summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/LazyValueInfo.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/LazyValueInfo.cpp844
1 files changed, 514 insertions, 330 deletions
diff --git a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
index e32dbc4..9e7da6c 100644
--- a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
+++ b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
@@ -14,8 +14,10 @@
#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
@@ -26,11 +28,14 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
+#include <map>
+#include <set>
+#include <stack>
using namespace llvm;
char LazyValueInfo::ID = 0;
INITIALIZE_PASS(LazyValueInfo, "lazy-value-info",
- "Lazy Value Information Analysis", false, true);
+ "Lazy Value Information Analysis", false, true)
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
@@ -50,18 +55,18 @@ namespace llvm {
namespace {
class LVILatticeVal {
enum LatticeValueTy {
- /// undefined - This LLVM Value has no known value yet.
+ /// undefined - This Value has no known value yet.
undefined,
- /// constant - This LLVM Value has a specific constant value.
+ /// constant - This Value has a specific constant value.
constant,
- /// notconstant - This LLVM value is known to not have the specified value.
+ /// notconstant - This Value is known to not have the specified value.
notconstant,
- /// constantrange
+ /// constantrange - The Value falls within this range.
constantrange,
- /// overdefined - This instruction is not known to be constant, and we know
+ /// overdefined - This value is not known to be constant, and we know that
/// it has a value.
overdefined
};
@@ -77,17 +82,13 @@ public:
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- Res.markConstantRange(ConstantRange(CI->getValue(), CI->getValue()+1));
- else if (!isa<UndefValue>(C))
+ if (!isa<UndefValue>(C))
Res.markConstant(C);
return Res;
}
static LVILatticeVal getNot(Constant *C) {
LVILatticeVal Res;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- Res.markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
- else
+ if (!isa<UndefValue>(C))
Res.markNotConstant(C);
return Res;
}
@@ -129,32 +130,34 @@ public:
/// markConstant - Return true if this is a change in status.
bool markConstant(Constant *V) {
- if (isConstant()) {
- assert(getConstant() == V && "Marking constant with different value");
+ assert(V && "Marking constant with NULL");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return markConstantRange(ConstantRange(CI->getValue()));
+ if (isa<UndefValue>(V))
return false;
- }
-
+
+ assert((!isConstant() || getConstant() == V) &&
+ "Marking constant with different value");
assert(isUndefined());
Tag = constant;
- assert(V && "Marking constant with NULL");
Val = V;
return true;
}
/// markNotConstant - Return true if this is a change in status.
bool markNotConstant(Constant *V) {
- if (isNotConstant()) {
- assert(getNotConstant() == V && "Marking !constant with different value");
+ assert(V && "Marking constant with NULL");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
+ if (isa<UndefValue>(V))
return false;
- }
-
- if (isConstant())
- assert(getConstant() != V && "Marking not constant with different value");
- else
- assert(isUndefined());
+ assert((!isConstant() || getConstant() != V) &&
+ "Marking constant !constant with same value");
+ assert((!isNotConstant() || getNotConstant() == V) &&
+ "Marking !constant with different value");
+ assert(isUndefined() || isConstant());
Tag = notconstant;
- assert(V && "Marking constant with NULL");
Val = V;
return true;
}
@@ -185,63 +188,81 @@ public:
if (RHS.isUndefined() || isOverdefined()) return false;
if (RHS.isOverdefined()) return markOverdefined();
- if (RHS.isNotConstant()) {
- if (isNotConstant()) {
- if (getNotConstant() != RHS.getNotConstant() ||
- isa<ConstantExpr>(getNotConstant()) ||
- isa<ConstantExpr>(RHS.getNotConstant()))
- return markOverdefined();
- return false;
- } else if (isConstant()) {
- if (getConstant() == RHS.getNotConstant() ||
- isa<ConstantExpr>(RHS.getNotConstant()) ||
- isa<ConstantExpr>(getConstant()))
+ if (isUndefined()) {
+ Tag = RHS.Tag;
+ Val = RHS.Val;
+ Range = RHS.Range;
+ return true;
+ }
+
+ if (isConstant()) {
+ if (RHS.isConstant()) {
+ if (Val == RHS.Val)
+ return false;
+ return markOverdefined();
+ }
+
+ if (RHS.isNotConstant()) {
+ if (Val == RHS.Val)
return markOverdefined();
- return markNotConstant(RHS.getNotConstant());
- } else if (isConstantRange()) {
+
+ // Unless we can prove that the two Constants are different, we must
+ // move to overdefined.
