diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LazyValueInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/LazyValueInfo.cpp | 1425 |
1 files changed, 1425 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp new file mode 100644 index 0000000..0d1d34e --- /dev/null +++ b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp @@ -0,0 +1,1425 @@ +//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interface for lazy computation of value constraint +// information. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <map> +#include <stack> +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "lazy-value-info" + +char LazyValueInfo::ID = 0; +INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info", + "Lazy Value Information Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info", + "Lazy Value Information Analysis", false, true) + +namespace llvm { + FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } +} + + +//===----------------------------------------------------------------------===// +// LVILatticeVal +//===----------------------------------------------------------------------===// + +/// This is the information tracked by LazyValueInfo for each value. +/// +/// FIXME: This is basically just for bringup, this can be made a lot more rich +/// in the future. +/// +namespace { +class LVILatticeVal { + enum LatticeValueTy { + /// This Value has no known value yet. + undefined, + + /// This Value has a specific constant value. + constant, + + /// This Value is known to not have the specified value. + notconstant, + + /// The Value falls within this range. + constantrange, + + /// This value is not known to be constant, and we know that it has a value. + overdefined + }; + + /// Val: This stores the current lattice value along with the Constant* for + /// the constant if this is a 'constant' or 'notconstant' value. + LatticeValueTy Tag; + Constant *Val; + ConstantRange Range; + +public: + LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {} + + static LVILatticeVal get(Constant *C) { + LVILatticeVal Res; + if (!isa<UndefValue>(C)) + Res.markConstant(C); + return Res; + } + static LVILatticeVal getNot(Constant *C) { + LVILatticeVal Res; + if (!isa<UndefValue>(C)) + Res.markNotConstant(C); + return Res; + } + static LVILatticeVal getRange(ConstantRange CR) { + LVILatticeVal Res; + Res.markConstantRange(CR); + return Res; + } + static LVILatticeVal getOverdefined() { + LVILatticeVal Res; + Res.markOverdefined(); + return Res; + } + + bool isUndefined() const { return Tag == undefined; } + bool isConstant() const { return Tag == constant; } + bool isNotConstant() const { return Tag == notconstant; } + bool isConstantRange() const { return Tag == constantrange; } + bool isOverdefined() const { return Tag == overdefined; } + + Constant *getConstant() const { + assert(isConstant() && "Cannot get the constant of a non-constant!"); + return Val; + } + + Constant *getNotConstant() const { + assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); + return Val; + } + + ConstantRange getConstantRange() const { + assert(isConstantRange() && + "Cannot get the constant-range of a non-constant-range!"); + return Range; + } + + /// Return true if this is a change in status. + bool markOverdefined() { + if (isOverdefined()) + return false; + Tag = overdefined; + return true; + } + + /// Return true if this is a change in status. + bool markConstant(Constant *V) { + assert(V && "Marking constant with NULL"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return markConstantRange(ConstantRange(CI->getValue())); + if (isa<UndefValue>(V)) + return false; + + assert((!isConstant() || getConstant() == V) && + "Marking constant with different value"); + assert(isUndefined()); + Tag = constant; + Val = V; + return true; + } + + /// Return true if this is a change in status. + bool markNotConstant(Constant *V) { + assert(V && "Marking constant with NULL"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); + if (isa<UndefValue>(V)) + return false; + + assert((!isConstant() || getConstant() != V) && + "Marking constant !constant with same value"); + assert((!isNotConstant() || getNotConstant() == V) && + "Marking !constant with different value"); + assert(isUndefined() || isConstant()); + Tag = notconstant; + Val = V; + return true; + } + + /// Return true if this is a change in status. + bool markConstantRange(const ConstantRange NewR) { + if (isConstantRange()) { + if (NewR.isEmptySet()) + return markOverdefined(); + + bool changed = Range != NewR; + Range = NewR; + return changed; + } + + assert(isUndefined()); + if (NewR.isEmptySet()) + return markOverdefined(); + + Tag = constantrange; + Range = NewR; + return true; + } + + /// Merge the specified lattice value into this one, updating this + /// one and returning true if anything changed. + bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) { + if (RHS.isUndefined() || isOverdefined()) return false; + if (RHS.isOverdefined()) return markOverdefined(); + + if (isUndefined()) { + Tag = RHS.Tag; + Val = RHS.Val; + Range = RHS.Range; + return true; + } + + if (isConstant()) { + if (RHS.isConstant()) { + if (Val == RHS.Val) + return false; + return markOverdefined(); + } + + if (RHS.isNotConstant()) { + if (Val == RHS.Val) + return markOverdefined(); + + // Unless we can prove that the two Constants are different, we must + // move to overdefined. + if (ConstantInt *Res = + dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( + CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL))) + if (Res->isOne()) + return markNotConstant(RHS.getNotConstant()); + + return markOverdefined(); + } + + // RHS is a ConstantRange, LHS is a non-integer Constant. + + // FIXME: consider the case where RHS is a range [1, 0) and LHS is + // a function. The correct result is to pick up RHS. + + return markOverdefined(); + } + + if (isNotConstant()) { + if (RHS.isConstant()) { + if (Val == RHS.Val) + return markOverdefined(); + + // Unless we can prove that the two Constants are different, we must + // move to overdefined. + if (ConstantInt *Res = + dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( + CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL))) + if (Res->isOne()) + return false; + + return markOverdefined(); + } + + if (RHS.isNotConstant()) { + if (Val == RHS.Val) + return false; + return markOverdefined(); + } + + return markOverdefined(); + } + + assert(isConstantRange() && "New LVILattice type?"); + if (!RHS.isConstantRange()) + return markOverdefined(); + + ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); + if (NewR.isFullSet()) + return markOverdefined(); + return markConstantRange(NewR); + } +}; + +} // end anonymous namespace. + +namespace llvm { +raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) + LLVM_ATTRIBUTE_USED; +raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { + if (Val.isUndefined()) + return OS << "undefined"; + if (Val.isOverdefined()) + return OS << "overdefined"; + + if (Val.isNotConstant()) + return OS << "notconstant<" << *Val.getNotConstant() << '>'; + else if (Val.isConstantRange()) + return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " + << Val.getConstantRange().getUpper() << '>'; + return OS << "constant<" << *Val.getConstant() << '>'; +} +} + +//===----------------------------------------------------------------------===// +// LazyValueInfoCache Decl +//===----------------------------------------------------------------------===// + +namespace { + /// A callback value handle updates the cache when values are erased. + class LazyValueInfoCache; + struct LVIValueHandle final : public CallbackVH { + LazyValueInfoCache *Parent; + + LVIValueHandle(Value *V, LazyValueInfoCache *P) + : CallbackVH(V), Parent(P) { } + + void deleted() override; + void allUsesReplacedWith(Value *V) override { + deleted(); + } + }; +} + +namespace { + /// This is the cache kept by LazyValueInfo which + /// maintains information about queries across the clients' queries. + class LazyValueInfoCache { + /// This is all of the cached block information for exactly one Value*. + /// The entries are sorted by the BasicBlock* of the + /// entries, allowing us to do a lookup with a binary search. + /// Over-defined lattice values are recorded in OverDefinedCache to reduce + /// memory overhead. + typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4> + ValueCacheEntryTy; + + /// This is all of the cached information for all values, + /// mapped from Value* to key information. + std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache; + + /// This tracks, on a per-block basis, the set of values that are + /// over-defined at the end of that block. + typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>> + OverDefinedCacheTy; + OverDefinedCacheTy OverDefinedCache; + + /// Keep track of all blocks that we have ever seen, so we + /// don't spend time removing unused blocks from our caches. + DenseSet<AssertingVH<BasicBlock> > SeenBlocks; + + /// This stack holds the state of the value solver during a query. + /// It basically emulates the callstack of the naive + /// recursive value lookup process. + std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; + + /// Keeps track of which block-value pairs are in BlockValueStack. + DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; + + /// Push BV onto BlockValueStack unless it's already in there. + /// Returns true on success. + bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { + if (!BlockValueSet.insert(BV).second) + return false; // It's already in the stack. + + BlockValueStack.push(BV); + return true; + } + + AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. + const DataLayout &DL; ///< A mandatory DataLayout + DominatorTree *DT; ///< An optional DT pointer. + + friend struct LVIValueHandle; + + void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) { + SeenBlocks.insert(BB); + + // Insert over-defined values into their own cache to reduce memory + // overhead. + if (Result.isOverdefined()) + OverDefinedCache[BB].insert(Val); + else + lookup(Val)[BB] = Result; + } + + LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); + bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, + LVILatticeVal &Result, + Instruction *CxtI = nullptr); + bool hasBlockValue(Value *Val, BasicBlock *BB); + + // These methods process one work item and may add more. A false value + // returned means that the work item was not completely processed and must + // be revisited after going through the new items. + bool solveBlockValue(Value *Val, BasicBlock *BB); + bool solveBlockValueNonLocal(LVILatticeVal &BBLV, + Value *Val, BasicBlock *BB); + bool solveBlockValuePHINode(LVILatticeVal &BBLV, + PHINode *PN, BasicBlock *BB); + bool solveBlockValueConstantRange(LVILatticeVal &BBLV, + Instruction *BBI, BasicBlock *BB); + void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV, + Instruction *BBI); + + void