons == 0 && NeedRTCheck)
- NeedRTCheck = false;
+ DEBUG(dbgs() << "LAA: We need to do "
+ << PtrRtCheck.getNumberOfChecks(nullptr)
+ << " pointer comparisons.\n");
// Check that we found the bounds for the pointer.
if (CanDoRT)
@@ -1171,10 +1250,11 @@ void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
PtrRtCheck.reset();
PtrRtCheck.Need = true;
- CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
+ CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE,
TheLoop, Strides, true);
+
// Check that we found the bounds for the pointer.
- if (!CanDoRT && NumComparisons > 0) {
+ if (NeedRTCheck && !CanDoRT) {
emitAnalysis(LoopAccessReport()
<< "cannot check memory dependencies at runtime");
DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
@@ -1319,7 +1399,7 @@ LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
const TargetLibraryInfo *TLI, AliasAnalysis *AA,
DominatorTree *DT, LoopInfo *LI,
const ValueToValueMap &Strides)
- : DepChecker(SE, L), NumComparisons(0), TheLoop(L), SE(SE), DL(DL),
+ : DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL),
TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
MaxSafeDepDistBytes(-1U), CanVecMem(false),
StoreToLoopInvariantAddress(false) {
OpenPOWER on IntegriCloud