+ // FIXME: use TargetData for smarter constant folding.
+ if (ConstantInt *Res = dyn_cast<ConstantInt>(
+ ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
+ getConstant(),
+ RHS.getNotConstant())))
+ if (Res->isOne())
+ return markNotConstant(RHS.getNotConstant());
+
return markOverdefined();
}
-
- assert(isUndefined() && "Unexpected lattice");
- return markNotConstant(RHS.getNotConstant());
+
+ // RHS is a ConstantRange, LHS is a non-integer Constant.
+
+ // FIXME: consider the case where RHS is a range [1, 0) and LHS is
+ // a function. The correct result is to pick up RHS.
+
+ return markOverdefined();
}
-
- if (RHS.isConstantRange()) {
- if (isConstantRange()) {
- ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
- if (NewR.isFullSet())
+
+ if (isNotConstant()) {
+ if (RHS.isConstant()) {
+ if (Val == RHS.Val)
return markOverdefined();
- else
- return markConstantRange(NewR);
- } else if (!isUndefined()) {
+
+ // Unless we can prove that the two Constants are different, we must
+ // move to overdefined.
+ // FIXME: use TargetData for smarter constant folding.
+ if (ConstantInt *Res = dyn_cast<ConstantInt>(
+ ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
+ getNotConstant(),
+ RHS.getConstant())))
+ if (Res->isOne())
+ return false;
+
return markOverdefined();
}
-
- assert(isUndefined() && "Unexpected lattice");
- return markConstantRange(RHS.getConstantRange());
- }
-
- // RHS must be a constant, we must be undef, constant, or notconstant.
- assert(!isConstantRange() &&
- "Constant and ConstantRange cannot be merged.");
-
- if (isUndefined())
- return markConstant(RHS.getConstant());
-
- if (isConstant()) {
- if (getConstant() != RHS.getConstant())
+
+ if (RHS.isNotConstant()) {
+ if (Val == RHS.Val)
+ return false;
return markOverdefined();
- return false;
+ }
+
+ return markOverdefined();
}
- // If we are known "!=4" and RHS is "==5", stay at "!=4".
- if (getNotConstant() == RHS.getConstant() ||
- isa<ConstantExpr>(getNotConstant()) ||
- isa<ConstantExpr>(RHS.getConstant()))
+ assert(isConstantRange() && "New LVILattice type?");
+ if (!RHS.isConstantRange())
return markOverdefined();
- return false;
+
+ ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
+ if (NewR.isFullSet())
+ return markOverdefined();
+ return markConstantRange(NewR);
}
-
};
} // end anonymous namespace.
@@ -267,49 +288,136 @@ raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
//===----------------------------------------------------------------------===//
namespace {
+ /// LVIValueHandle - A callback value handle update the cache when
+ /// values are erased.
