diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/Lint.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/Lint.cpp | 720 |
1 files changed, 720 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/Lint.cpp b/contrib/llvm/lib/Analysis/Lint.cpp new file mode 100644 index 0000000..2dfb09c --- /dev/null +++ b/contrib/llvm/lib/Analysis/Lint.cpp @@ -0,0 +1,720 @@ +//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass statically checks for common and easily-identified constructs +// which produce undefined or likely unintended behavior in LLVM IR. +// +// It is not a guarantee of correctness, in two ways. First, it isn't +// comprehensive. There are checks which could be done statically which are +// not yet implemented. Some of these are indicated by TODO comments, but +// those aren't comprehensive either. Second, many conditions cannot be +// checked statically. This pass does no dynamic instrumentation, so it +// can't check for all possible problems. +// +// Another limitation is that it assumes all code will be executed. A store +// through a null pointer in a basic block which is never reached is harmless, +// but this pass will warn about it anyway. This is the main reason why most +// of these checks live here instead of in the Verifier pass. +// +// Optimization passes may make conditions that this pass checks for more or +// less obvious. If an optimization pass appears to be introducing a warning, +// it may be that the optimization pass is merely exposing an existing +// condition in the code. +// +// This code may be run before instcombine. In many cases, instcombine checks +// for the same kinds of things and turns instructions with undefined behavior +// into unreachable (or equivalent). Because of this, this pass makes some +// effort to look through bitcasts and so on. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Lint.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/Passes.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LegacyPassManager.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +namespace { + namespace MemRef { + static const unsigned Read = 1; + static const unsigned Write = 2; + static const unsigned Callee = 4; + static const unsigned Branchee = 8; + } + + class Lint : public FunctionPass, public InstVisitor<Lint> { + friend class InstVisitor<Lint>; + + void visitFunction(Function &F); + + void visitCallSite(CallSite CS); + void visitMemoryReference(Instruction &I, Value *Ptr, + uint64_t Size, unsigned Align, + Type *Ty, unsigned Flags); + void visitEHBeginCatch(IntrinsicInst *II); + void visitEHEndCatch(IntrinsicInst *II); + + void visitCallInst(CallInst &I); + void visitInvokeInst(InvokeInst &I); + void visitReturnInst(ReturnInst &I); + void visitLoadInst(LoadInst &I); + void visitStoreInst(StoreInst &I); + void visitXor(BinaryOperator &I); + void visitSub(BinaryOperator &I); + void visitLShr(BinaryOperator &I); + void visitAShr(BinaryOperator &I); + void visitShl(BinaryOperator &I); + void visitSDiv(BinaryOperator &I); + void visitUDiv(BinaryOperator &I); + void visitSRem(BinaryOperator &I); + void visitURem(BinaryOperator &I); + void visitAllocaInst(AllocaInst &I); + void visitVAArgInst(VAArgInst &I); + void visitIndirectBrInst(IndirectBrInst &I); + void visitExtractElementInst(ExtractElementInst &I); + void visitInsertElementInst(InsertElementInst &I); + void visitUnreachableInst(UnreachableInst &I); + + Value *findValue(Value *V, bool OffsetOk) const; + Value *findValueImpl(Value *V, bool OffsetOk, + SmallPtrSetImpl<Value *> &Visited) const; + + public: + Module *Mod; + const DataLayout *DL; + AliasAnalysis *AA; + AssumptionCache *AC; + DominatorTree *DT; + TargetLibraryInfo *TLI; + + std::string Messages; + raw_string_ostream MessagesStr; + + static char ID; // Pass identification, replacement for typeid + Lint() : FunctionPass(ID), MessagesStr(Messages) { + initializeLintPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + } + void print(raw_ostream &O, const Module *M) const override {} + + void WriteValues(ArrayRef<const Value *> Vs) { + for (const Value *V : Vs) { + if (!V) + continue; + if (isa<Instruction>(V)) { + MessagesStr << *V << '\n'; + } else { + V->printAsOperand(MessagesStr, true, Mod); + MessagesStr << '\n'; + } + } + } + + /// \brief A check failed, so printout out the condition and the message. + /// + /// This provides a nice place to put a breakpoint if you want to see why + /// something is not correct. + void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } + + /// \brief A check failed (with values to print). + /// + /// This calls the Message-only version so that the above is easier to set + /// a breakpoint on. + template <typename T1, typename... Ts> + void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) { + CheckFailed(Message); + WriteValues({V1, Vs...