solve(); + + ValueCacheEntryTy &lookup(Value *V) { + return ValueCache[LVIValueHandle(V, this)]; + } + + bool isOverdefined(Value *V, BasicBlock *BB) const { + auto ODI = OverDefinedCache.find(BB); + + if (ODI == OverDefinedCache.end()) + return false; + + return ODI->second.count(V); + } + + bool hasCachedValueInfo(Value *V, BasicBlock *BB) { + if (isOverdefined(V, BB)) + return true; + + LVIValueHandle ValHandle(V, this); + auto I = ValueCache.find(ValHandle); + if (I == ValueCache.end()) + return false; + + return I->second.count(BB); + } + + LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) { + if (isOverdefined(V, BB)) + return LVILatticeVal::getOverdefined(); + + return lookup(V)[BB]; + } + + public: + /// This is the query interface to determine the lattice + /// value for the specified Value* at the end of the specified block. + LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB, + Instruction *CxtI = nullptr); + + /// This is the query interface to determine the lattice + /// value for the specified Value* at the specified instruction (generally + /// from an assume intrinsic). + LVILatticeVal getValueAt(Value *V, Instruction *CxtI); + + /// This is the query interface to determine the lattice + /// value for the specified Value* that is true on the specified edge. + LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB, + Instruction *CxtI = nullptr); + + /// This is the update interface to inform the cache that an edge from + /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. + void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); + + /// This is part of the update interface to inform the cache + /// that a block has been deleted. + void eraseBlock(BasicBlock *BB); + + /// clear - Empty the cache. + void clear() { + SeenBlocks.clear(); + ValueCache.clear(); + OverDefinedCache.clear(); + } + + LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL, + DominatorTree *DT = nullptr) + : AC(AC), DL(DL), DT(DT) {} + }; +} // end anonymous namespace + +void LVIValueHandle::deleted() { + SmallVector<AssertingVH<BasicBlock>, 4> ToErase; + for (auto &I : Parent->OverDefinedCache) { + SmallPtrSetImpl<Value *> &ValueSet = I.second; + if (ValueSet.count(getValPtr())) + ValueSet.erase(getValPtr()); + if (ValueSet.empty()) + ToErase.push_back(I.first); + } + for (auto &BB : ToErase) + Parent->OverDefinedCache.erase(BB); + + // This erasure deallocates *this, so it MUST happen after we're done + // using any and all members of *this. + Parent->ValueCache.erase(*this); +} + +void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { + // Shortcut if we have never seen this block. + DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); + if (I == SeenBlocks.end()) + return; + SeenBlocks.erase(I); + + auto ODI = OverDefinedCache.find(BB); + if (ODI != OverDefinedCache.end()) + OverDefinedCache.erase(ODI); + + for (auto I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) + I->second.erase(BB); +} + +void LazyValueInfoCache::solve() { + while (!BlockValueStack.empty()) { + std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); + assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); + + if (solveBlockValue(e.second, e.first)) { + // The work item was completely processed. + assert(BlockValueStack.top() == e && "Nothing should have been pushed!"); + assert(hasCachedValueInfo(e.second, e.first) && + "Result should be in cache!"); + + BlockValueStack.pop(); + BlockValueSet.erase(e); + } else { + // More work needs to be done before revisiting. + assert(BlockValueStack.top() != e && "Stack should have been pushed!"); + } + } +} + +bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { + // If already a constant, there is nothing to compute. + if (isa<Constant>(Val)) + return true; + + return hasCachedValueInfo(Val, BB); +} + +LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { + // If already a constant, there is nothing to compute. + if (Constant *VC = dyn_cast<Constant>(Val)) + return LVILatticeVal::get(VC); + + SeenBlocks.insert(BB); + return getCachedValueInfo(Val, BB); +} + +static LVILatticeVal getFromRangeMetadata(Instruction *BBI) { + switch (BBI->getOpcode()) { + default: break; + case Instruction::Load: + case Instruction::Call: + case Instruction::Invoke: + if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) + if (isa<IntegerType>(BBI->getType())) { + ConstantRange Result = getConstantRangeFromMetadata(*Ranges); + return LVILatticeVal::getRange(Result); + } + break; + }; + // Nothing known - Note that we do not want overdefined here. We may know + // something else about the value and not having range metadata shouldn't + // cause us to throw away those facts. + return LVILatticeVal(); +} + +bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { + if (isa<Constant>(Val)) + return true; + + if (hasCachedValueInfo(Val, BB)) { + // If we have a cached value, use that. + DEBUG(dbgs() << " reuse BB '" << BB->getName() + << "' val=" << getCachedValueInfo(Val, BB) << '\n'); + + // Since we're reusing a cached value, we don't need to update the + // OverDefinedCache. The cache will have been properly updated whenever the + // cached value was inserted. + return true; + } + + // Hold off inserting this value into the Cache in case we have to return + // false and come back later. + LVILatticeVal Res; + + Instruction *BBI = dyn_cast<Instruction>(Val); + if (!BBI || BBI->getParent() != BB) { + if (!solveBlockValueNonLocal(Res, Val, BB)) + return