+ class LazyValueInfoCache;
+ struct LVIValueHandle : public CallbackVH {
+ LazyValueInfoCache *Parent;
+
+ LVIValueHandle(Value *V, LazyValueInfoCache *P)
+ : CallbackVH(V), Parent(P) { }
+
+ void deleted();
+ void allUsesReplacedWith(Value *V) {
+ deleted();
+ }
+ };
+}
+
+namespace llvm {
+ template<>
+ struct DenseMapInfo<LVIValueHandle> {
+ typedef DenseMapInfo<Value*> PointerInfo;
+ static inline LVIValueHandle getEmptyKey() {
+ return LVIValueHandle(PointerInfo::getEmptyKey(),
+ static_cast<LazyValueInfoCache*>(0));
+ }
+ static inline LVIValueHandle getTombstoneKey() {
+ return LVIValueHandle(PointerInfo::getTombstoneKey(),
+ static_cast<LazyValueInfoCache*>(0));
+ }
+ static unsigned getHashValue(const LVIValueHandle &Val) {
+ return PointerInfo::getHashValue(Val);
+ }
+ static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) {
+ return LHS == RHS;
+ }
+ };
+
+ template<>
+ struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > {
+ typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy;
+ typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo;
+ typedef DenseMapInfo<Value*> BPointerInfo;
+ static inline PairTy getEmptyKey() {
+ return std::make_pair(APointerInfo::getEmptyKey(),
+ BPointerInfo::getEmptyKey());
+ }
+ static inline PairTy getTombstoneKey() {
+ return std::make_pair(APointerInfo::getTombstoneKey(),
+ BPointerInfo::getTombstoneKey());
+ }
+ static unsigned getHashValue( const PairTy &Val) {
+ return APointerInfo::getHashValue(Val.first) ^
+ BPointerInfo::getHashValue(Val.second);
+ }
+ static bool isEqual(const PairTy &LHS, const PairTy &RHS) {
+ return APointerInfo::isEqual(LHS.first, RHS.first) &&
+ BPointerInfo::isEqual(LHS.second, RHS.second);
+ }
+ };
+}
+
+namespace {
/// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
- public:
- /// BlockCacheEntryTy - This is a computed lattice value at the end of the
- /// specified basic block for a Value* that depends on context.
- typedef std::pair<AssertingVH<BasicBlock>, LVILatticeVal> BlockCacheEntryTy;
-
/// ValueCacheEntryTy - This is all of the cached block information for
/// exactly one Value*. The entries are sorted by the BasicBlock* of the
/// entries, allowing us to do a lookup with a binary search.
typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
- private:
- /// LVIValueHandle - A callback value handle update the cache when
- /// values are erased.
- struct LVIValueHandle : public CallbackVH {
+ /// ValueCache - This is all of the cached information for all values,
+ /// mapped from Value* to key information.
+ DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache;
+
+ /// OverDefinedCache - This tracks, on a per-block basis, the set of
+ /// values that are over-defined at the end of that block. This is required
+ /// for cache updating.
+ typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
+ DenseSet<OverDefinedPairTy> OverDefinedCache;
+
+ /// BlockValueStack - This stack holds the state of the value solver
+ /// during a query. It basically emulates the callstack of the naive
+ /// recursive value lookup process.
+ std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
+
+ friend struct LVIValueHandle;
+
+ /// OverDefinedCacheUpdater - A helper object that ensures that the
+ /// OverDefinedCache is updated whenever solveBlockValue returns.
+ struct OverDefinedCacheUpdater {
LazyValueInfoCache *Parent;
+ Value *Val;
+ BasicBlock *BB;
+ LVILatticeVal &BBLV;
- LVIValueHandle(Value *V, LazyValueInfoCache *P)
- : CallbackVH(V), Parent(P) { }
+ OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
+ LazyValueInfoCache *P)
+ : Parent(P), Val(V), BB(B), BBLV(LV) { }
- void deleted();
- void allUsesReplacedWith(Value* V) {
- deleted();
- }
-
- LVIValueHandle &operator=(Value *V) {
- return *this = LVIValueHandle(V, Parent);
+ bool markResult(bool changed) {
+ if (changed && BBLV.isOverdefined())
+ Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
+ return changed;
}
};
+
- /// ValueCache - This is all of the cached information for all values,
- /// mapped from Value* to key information.
- std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
+
+ LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
+ bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
+ LVILatticeVal &Result);
+ bool hasBlockValue(Value *Val, BasicBlock *BB);
+
+ // These methods process one work item and may add more. A false value
+ // returned means that the work item was not completely processed and must
+ // be revisited after going through the new items.
+ bool solveBlockValue(Value *Val, BasicBlock *BB);
+ bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
+ Value *Val, BasicBlock *BB);
+ bool solveBlockValuePHINode(LVILatticeVal &BBLV,
+ PHINode *PN, BasicBlock *BB);
+ bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
+ Instruction *BBI, BasicBlock *BB);
+
+ void solve();
- /// OverDefinedCache - This tracks, on a per-block basis, the set of
- /// values that are over-defined at the end of that block. This is required
- /// for cache updating.