}); + } + }; +} + +char Lint::ID = 0; +INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", + false, true) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", + false, true) + +// Assert - We know that cond should be true, if not print an error message. +#define Assert(C, ...) \ + do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) + +// Lint::run - This is the main Analysis entry point for a +// function. +// +bool Lint::runOnFunction(Function &F) { + Mod = F.getParent(); + DL = &F.getParent()->getDataLayout(); + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + visit(F); + dbgs() << MessagesStr.str(); + Messages.clear(); + return false; +} + +void Lint::visitFunction(Function &F) { + // This isn't undefined behavior, it's just a little unusual, and it's a + // fairly common mistake to neglect to name a function. + Assert(F.hasName() || F.hasLocalLinkage(), + "Unusual: Unnamed function with non-local linkage", &F); + + // TODO: Check for irreducible control flow. +} + +void Lint::visitCallSite(CallSite CS) { + Instruction &I = *CS.getInstruction(); + Value *Callee = CS.getCalledValue(); + + visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr, + MemRef::Callee); + + if (Function *F = dyn_cast<Function>(findValue(Callee, + /*OffsetOk=*/false))) { + Assert(CS.getCallingConv() == F->getCallingConv(), + "Undefined behavior: Caller and callee calling convention differ", + &I); + + FunctionType *FT = F->getFunctionType(); + unsigned NumActualArgs = CS.arg_size(); + + Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs + : FT->getNumParams() == NumActualArgs, + "Undefined behavior: Call argument count mismatches callee " + "argument count", + &I); + + Assert(FT->getReturnType() == I.getType(), + "Undefined behavior: Call return type mismatches " + "callee return type", + &I); + + // Check argument types (in case the callee was casted) and attributes. + // TODO: Verify that caller and callee attributes are compatible. + Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); + CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); + for (; AI != AE; ++AI) { + Value *Actual = *AI; + if (PI != PE) { + Argument *Formal = &*PI++; + Assert(Formal->getType() == Actual->getType(), + "Undefined behavior: Call argument type mismatches " + "callee parameter type", + &I); + + // Check that noalias arguments don't alias other arguments. This is + // not fully precise because we don't know the sizes of the dereferenced + // memory regions. + if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) + for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) + if (AI != BI && (*BI)->getType()->isPointerTy()) { + AliasResult Result = AA->alias(*AI, *BI); + Assert(Result != MustAlias && Result != PartialAlias, + "Unusual: noalias argument aliases another argument", &I); + } + + // Check that an sret argument points to valid memory. + if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { + Type *Ty = + cast<PointerType>(Formal->getType())->getElementType(); + visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty), + DL->getABITypeAlignment(Ty), Ty, + MemRef::Read | MemRef::Write); + } + } + } + } + + if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall()) + for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); + AI != AE; ++AI) { + Value *Obj = findValue(*AI, /*OffsetOk=*/true); + Assert(!isa<AllocaInst>(Obj), + "Undefined behavior: Call with \"tail\" keyword references " + "alloca", + &I); + } + + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) + switch (II->getIntrinsicID()) { + default: break; + + // TODO: Check more intrinsics + + case Intrinsic::memcpy: { + MemCpyInst *MCI = cast<MemCpyInst>(&I); + // TODO: If the size is known, use it. + visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize, + MCI->getAlignment(), nullptr, MemRef::Write); + visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize, + MCI->getAlignment(), nullptr, MemRef::Read); + + // Check that the memcpy arguments don't overlap. The AliasAnalysis API + // isn't expressive enough for what we really want to do. Known partial + // overlap is not distinguished from the case where nothing is known. + uint64_t Size = 0; + if (const ConstantInt *Len = + dyn_cast<ConstantInt>(findValue(MCI->getLength(), + /*OffsetOk=*/false))) + if (Len->getValue().isIntN(32)) + Size = Len->getValue().getZExtValue(); + Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != + MustAlias, + "Undefined behavior: memcpy source and destination overlap", &I); + break; + } + case Intrinsic::memmove: { + MemMoveInst *MMI = cast<MemMoveInst>(&I); + // TODO: If the size is known, use it. + visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize, + MMI->getAlignment(), nullptr, MemRef::Write); + visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize, + MMI->getAlignment(), nullptr, MemRef::Read); + break; + } + case Intrinsic::memset: { + MemSetInst *MSI = cast<MemSetInst>(&I); + // TODO: If the size is known, use it. + visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize, + MSI->getAlignment(), nullptr, MemRef::Write); + break; + } + + case Intrinsic::vastart: + Assert(I.getParent()->getParent()->isVarArg(), + "Undefined behavior: va_start called in a non-varargs function", + &I); + + visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Read | MemRef::Write); + break; + case Intrinsic::vacopy: + visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Write); + visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Read); + break; + case Intrinsic::vaend: + visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Read | MemRef::Write); + break; + + case Intrinsic::stackrestore: + // Stackrestore doesn't read or write memory, but it sets the + // stack pointer, which the compiler may read from or write to + // at any time, so check it for both readability and writeability. + visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Read | MemRef::Write); + break; + } +} + +void Lint::visitCallInst(CallInst &I) { + return visitCallSite(&I); +} + +void Lint::visitInvokeInst(InvokeInst &I) { + return visitCallSite(&I); +} + +void Lint::visitReturnInst(ReturnInst &I) { + Function *F = I.getParent()->getParent(); + Assert(!F->doesNotReturn(), + "Unusual: Return statement in function with noreturn attribute", &I); + + if (Value *V = I.getReturnValue()) { + Value *Obj = findValue(V, /*OffsetOk=*/true); + Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); + } +} + +// TODO: Check that the reference is in bounds. +// TODO: Check readnone/readonly function attributes. +void Lint::visitMemoryReference(Instruction &I, + Value *Ptr, uint64_t Size, unsigned Align, + Type *Ty, unsigned Flags) { + // If no memory is being referenced, it doesn't matter if the pointer + // is valid. + if (Size == 0) + return; + + Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); + Assert(!isa<ConstantPointerNull>(UnderlyingObject), + "Undefined behavior: Null pointer dereference", &I); + Assert(!isa<UndefValue>(UnderlyingObject), + "Undefined behavior: Undef pointer dereference", &I); + Assert(!isa<ConstantInt>(UnderlyingObject) || + !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(), + "Unusual: All-ones pointer dereference", &I); + Assert(!isa<ConstantInt>(UnderlyingObject) || + !cast<ConstantInt>(UnderlyingObject)->isOne(), + "Unusual: Address one pointer dereference", &I); + + if (Flags & MemRef::Write) { + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) + Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory", + &I); + Assert(!isa<Function>(UnderlyingObject) && + !isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Write to text section", &I); + } + if (Flags & MemRef::Read) { + Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", + &I); + Assert(!isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Load from block address", &I); + } + if (Flags & MemRef::Callee) { + Assert(!isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Call to block address", &I); + } + if (Flags & MemRef::Branchee) { + Assert(!isa<Constant>(UnderlyingObject) || + isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Branch to non-blockaddress", &I); + } + + // Check for buffer overflows and misalignment. + // Only handles memory references that read/write something simple like an + // alloca instruction or a global variable. + int64_t Offset = 0; + if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { + // OK, so the access is to a constant offset from Ptr. Check that Ptr is + // something we can handle and if so extract the size of this base object + // along with its alignment. + uint64_t BaseSize = MemoryLocation::UnknownSize; + unsigned BaseAlign = 0; + + if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { + Type *ATy = AI->getAllocatedType(); + if (!AI->isArrayAllocation() && ATy->isSized()) + BaseSize = DL->getTypeAllocSize(ATy); + BaseAlign = AI->getAlignment(); + if (BaseAlign == 0 && ATy->isSized()) + BaseAlign = DL->getABITypeAlignment(ATy); + } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { + // If the global may be defined differently in another compilation unit + // then don't warn about funky memory accesses. + if (GV->hasDefinitiveInitializer()) { + Type *GTy = GV->getType()->getElementType(); + if (GTy->isSized()) + BaseSize = DL->getTypeAllocSize(GTy); + BaseAlign = GV->getAlignment(); + if (BaseAlign == 0 && GTy->isSized()) + BaseAlign = DL->getABITypeAlignment(GTy); + } + } + + // Accesses from before the start or after the end of the object are not + // defined. + Assert(Size == MemoryLocation::UnknownSize || + BaseSize == MemoryLocation::UnknownSize || + (Offset >= 0 && Offset + Size <= BaseSize), + "Undefined behavior: Buffer overflow", &I); + + // Accesses that say that the memory is more aligned than it is are not + // defined. + if (Align == 0 && Ty && Ty->isSized()) + Align = DL->getABITypeAlignment(Ty); + Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset), + "Undefined behavior: Memory reference address is misaligned", &I); + } +} + +void Lint::visitLoadInst(LoadInst &I) { + visitMemoryReference(I, I.getPointerOperand(), + DL->getTypeStoreSize(I.getType()), I.getAlignment(), + I.getType(), MemRef::Read); +} + +void Lint::visitStoreInst(StoreInst &I) { + visitMemoryReference(I, I.getPointerOperand(), + DL->getTypeStoreSize(I.getOperand(0)->getType()), + I.getAlignment(), + I.getOperand(0)->getType(), MemRef::Write); +} + +void Lint::visitXor(BinaryOperator &I) { + Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), + "Undefined result: xor(undef, undef)", &I); +} + +void Lint::visitSub(BinaryOperator &I) { + Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), + "Undefined result: sub(undef, undef)", &I); +} + +void Lint::visitLShr(BinaryOperator &I) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), + /*OffsetOk=*/false))) + Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +void Lint::visitAShr(BinaryOperator &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) + Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +void Lint::visitShl(BinaryOperator &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) + Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, + AssumptionCache *AC) { + // Assume undef could be zero. + if (isa<UndefValue>(V)) + return true; + + VectorType *VecTy = dyn_cast<VectorType>(V->getType()); + if (!VecTy) { + unsigned BitWidth = V->getType()->getIntegerBitWidth(); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, + dyn_cast<Instruction>(V), DT); + return KnownZero.isAllOnesValue(); + } + + // Per-component check doesn't work with zeroinitializer + Constant *C = dyn_cast<Constant>(V); + if (!C) + return false; + + if (C->isZeroValue()) + return true; + + // For a vector, KnownZero will only be true if all values are zero, so check + // this per component + unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth(); + for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) { + Constant *Elem = C->getAggregateElement(I); + if (isa<UndefValue>(Elem)) + return true; + + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + computeKnownBits(Elem, KnownZero, KnownOne, DL); + if (KnownZero.isAllOnesValue()) + return true; + } + + return false; +} + +void Lint::visitSDiv(BinaryOperator &I) { + Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitUDiv(BinaryOperator &I) { + Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitSRem(BinaryOperator &I) { + Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitURem(BinaryOperator &I) { + Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitAllocaInst(AllocaInst &I) { + if (isa<ConstantInt>(I.getArraySize())) + // This isn't undefined behavior, it's just an obvious pessimization. + Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), + "Pessimization: Static alloca outside of entry block", &I); + + // TODO: Check for an unusual size (MSB set?) +} + +void Lint::visitVAArgInst(VAArgInst &I) { + visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Read | MemRef::Write); +} + +void Lint::visitIndirectBrInst(IndirectBrInst &I) { + visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0, + nullptr, MemRef::Branchee); + + Assert(I.getNumDestinations() != 0, + "Undefined behavior: indirectbr with no destinations", &I); +} + +void Lint::visitExtractElementInst(ExtractElementInst &I) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), + /*OffsetOk=*/false))) + Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), + "Undefined