false; + insertResult(Val, BB, Res); + return true; + } + + if (PHINode *PN = dyn_cast<PHINode>(BBI)) { + if (!solveBlockValuePHINode(Res, PN, BB)) + return false; + insertResult(Val, BB, Res); + return true; + } + + // If this value is a nonnull pointer, record it's range and bailout. + PointerType *PT = dyn_cast<PointerType>(BBI->getType()); + if (PT && isKnownNonNull(BBI)) { + Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT)); + insertResult(Val, BB, Res); + return true; + } + + // If this is an instruction which supports range metadata, return the + // implied range. TODO: This should be an intersection, not a union. + Res.mergeIn(getFromRangeMetadata(BBI), DL); + + // We can only analyze the definitions of certain classes of instructions + // (integral binops and casts at the moment), so bail if this isn't one. + LVILatticeVal Result; + if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || + !BBI->getType()->isIntegerTy()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + Res.markOverdefined(); + insertResult(Val, BB, Res); + return true; + } + + // FIXME: We're currently limited to binops with a constant RHS. This should + // be improved. + BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); + if (BO && !isa<ConstantInt>(BO->getOperand(1))) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + + Res.markOverdefined(); + insertResult(Val, BB, Res); + return true; + } + + if (!solveBlockValueConstantRange(Res, BBI, BB)) + return false; + insertResult(Val, BB, Res); + return true; +} + +static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { + if (LoadInst *L = dyn_cast<LoadInst>(I)) { + return L->getPointerAddressSpace() == 0 && + GetUnderlyingObject(L->getPointerOperand(), + L->getModule()->getDataLayout()) == Ptr; + } + if (StoreInst *S = dyn_cast<StoreInst>(I)) { + return S->getPointerAddressSpace() == 0 && + GetUnderlyingObject(S->getPointerOperand(), + S->getModule()->getDataLayout()) == Ptr; + } + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { + if (MI->isVolatile()) return false; + + // FIXME: check whether it has a valuerange that excludes zero? + ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); + if (!Len || Len->isZero()) return false; + + if (MI->getDestAddressSpace() == 0) + if (GetUnderlyingObject(MI->getRawDest(), + MI->getModule()->getDataLayout()) == Ptr) + return true; + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) + if (MTI->getSourceAddressSpace() == 0) + if (GetUnderlyingObject(MTI->getRawSource(), + MTI->getModule()->getDataLayout()) == Ptr) + return true; + } + return false; +} + +bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, + Value *Val, BasicBlock *BB) { + LVILatticeVal Result; // Start Undefined. + + // If this is a pointer, and there's a load from that pointer in this BB, + // then we know that the pointer can't be NULL. + bool NotNull = false; + if (Val->getType()->isPointerTy()) { + if (isKnownNonNull(Val)) { + NotNull = true; + } else { + const DataLayout &DL = BB->getModule()->getDataLayout(); + Value *UnderlyingVal = GetUnderlyingObject(Val, DL); + // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge + // inside InstructionDereferencesPointer either. + if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) { + for (Instruction &I : *BB) { + if (InstructionDereferencesPointer(&I, UnderlyingVal)) { + NotNull = true; + break; + } + } + } + } + } + + // If this is the entry block, we must be asking about an argument. The + // value is overdefined. + if (BB == &BB->getParent()->getEntryBlock()) { + assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); + if (NotNull) { + PointerType *PTy = cast<PointerType>(Val->getType()); + Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); + } else { + Result.markOverdefined(); + } + BBLV = Result; + return true; + } + + // Loop over all of our predecessors, merging what we know from them into + // result. + bool EdgesMissing = false; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + LVILatticeVal EdgeResult; + EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); + if (EdgesMissing) + continue; + + Result.mergeIn(EdgeResult, DL); + + // If we hit overdefined, exit early. The BlockVals entry is already set + // to overdefined. + if (Result.isOverdefined()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because of pred.\n"); + // If we previously determined that this is a pointer that can't be null + // then return that rather than giving up entirely. + if (NotNull) { + PointerType *PTy = cast<PointerType>(Val->getType()); + Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); + } + + BBLV = Result; + return true; + } + } + if (EdgesMissing) + return false; + + // Return the merged value, which is more precise than 'overdefined'. + assert(!Result.isOverdefined()); + BBLV = Result; + return true; +} + +bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, + PHINode *PN, BasicBlock *BB) { + LVILatticeVal Result; // Start Undefined. + + // Loop over all of our predecessors, merging what we know from them into + // result. + bool EdgesMissing = false; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *PhiBB = PN->getIncomingBlock(i); + Value *PhiVal = PN->getIncomingValue(i); + LVILatticeVal EdgeResult; + // Note that we can provide PN as the context value to getEdgeValue, even + // though the results will be cached, because PN is the value being used as + // the cache key in the caller. + EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN); + if (EdgesMissing) + continue; + + Result.mergeIn(EdgeResult, DL); + + // If we hit overdefined, exit early. The BlockVals entry is already set + // to overdefined. + if (Result.isOverdefined()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because of pred.