diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LiveValues.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/LiveValues.cpp | 200 |
1 files changed, 200 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LiveValues.cpp b/contrib/llvm/lib/Analysis/LiveValues.cpp new file mode 100644 index 0000000..a0e6034 --- /dev/null +++ b/contrib/llvm/lib/Analysis/LiveValues.cpp @@ -0,0 +1,200 @@ +//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the implementation for the LLVM IR Value liveness +// analysis pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LiveValues.h" +#include "llvm/Instructions.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/LoopInfo.h" +using namespace llvm; + +namespace llvm { + FunctionPass *createLiveValuesPass() { return new LiveValues(); } +} + +char LiveValues::ID = 0; +INITIALIZE_PASS_BEGIN(LiveValues, "live-values", + "Value Liveness Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_END(LiveValues, "live-values", + "Value Liveness Analysis", false, true) + +LiveValues::LiveValues() : FunctionPass(ID) { + initializeLiveValuesPass(*PassRegistry::getPassRegistry()); +} + +void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<DominatorTree>(); + AU.addRequired<LoopInfo>(); + AU.setPreservesAll(); +} + +bool LiveValues::runOnFunction(Function &F) { + DT = &getAnalysis<DominatorTree>(); + LI = &getAnalysis<LoopInfo>(); + + // This pass' values are computed lazily, so there's nothing to do here. + + return false; +} + +void LiveValues::releaseMemory() { + Memos.clear(); +} + +/// isUsedInBlock - Test if the given value is used in the given block. +/// +bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) { + Memo &M = getMemo(V); + return M.Used.count(BB); +} + +/// isLiveThroughBlock - Test if the given value is known to be +/// live-through the given block, meaning that the block is properly +/// dominated by the value's definition, and there exists a block +/// reachable from it that contains a use. This uses a conservative +/// approximation that errs on the side of returning false. +/// +bool LiveValues::isLiveThroughBlock(const Value *V, + const BasicBlock *BB) { + Memo &M = getMemo(V); + return M.LiveThrough.count(BB); +} + +/// isKilledInBlock - Test if the given value is known to be killed in +/// the given block, meaning that the block contains a use of the value, +/// and no blocks reachable from the block contain a use. This uses a +/// conservative approximation that errs on the side of returning false. +/// +bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) { + Memo &M = getMemo(V); + return M.Killed.count(BB); +} + +/// getMemo - Retrieve an existing Memo for the given value if one +/// is available, otherwise compute a new one. +/// +LiveValues::Memo &LiveValues::getMemo(const Value *V) { + DenseMap<const Value *, Memo>::iterator I = Memos.find(V); + if (I != Memos.end()) + return I->second; + return compute(V); +} + +/// getImmediateDominator - A handy utility for the specific DominatorTree +/// query that we need here. +/// +static const BasicBlock *getImmediateDominator(const BasicBlock *BB, + const DominatorTree *DT) { + DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom(); + return Node ? Node->getBlock() : 0; +} + +/// compute - Compute a new Memo for the given value. +/// +LiveValues::Memo &LiveValues::compute(const Value *V) { + Memo &M = Memos[V]; + + // Determine the block containing the definition. + const BasicBlock *DefBB; + // Instructions define values with meaningful live ranges. + if (const Instruction *I = dyn_cast<Instruction>(V)) + DefBB = I->getParent(); + // Arguments can be analyzed as values defined in the entry block. + else if (const Argument *A = dyn_cast<Argument>(V)) + DefBB = &A->getParent()->getEntryBlock(); + // Constants and other things aren't meaningful here, so just + // return having computed an empty Memo so that we don't come + // here again. The assumption here is that client code won't + // be asking about such values very often. + else + return M; + + // Determine if the value is defined inside a loop. This is used + // to track whether the value is ever used outside the loop, so + // it'll be set to null if the value is either not defined in a + // loop or used outside the loop in which it is defined. + const Loop *L = LI->getLoopFor(DefBB); + + // Track whether the value is used anywhere outside of the block + // in which it is defined. + bool LiveOutOfDefBB = false; + + // Examine each use of the value. + for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); + I != E; ++I) { + const User *U = *I; + const BasicBlock *UseBB = cast<Instruction>(U)->getParent(); + + // Note the block in which this use occurs. + M.Used.insert(UseBB); + + // If the use block doesn't have successors, the value can be + // considered killed. + if (succ_begin(UseBB) == succ_end(UseBB)) + M.Killed.insert(UseBB); + + // Observe whether the value is used outside of the loop in which + // it is defined. Switch to an enclosing loop if necessary. + for (; L; L = L->getParentLoop()) + if (L->contains(UseBB)) + break; + + // Search for live-through blocks. + const BasicBlock *BB; + if (const PHINode *PHI = dyn_cast<PHINode>(U)) { + // For PHI nodes, start the search at the incoming block paired with the + // incoming value, which must be dominated by the definition. + unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo()); + BB = PHI->getIncomingBlock(Num); + + // A PHI-node use means the value is live-out of it's defining block + // even if that block also contains the only use. + LiveOutOfDefBB = true; + } else { + // Otherwise just start the search at the use. + BB = UseBB; + + // Note if the use is outside the defining block. + LiveOutOfDefBB |= UseBB != DefBB; + } + + // Climb the immediate dominator tree from the use to the definition + // and mark all intermediate blocks as live-through. + for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) { + if (BB != UseBB && !M.LiveThrough.insert(BB)) + break; + } + } + + // If the value is defined inside a loop and is not live outside + // the loop, then each exit block of the loop in which the value + // is used is a kill block. + if (L) { + SmallVector<BasicBlock *, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { + const BasicBlock *ExitingBlock = ExitingBlocks[i]; + if (M.Used.count(ExitingBlock)) + M.Killed.insert(ExitingBlock); + } + } + + // If the value was never used outside the block in which it was + // defined, it's killed in that block. + if (!LiveOutOfDefBB) + M.Killed.insert(DefBB); + + return M; +} |