result: extractelement index out of range", &I); +} + +void Lint::visitInsertElementInst(InsertElementInst &I) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), + /*OffsetOk=*/false))) + Assert(CI->getValue().ult(I.getType()->getNumElements()), + "Undefined result: insertelement index out of range", &I); +} + +void Lint::visitUnreachableInst(UnreachableInst &I) { + // This isn't undefined behavior, it's merely suspicious. + Assert(&I == &I.getParent()->front() || + std::prev(I.getIterator())->mayHaveSideEffects(), + "Unusual: unreachable immediately preceded by instruction without " + "side effects", + &I); +} + +/// findValue - Look through bitcasts and simple memory reference patterns +/// to identify an equivalent, but more informative, value. If OffsetOk +/// is true, look through getelementptrs with non-zero offsets too. +/// +/// Most analysis passes don't require this logic, because instcombine +/// will simplify most of these kinds of things away. But it's a goal of +/// this Lint pass to be useful even on non-optimized IR. +Value *Lint::findValue(Value *V, bool OffsetOk) const { + SmallPtrSet<Value *, 4> Visited; + return findValueImpl(V, OffsetOk, Visited); +} + +/// findValueImpl - Implementation helper for findValue. +Value *Lint::findValueImpl(Value *V, bool OffsetOk, + SmallPtrSetImpl<Value *> &Visited) const { + // Detect self-referential values. + if (!Visited.insert(V).second) + return UndefValue::get(V->getType()); + + // TODO: Look through sext or zext cast, when the result is known to + // be interpreted as signed or unsigned, respectively. + // TODO: Look through eliminable cast pairs. + // TODO: Look through calls with unique return values. + // TODO: Look through vector insert/extract/shuffle. + V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts(); + if (LoadInst *L = dyn_cast<LoadInst>(V)) { + BasicBlock::iterator BBI = L->getIterator(); + BasicBlock *BB = L->getParent(); + SmallPtrSet<BasicBlock *, 4> VisitedBlocks; + for (;;) { + if (!VisitedBlocks.insert(BB).second) + break; + if (Value *U = + FindAvailableLoadedValue(L->getPointerOperand(), + BB, BBI, DefMaxInstsToScan, AA)) + return findValueImpl(U, OffsetOk, Visited); + if (BBI != BB->begin()) break; + BB = BB->getUniquePredecessor(); + if (!BB) break; + BBI = BB->end(); + } + } else if (PHINode *PN = dyn_cast<PHINode>(V)) { + if (Value *W = PN->hasConstantValue()) + if (W != V) + return findValueImpl(W, OffsetOk, Visited); + } else if (CastInst *CI = dyn_cast<CastInst>(V)) { + if (CI->isNoopCast(*DL)) + return findValueImpl(CI->getOperand(0), OffsetOk, Visited); + } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { + if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), + Ex->getIndices())) + if (W != V) + return findValueImpl(W, OffsetOk, Visited); + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + // Same as above, but for ConstantExpr instead of Instruction. + if (Instruction::isCast(CE->getOpcode())) { + if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), + CE->getOperand(0)->getType(), CE->getType(), + DL->getIntPtrType(V->getType()))) + return findValueImpl(CE->getOperand(0), OffsetOk, Visited); + } else if (CE->getOpcode() == Instruction::ExtractValue) { + ArrayRef<unsigned> Indices = CE->getIndices(); + if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) + if (W != V) + return findValueImpl(W, OffsetOk, Visited); + } + } + + // As a last resort, try SimplifyInstruction or constant folding. + if (Instruction *Inst = dyn_cast<Instruction>(V)) { + if (Value *W = SimplifyInstruction(Inst, *DL, TLI, DT, AC)) + return findValueImpl(W, OffsetOk, Visited); + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + if (Value *W = ConstantFoldConstantExpression(CE, *DL, TLI)) + if (W != V) + return findValueImpl(W, OffsetOk, Visited); + } + + return V; +} + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createLintPass() { + return new Lint(); +} + +/// lintFunction - Check a function for errors, printing messages on stderr. +/// +void llvm::lintFunction(const Function &f) { + Function &F = const_cast<Function&>(f); + assert(!F.isDeclaration() && "Cannot lint external functions"); + + legacy::FunctionPassManager FPM(F.getParent()); + Lint *V = new Lint(); + FPM.add(V); + FPM.run(F); +} + +/// lintModule - Check a module for errors, printing messages on stderr. +/// +void llvm::lintModule(const Module &M) { + legacy::PassManager PM; + Lint *V = new Lint(); + PM.add(V); + PM.run(const_cast<Module&>(M)); +} |