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> > OverDefinedCache;
+ ValueCacheEntryTy &lookup(Value *V) {
+ return ValueCache[LVIValueHandle(V, this)];
+ }
public:
-
/// getValueInBlock - This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
@@ -335,199 +443,112 @@ namespace {
};
} // end anonymous namespace
-//===----------------------------------------------------------------------===//
-// LVIQuery Impl
-//===----------------------------------------------------------------------===//
-
-namespace {
- /// LVIQuery - This is a transient object that exists while a query is
- /// being performed.
- ///
- /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids
- /// reallocation of the densemap on every query.
- class LVIQuery {
- typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy;
- typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy;
-
- /// This is the current value being queried for.
- Value *Val;
-
- /// This is a pointer to the owning cache, for recursive queries.
- LazyValueInfoCache &Parent;
-
- /// This is all of the cached information about this value.
- ValueCacheEntryTy &Cache;
-
- /// This tracks, for each block, what values are overdefined.
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &OverDefinedCache;
-
- /// NewBlocks - This is a mapping of the new BasicBlocks which have been
- /// added to cache but that are not in sorted order.
- DenseSet<BasicBlock*> NewBlockInfo;
-
- public:
-
- LVIQuery(Value *V, LazyValueInfoCache &P,
- ValueCacheEntryTy &VC,
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &ODC)
- : Val(V), Parent(P), Cache(VC), OverDefinedCache(ODC) {
- }
-
- ~LVIQuery() {
- // When the query is done, insert the newly discovered facts into the
- // cache in sorted order.
- if (NewBlockInfo.empty()) return;
-
- for (DenseSet<BasicBlock*>::iterator I = NewBlockInfo.begin(),
- E = NewBlockInfo.end(); I != E; ++I) {
- if (Cache[*I].isOverdefined())
- OverDefinedCache.insert(std::make_pair(*I, Val));
- }
- }
-
- LVILatticeVal getBlockValue(BasicBlock *BB);
- LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB);
-
- private:
- LVILatticeVal getCachedEntryForBlock(BasicBlock *BB);
- };
-} // end anonymous namespace
-
-void LazyValueInfoCache::LVIValueHandle::deleted() {
- for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
+void LVIValueHandle::deleted() {
+ typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
+
+ SmallVector<OverDefinedPairTy, 4> ToErase;
+ for (DenseSet<OverDefinedPairTy>::iterator
I = Parent->OverDefinedCache.begin(),
E = Parent->OverDefinedCache.end();
- I != E; ) {
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I;
- ++I;
- if (tmp->second == getValPtr())
- Parent->OverDefinedCache.erase(tmp);
+ I != E; ++I) {
+ if (I->second == getValPtr())
+ ToErase.push_back(*I);
}
+ for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
+ E = ToErase.end(); I != E; ++I)
+ Parent->OverDefinedCache.erase(*I);
+
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
Parent->ValueCache.erase(*this);
}
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
- for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
- I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ) {
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I;
- ++I;
- if (tmp->first == BB)
- OverDefinedCache.erase(tmp);
+ SmallVector<OverDefinedPairTy, 4> ToErase;
+ for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
+ E = OverDefinedCache.end(); I != E; ++I) {
+ if (I->first == BB)
+ ToErase.push_back(*I);
}
+
+ for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
+ E = ToErase.end(); I != E; ++I)
+ OverDefinedCache.erase(*I);
- for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
+ for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator
I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
I->second.erase(BB);
}
-/// getCachedEntryForBlock - See if we already have a value for this block. If
-/// so, return it, otherwise create a new entry in the Cache map to use.
-LVILatticeVal LVIQuery::getCachedEntryForBlock(BasicBlock *BB) {
- NewBlockInfo.insert(BB);
- return Cache[BB];
+void LazyValueInfoCache::solve() {
+ while (!BlockValueStack.empty()) {
+ std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
+ if (solveBlockValue(e.second, e.first))
+ BlockValueStack.pop();
+ }
+}
+
+bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
+ // If already a constant, there is nothing to compute.
