diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/Loads.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/Loads.cpp | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/Loads.cpp b/contrib/llvm/lib/Analysis/Loads.cpp new file mode 100644 index 0000000..4b2fa3c --- /dev/null +++ b/contrib/llvm/lib/Analysis/Loads.cpp @@ -0,0 +1,287 @@ +//===- Loads.cpp - Local load analysis ------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines simple local analyses for load instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +using namespace llvm; + +/// \brief Test if A and B will obviously have the same value. +/// +/// This includes recognizing that %t0 and %t1 will have the same +/// value in code like this: +/// \code +/// %t0 = getelementptr \@a, 0, 3 +/// store i32 0, i32* %t0 +/// %t1 = getelementptr \@a, 0, 3 +/// %t2 = load i32* %t1 +/// \endcode +/// +static bool AreEquivalentAddressValues(const Value *A, const Value *B) { + // Test if the values are trivially equivalent. + if (A == B) + return true; + + // Test if the values come from identical arithmetic instructions. + // Use isIdenticalToWhenDefined instead of isIdenticalTo because + // this function is only used when one address use dominates the + // other, which means that they'll always either have the same + // value or one of them will have an undefined value. + if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || + isa<GetElementPtrInst>(A)) + if (const Instruction *BI = dyn_cast<Instruction>(B)) + if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) + return true; + + // Otherwise they may not be equivalent. + return false; +} + +/// \brief Check if executing a load of this pointer value cannot trap. +/// +/// If it is not obviously safe to load from the specified pointer, we do +/// a quick local scan of the basic block containing \c ScanFrom, to determine +/// if the address is already accessed. +/// +/// This uses the pointee type to determine how many bytes need to be safe to +/// load from the pointer. +bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, + unsigned Align) { + const DataLayout &DL = ScanFrom->getModule()->getDataLayout(); + + // Zero alignment means that the load has the ABI alignment for the target + if (Align == 0) + Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); + assert(isPowerOf2_32(Align)); + + int64_t ByteOffset = 0; + Value *Base = V; + Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); + + if (ByteOffset < 0) // out of bounds + return false; + + Type *BaseType = nullptr; + unsigned BaseAlign = 0; + if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { + // An alloca is safe to load from as load as it is suitably aligned. + BaseType = AI->getAllocatedType(); + BaseAlign = AI->getAlignment(); + } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { + // Global variables are not necessarily safe to load from if they are + // overridden. Their size may change or they may be weak and require a test + // to determine if they were in fact provided. + if (!GV->mayBeOverridden()) { + BaseType = GV->getType()->getElementType(); + BaseAlign = GV->getAlignment(); + } + } + + PointerType *AddrTy = cast<PointerType>(V->getType()); + uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); + + // If we found a base allocated type from either an alloca or global variable, + // try to see if we are definitively within the allocated region. We need to + // know the size of the base type and the loaded type to do anything in this + // case. + if (BaseType && BaseType->isSized()) { + if (BaseAlign == 0) + BaseAlign = DL.getPrefTypeAlignment(BaseType); + + if (Align <= BaseAlign) { + // Check if the load is within the bounds of the underlying object. + if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && + ((ByteOffset % Align) == 0)) + return true; + } + } + + // Otherwise, be a little bit aggressive by scanning the local block where we + // want to check to see if the pointer is already being loaded or stored + // from/to. If so, the previous load or store would have already trapped, + // so there is no harm doing an extra load (also, CSE will later eliminate + // the load entirely). + BasicBlock::iterator BBI = ScanFrom->getIterator(), + E = ScanFrom->getParent()->begin(); + + // We can at least always strip pointer casts even though we can't use the + // base here. + V = V->stripPointerCasts(); + + while (BBI != E) { + --BBI; + + // If we see a free or a call which may write to memory (i.e. which might do + // a free) the pointer could be marked invalid. + if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && + !isa<DbgInfoIntrinsic>(BBI)) + return false; + + Value *AccessedPtr; + unsigned AccessedAlign; + if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { + AccessedPtr = LI->getPointerOperand(); + AccessedAlign = LI->getAlignment(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { + AccessedPtr = SI->getPointerOperand(); + AccessedAlign = SI->getAlignment(); + } else + continue; + + Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); + if (AccessedAlign == 0) + AccessedAlign = DL.getABITypeAlignment(AccessedTy); + if (AccessedAlign < Align) + continue; + + // Handle trivial cases. + if (AccessedPtr == V) + return true; + + if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && + LoadSize <= DL.getTypeStoreSize(AccessedTy)) + return true; + } + return false; +} + +/// DefMaxInstsToScan - the default number of maximum instructions +/// to scan in the block, used by FindAvailableLoadedValue(). +/// FindAvailableLoadedValue() was introduced in r60148, to improve jump +/// threading in part by eliminating partially redundant loads. +/// At that point, the value of MaxInstsToScan was already set to '6' +/// without documented explanation. +cl::opt<unsigned> +llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, + cl::desc("Use this to specify the default maximum number of instructions " + "to scan backward from a given instruction, when searching for " + "available loaded value")); + +/// \brief Scan the ScanBB block backwards to see if we have the value at the +/// memory address *Ptr locally available within a small number of instructions. +/// +/// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum +/// instructions to scan in the block. If it is set to \c 0, it will scan the whole +/// block. +/// +/// If the value is available, this function returns it. If not, it returns the +/// iterator for the last validated instruction that the value would be live +/// through. If we scanned the entire block and didn't find something that +/// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last +/// instruction processed and this returns null. +/// +/// You can also optionally specify an alias analysis implementation, which +/// makes this more precise. +/// +/// If \c AATags is non-null and a load or store is found, the AA tags from the +/// load or store are recorded there. If there are no AA tags or if no access is +/// found, it is left unmodified. +Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, + BasicBlock::iterator &ScanFrom, + unsigned MaxInstsToScan, + AliasAnalysis *AA, AAMDNodes *AATags) { + if (MaxInstsToScan == 0) + MaxInstsToScan = ~0U; + + Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType(); + + const DataLayout &DL = ScanBB->getModule()->getDataLayout(); + + // Try to get the store size for the type. + uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); + + Value *StrippedPtr = Ptr->stripPointerCasts(); + + while (ScanFrom != ScanBB->begin()) { + // We must ignore debug info directives when counting (otherwise they + // would affect codegen). + Instruction *Inst = &*--ScanFrom; + if (isa<DbgInfoIntrinsic>(Inst)) + continue; + + // Restore ScanFrom to expected value in case next test succeeds + ScanFrom++; + + // Don't scan huge blocks. + if (MaxInstsToScan-- == 0) + return nullptr; + + --ScanFrom; + // If this is a load of Ptr, the loaded value is available. + // (This is true even if the load is volatile or atomic, although + // those cases are unlikely.) + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + if (AreEquivalentAddressValues( + LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { + if (AATags) + LI->getAAMetadata(*AATags); + return LI; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); + // If this is a store through Ptr, the value is available! + // (This is true even if the store is volatile or atomic, although + // those cases are unlikely.) + if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), + AccessTy, DL)) { + if (AATags) + SI->getAAMetadata(*AATags); + return SI->getOperand(0); + } + + // If both StrippedPtr and StorePtr reach all the way to an alloca or + // global and they are different, ignore the store. This is a trivial form + // of alias analysis that is important for reg2mem'd code. + if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && + (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && + StrippedPtr != StorePtr) + continue; + + // If we have alias analysis and it says the store won't modify the loaded + // value, ignore the store. + if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0) + continue; + + // Otherwise the store that may or may not alias the pointer, bail out. + ++ScanFrom; + return nullptr; + } + + // If this is some other instruction that may clobber Ptr, bail out. + if (Inst->mayWriteToMemory()) { + // If alias analysis claims that it really won't modify the load, + // ignore it. + if (AA && + (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0) + continue; + + // May modify the pointer, bail out. + ++ScanFrom; + return nullptr; + } + } + + // Got to the start of the block, we didn't find it, but are done for this + // block. + return nullptr; +} |