\n"); + + BBLV = Result; + return true; + } + } + if (EdgesMissing) + return false; + + // Return the merged value, which is more precise than 'overdefined'. + assert(!Result.isOverdefined() && "Possible PHI in entry block?"); + BBLV = Result; + return true; +} + +static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, + LVILatticeVal &Result, + bool isTrueDest = true); + +// If we can determine a constant range for the value Val in the context +// provided by the instruction BBI, then merge it into BBLV. If we did find a +// constant range, return true. +void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val, + LVILatticeVal &BBLV, + Instruction *BBI) { + BBI = BBI ? BBI : dyn_cast<Instruction>(Val); + if (!BBI) + return; + + for (auto &AssumeVH : AC->assumptions()) { + if (!AssumeVH) + continue; + auto *I = cast<CallInst>(AssumeVH); + if (!isValidAssumeForContext(I, BBI, DT)) + continue; + + Value *C = I->getArgOperand(0); + if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) { + LVILatticeVal Result; + if (getValueFromFromCondition(Val, ICI, Result)) { + if (BBLV.isOverdefined()) + BBLV = Result; + else + BBLV.mergeIn(Result, DL); + } + } + } +} + +bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, + Instruction *BBI, + BasicBlock *BB) { + // Figure out the range of the LHS. If that fails, bail. + if (!hasBlockValue(BBI->getOperand(0), BB)) { + if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0)))) + return false; + BBLV.markOverdefined(); + return true; + } + + LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); + mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI); + if (!LHSVal.isConstantRange()) { + BBLV.markOverdefined(); + return true; + } + + ConstantRange LHSRange = LHSVal.getConstantRange(); + ConstantRange RHSRange(1); + IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); + if (isa<BinaryOperator>(BBI)) { + if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) { + RHSRange = ConstantRange(RHS->getValue()); + } else { + BBLV.markOverdefined(); + return true; + } + } + + // NOTE: We're currently limited by the set of operations that ConstantRange + // can evaluate symbolically. Enhancing that set will allows us to analyze + // more definitions. + LVILatticeVal Result; + switch (BBI->getOpcode()) { + case Instruction::Add: + Result.markConstantRange(LHSRange.add(RHSRange)); + break; + case Instruction::Sub: + Result.markConstantRange(LHSRange.sub(RHSRange)); + break; + case Instruction::Mul: + Result.markConstantRange(LHSRange.multiply(RHSRange)); + break; + case Instruction::UDiv: + Result.markConstantRange(LHSRange.udiv(RHSRange)); + break; + case Instruction::Shl: + Result.markConstantRange(LHSRange.shl(RHSRange)); + break; + case Instruction::LShr: + Result.markConstantRange(LHSRange.lshr(RHSRange)); + break; + case Instruction::Trunc: + Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); + break; + case Instruction::SExt: + Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); + break; + case Instruction::ZExt: + Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); + break; + case Instruction::BitCast: + Result.markConstantRange(LHSRange); + break; + case Instruction::And: + Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); + break; + case Instruction::Or: + Result.markConstantRange(LHSRange.binaryOr(RHSRange)); + break; + + // Unhandled instructions are overdefined. + default: + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + Result.markOverdefined(); + break; + } + + BBLV = Result; + return true; +} + +bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, + LVILatticeVal &Result, bool isTrueDest) { + if (ICI && isa<Constant>(ICI->getOperand(1))) { + if (ICI->isEquality() && ICI->getOperand(0) == Val) { + // We know that V has the RHS constant if this is a true SETEQ or + // false SETNE. + if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) + Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); + else + Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); + return true; + } + + // Recognize the range checking idiom that InstCombine produces. + // (X-C1) u< C2 --> [C1, C1+C2) + ConstantInt *NegOffset = nullptr; + if (ICI->getPredicate() == ICmpInst::ICMP_ULT) + match(ICI->getOperand(0), m_Add(m_Specific(Val), + m_ConstantInt(NegOffset))); + + ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1)); + if (CI && (ICI->getOperand(0) == Val || NegOffset)) { + // Calculate the range of values that are allowed by the comparison + ConstantRange CmpRange(CI->getValue()); + ConstantRange TrueValues = + ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange); + + if (NegOffset) // Apply the offset from above. + TrueValues = TrueValues.subtract(NegOffset->getValue()); + + // If we're interested in the false dest, invert the condition. + if (!isTrueDest) TrueValues = TrueValues.inverse(); + + Result = LVILatticeVal::getRange(TrueValues); + return true; + } + } + + return false; +} + +/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if +/// Val is not constrained on the edge. +static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, + BasicBlock *BBTo, LVILatticeVal &Result) { + // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we + // know that v != 0. + if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { + // If this is a conditional branch and only one successor goes to BBTo, then + // we may be able to infer something from the condition. + if (BI->isConditional() && + BI->getSuccessor(0) != BI->getSuccessor(1)) { + bool isTrueDest = BI->getSuccessor(0) == BBTo; + assert(BI->getSuccessor(!isTrueDest) == BBTo && + "BBTo isn't a successor of BBFrom"); + + // If V is the condition of the branch itself, then we know exactly what + // it is. + if (BI->getCondition() == Val) { + Result = LVILatticeVal::get(ConstantInt::get( + Type::getInt1Ty(Val->getContext()), isTrueDest)); + return true; + } + + // If the condition of the branch is an equality comparison, we may be + // able to infer the value. + if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) + if (getValueFromFromCondition(Val, ICI, Result, isTrueDest)) + return true; + } + } + + // If the edge was formed by a switch on the value, then we may know exactly + // what it is. + if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { + if (SI->getCondition() != Val) + return false; + + bool DefaultCase = SI->getDefaultDest() == BBTo; + unsigned BitWidth = Val->getType()->getIntegerBitWidth(); + ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); + + for (SwitchInst::CaseIt i : SI->cases()) { + ConstantRange EdgeVal(i.getCaseValue()->getValue()); + if (DefaultCase) { + // It is possible that the default destination is the destination of + // some cases. There is no need to perform difference for those cases. + if (i.getCaseSuccessor() != BBTo) + EdgesVals = EdgesVals.difference(EdgeVal); + } else if (i.getCaseSuccessor() == BBTo) + EdgesVals = EdgesVals.unionWith(EdgeVal); + } + Result = LVILatticeVal::getRange(EdgesVals); + return true; + } + return false; +} + +/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at +/// the basic block if the edge does not constrain Val. +bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, + BasicBlock *BBTo, LVILatticeVal &Result, + Instruction *CxtI) { + // If already a constant, there is nothing to compute. + if (Constant *VC = dyn_cast<Constant>(Val)) { + Result = LVILatticeVal::get(VC); + return true; + } + + if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) { + if (!Result.isConstantRange() || + Result.getConstantRange().getSingleElement()) + return true; + + // FIXME: this check should be moved to the beginning of the function when + // LVI better supports recursive values. Even for the single value case, we + // can intersect to detect dead code (an empty range). + if (!hasBlockValue(Val, BBFrom)) { + if (pushBlockValue(std::make_pair(BBFrom, Val))) + return false; + Result.markOverdefined(); + return true; + } + + // Try to intersect ranges of the BB and the constraint on the edge. + LVILatticeVal InBlock = getBlockValue(Val, BBFrom); + mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator()); + // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange, + // and caching, below. + mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI); + if (!InBlock.isConstantRange()) + return true; + + ConstantRange Range = + Result.getConstantRange().intersectWith(InBlock.getConstantRange()); + Result = LVILatticeVal::getRange(Range); + return true; + } + + if (!hasBlockValue(Val, BBFrom)) { + if (pushBlockValue(std::make_pair(BBFrom, Val))) + return false; + Result.markOverdefined(); + return true; + } + + // If we couldn't compute the value on the edge, use the value from the BB. + Result = getBlockValue(Val, BBFrom); + mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator()); + // We can use the context instruction (generically the ultimate instruction + // the calling pass is trying to simplify) here, even though the result of + // this function is generally cached when called from the solve* functions + // (and that cached result might be used with queries using a different + // context instruction), because when this function is called from the solve* + // functions, the context instruction is not provided. When called from + // LazyValueInfoCache::getValueOnEdge, the context instruction is provided, + // but then the result is not cached. + mergeAssumeBlockValueConstantRange(Val, Result, CxtI); + return true; +} + +LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB, + Instruction *CxtI) { + DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" + << BB->getName() << "'\n"); + + assert(BlockValueStack.empty() && BlockValueSet.empty()); + pushBlockValue(std::make_pair(BB, V)); + + solve(); + LVILatticeVal Result = getBlockValue(V, BB); + mergeAssumeBlockValueConstantRange(V, Result, CxtI); + + DEBUG(dbgs() << " Result = " << Result << "\n"); + return Result; +} + +LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) { + DEBUG(dbgs() << "LVI Getting value " << *V << " at '" + << CxtI->getName() << "'\n"); + + LVILatticeVal Result; + if (auto *I = dyn_cast<Instruction>(V)) + Result = getFromRangeMetadata(I); + mergeAssumeBlockValueConstantRange(V, Result, CxtI); + + DEBUG(dbgs() << " Result = " << Result << "\n"); + return Result; +} + +LVILatticeVal LazyValueInfoCache:: +getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, + Instruction *CxtI) { + DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" + << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); + + LVILatticeVal Result; + if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { + solve(); + bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); + (void)WasFastQuery; + assert(WasFastQuery && "More work to do after problem solved?"); + } + + DEBUG(dbgs() << " Result = " << Result << "\n"); + return Result; +} + +void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, + BasicBlock *NewSucc) { + // When an edge in the graph has been threaded, values that we could not + // determine a value for before (i.e. were marked overdefined) may be + // possible to solve now. We do NOT try to proactively update these values. + // Instead, we clear their entries from the cache, and allow lazy updating to + // recompute them when needed. + + // The updating process is fairly simple: we need to drop cached info + // for all values that were marked overdefined in OldSucc, and for those same + // values in any successor of OldSucc (except NewSucc) in which they were + // also marked overdefined. + std::vector<BasicBlock*> worklist; + worklist.push_back(OldSucc); + + auto I = OverDefinedCache.find(OldSucc); + if (I == OverDefinedCache.end()) + return; // Nothing to process here. + SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); + + // Use a worklist to perform a depth-first search of OldSucc's successors. + // NOTE: We do not need a visited list since any blocks we have already + // visited will have had their overdefined markers cleared already, and we + // thus won't loop to their successors. + while (!worklist.empty()) { + BasicBlock *ToUpdate = worklist.back(); + worklist.pop_back(); + + // Skip blocks only accessible through NewSucc. + if (ToUpdate == NewSucc) continue; + + bool changed = false; + for (Value *V : ValsToClear) { + // If a value was marked overdefined in OldSucc, and is here too... + auto OI = OverDefinedCache.find(ToUpdate); + if (OI == OverDefinedCache.end()) + continue; + SmallPtrSetImpl<Value *> &ValueSet = OI->second; + if (!ValueSet.count(V)) + continue; + + ValueSet.erase(V); + if (ValueSet.empty()) + OverDefinedCache.erase(OI); + + // If we removed anything, then we potentially need to update + // blocks successors too. + changed = true; + } + + if (!changed) continue; + + worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); + } +} + +//===----------------------------------------------------------------------===// +// LazyValueInfo Impl +//===----------------------------------------------------------------------===// + +/// This lazily constructs the LazyValueInfoCache. +static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC, + const DataLayout *DL, + DominatorTree *DT = nullptr) { + if (!PImpl) { + assert(DL && "getCache() called with a null DataLayout"); + PImpl = new LazyValueInfoCache(AC, *DL, DT); + } + return *static_cast<LazyValueInfoCache*>(PImpl); +} + +bool LazyValueInfo::runOnFunction(Function &F) { + AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + const DataLayout &DL = F.getParent()->getDataLayout(); + + DominatorTreeWrapperPass *DTWP = + getAnalysisIfAvailable<DominatorTreeWrapperPass>(); + DT = DTWP ? &DTWP->getDomTree() : nullptr; + + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + + if (PImpl) + getCache(PImpl, AC, &DL, DT).clear(); + + // Fully lazy. + return false; +} + +void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); +} + +void LazyValueInfo::releaseMemory() { + // If the cache was allocated, free it. + if (PImpl) { + delete &getCache(PImpl, AC, nullptr); + PImpl = nullptr; + } +} + +Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, + Instruction *CxtI) { + const DataLayout &DL = BB->getModule()->getDataLayout(); + LVILatticeVal Result = + getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); + + if (Result.isConstant()) + return Result.getConstant(); + if (Result.isConstantRange()) { + ConstantRange CR = Result.getConstantRange(); + if (const APInt *SingleVal = CR.getSingleElement()) + return ConstantInt::get(V->getContext(), *SingleVal); + } + return nullptr; +} + +/// Determine whether the specified value is known to be a +/// constant on the specified edge. Return null if not. +Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, + BasicBlock *ToBB, + Instruction *CxtI) { + const DataLayout &DL = FromBB->getModule()->getDataLayout(); + LVILatticeVal Result = + getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); + + if (Result.isConstant()) + return Result.getConstant(); + if (Result.isConstantRange()) { + ConstantRange CR = Result.getConstantRange(); + if (const APInt *SingleVal = CR.getSingleElement()) + return ConstantInt::get(V->getContext(), *SingleVal); + } + return nullptr; +} + +static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C, + LVILatticeVal &Result, + const DataLayout &DL, + TargetLibraryInfo *TLI) { + + // If we know the value is a constant, evaluate the conditional. + Constant *Res = nullptr; + if (Result.isConstant()) { + Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL, + TLI); + if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) + return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; + return LazyValueInfo::Unknown; + } + + if (Result.isConstantRange()) { + ConstantInt *CI = dyn_cast<ConstantInt>(C); + if (!CI) return LazyValueInfo::Unknown; + + ConstantRange CR = Result.getConstantRange(); + if (Pred == ICmpInst::ICMP_EQ) { + if (!CR.contains(CI->getValue())) + return LazyValueInfo::False; + + if (CR.isSingleElement() && CR.contains(CI->getValue())) + return LazyValueInfo::True; + } else if (Pred == ICmpInst::ICMP_NE) { + if (!CR.contains(CI->getValue())) + return LazyValueInfo::True; + + if (CR.isSingleElement() && CR.contains(CI->getValue())) + return LazyValueInfo::False; + } + + // Handle more complex predicates. + ConstantRange TrueValues = + ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); + if (TrueValues.contains(CR)) + return LazyValueInfo::True; + if (TrueValues.inverse().contains(CR)) + return LazyValueInfo::False; + return LazyValueInfo::Unknown; + } + + if (Result.isNotConstant()) { + // If this is an equality comparison, we can try to fold it knowing that + // "V != C1". + if (Pred == ICmpInst::ICMP_EQ) { + // !C1 == C -> false iff C1 == C. + Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, + Result.getNotConstant(), C, DL, + TLI); + if (Res->isNullValue()) + return LazyValueInfo::False; + } else if (Pred == ICmpInst::ICMP_NE) { + // !C1 != C -> true iff C1 == C. + Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, + Result.getNotConstant(), C, DL, + TLI); + if (Res->isNullValue()) + return LazyValueInfo::True; + } + return LazyValueInfo::Unknown; + } + + return LazyValueInfo::Unknown; +} + +/// Determine whether the specified value comparison with a constant is known to +/// be true or false on the specified CFG edge. Pred is a CmpInst predicate. +LazyValueInfo::Tristate +LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, + BasicBlock *FromBB, BasicBlock *ToBB, + Instruction *CxtI) { + const DataLayout &DL = FromBB->getModule()->getDataLayout(); + LVILatticeVal Result = + getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); + + return getPredicateResult(Pred, C, Result, DL, TLI); +} + +LazyValueInfo::Tristate +LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, + Instruction *CxtI) { + const DataLayout &DL = CxtI->getModule()->getDataLayout(); + LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI); + Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); + if (Ret != Unknown) + return Ret; + + // Note: The following bit of code is somewhat distinct from the rest of LVI; + // LVI as a whole tries to compute a lattice value which is conservatively + // correct at a given location. In this case, we have a predicate which we + // weren't able to prove about the merged result, and we're pushing that + // predicate back along each incoming edge to see if we can prove it + // separately for each input. As a motivating example, consider: + // bb1: + // %v1 = ... ; constantrange<1, 5> + // br label %merge + // bb2: + // %v2 = ... ; constantrange<10, 20> + // br label %merge + // merge: + // %phi = phi [%v1, %v2] ; constantrange<1,20> + // %pred = icmp eq i32 %phi, 8 + // We can't tell from the lattice value for '%phi' that '%pred' is false + // along each path, but by checking the predicate over each input separately, + // we can. + // We limit the search to one step backwards from the current BB and value. + // We could consider extending this to search further backwards through the + // CFG and/or value graph, but there are non-obvious compile time vs quality + // tradeoffs. + if (CxtI) { + BasicBlock *BB = CxtI->getParent(); + + // Function entry or an unreachable block. Bail to avoid confusing + // analysis below. + pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + if (PI == PE) + return Unknown; + + // If V is a PHI node in the same block as the context, we need to ask + // questions about the predicate as applied to the incoming value along + // each edge. This is useful for eliminating cases where the predicate is + // known along all incoming edges. + if (auto *PHI = dyn_cast<PHINode>(V)) + if (PHI->getParent() == BB) { + Tristate Baseline = Unknown; + for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { + Value *Incoming = PHI->getIncomingValue(i); + BasicBlock *PredBB = PHI->getIncomingBlock(i); + // Note that PredBB may be BB itself. + Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, + CxtI); + + // Keep going as long as we've seen a consistent known result for + // all inputs. + Baseline = (i == 0) ? Result /* First iteration */ + : (Baseline == Result ? Baseline : Unknown); /* All others */ + if (Baseline == Unknown) + break; + } + if (Baseline != Unknown) + return Baseline; + } + + // For a comparison where the V is outside this block, it's possible + // that we've branched on it before. Look to see if the value is known + // on all incoming edges. + if (!isa<Instruction>(V) || + cast<Instruction>(V)->getParent() != BB) { + // For predecessor edge, determine if the comparison is true or false + // on that edge. If they're all true or all false, we can conclude + // the value of the comparison in this block. + Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); + if (Baseline != Unknown) { + // Check that all remaining incoming values match the first one. + while (++PI != PE) { + Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); + if (Ret != Baseline) break; + } + // If we terminated early, then one of the values didn't match. + if (PI == PE) { + return Baseline; + } + } + } + } + return Unknown; +} + +void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, + BasicBlock *NewSucc) { + if (PImpl) { + const DataLayout &DL = PredBB->getModule()->getDataLayout(); + getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); + } +} + +void LazyValueInfo::eraseBlock(BasicBlock *BB) { + if (PImpl) { + const DataLayout &DL = BB->getModule()->getDataLayout(); + getCache(PImpl, AC, &DL, DT).eraseBlock(BB); + } +} |