+ if (isa<Constant>(Val))
+ return true;
+
+ LVIValueHandle ValHandle(Val, this);
+ if (!ValueCache.count(ValHandle)) return false;
+ return ValueCache[ValHandle].count(BB);
+}
+
+LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
+ // If already a constant, there is nothing to compute.
+ if (Constant *VC = dyn_cast<Constant>(Val))
+ return LVILatticeVal::get(VC);
+
+ return lookup(Val)[BB];
}
-LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
- // See if we already have a value for this block.
- LVILatticeVal BBLV = getCachedEntryForBlock(BB);
+bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
+ if (isa<Constant>(Val))
+ return true;
+
+ ValueCacheEntryTy &Cache = lookup(Val);
+ LVILatticeVal &BBLV = Cache[BB];
+ // OverDefinedCacheUpdater is a helper object that will update
+ // the OverDefinedCache for us when this method exits. Make sure to
+ // call markResult on it as we exist, passing a bool to indicate if the
+ // cache needs updating, i.e. if we have solve a new value or not.
+ OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
+
// If we've already computed this block's value, return it.
if (!BBLV.isUndefined()) {
DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
- return BBLV;
+
+ // Since we're reusing a cached value here, we don't need to update the
+ // OverDefinedCahce. The cache will have been properly updated
+ // whenever the cached value was inserted.
+ ODCacheUpdater.markResult(false);
+ return true;
}
// Otherwise, this is the first time we're seeing this block. Reset the
// lattice value to overdefined, so that cycles will terminate and be
// conservatively correct.
BBLV.markOverdefined();
- Cache[BB] = BBLV;
Instruction *BBI = dyn_cast<Instruction>(Val);
if (BBI == 0 || BBI->getParent() != BB) {
- LVILatticeVal Result; // Start Undefined.
-
- // If this is a pointer, and there's a load from that pointer in this BB,
- // then we know that the pointer can't be NULL.
- bool NotNull = false;
- if (Val->getType()->isPointerTy()) {
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
- LoadInst *L = dyn_cast<LoadInst>(BI);
- if (L && L->getPointerAddressSpace() == 0 &&
- L->getPointerOperand()->getUnderlyingObject() ==
- Val->getUnderlyingObject()) {
- NotNull = true;
- break;
- }
- }
- }
-
- unsigned NumPreds = 0;
- // Loop over all of our predecessors, merging what we know from them into
- // result.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- Result.mergeIn(getEdgeValue(*PI, BB));
-
- // If we hit overdefined, exit early. The BlockVals entry is already set
- // to overdefined.
- if (Result.isOverdefined()) {
- DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined because of pred.\n");
- // If we previously determined that this is a pointer that can't be null
- // then return that rather than giving up entirely.
- if (NotNull) {
- const PointerType *PTy = cast<PointerType>(Val->getType());
- Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
- }
-
- return Result;
- }
- ++NumPreds;
- }
-
-
- // If this is the entry block, we must be asking about an argument. The
- // value is overdefined.
- if (NumPreds == 0 && BB == &BB->getParent()->front()) {
- assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
- Result.markOverdefined();
- return Result;
- }
-
- // Return the merged value, which is more precise than 'overdefined'.
- assert(!Result.isOverdefined());
- return Cache[BB] = Result;
+ return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
}
-
- // If this value is defined by an instruction in this block, we have to
- // process it here somehow or return overdefined.
+
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
- LVILatticeVal Result; // Start Undefined.
-
- // Loop over all of our predecessors, merging what we know from them into
- // result.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- Value* PhiVal = PN->getIncomingValueForBlock(*PI);
- Result.mergeIn(Parent.getValueOnEdge(PhiVal, *PI, BB));
-
- // If we hit overdefined, exit early. The BlockVals entry is already set
- // to overdefined.
- if (Result.isOverdefined()) {
- DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined because of pred.\n");
- return Result;
- }
- }
-
- // Return the merged value, which is more precise than 'overdefined'.
- assert(!Result.isOverdefined());
- return Cache[BB] = Result;
+ return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
}
- assert(Cache[BB].isOverdefined() && "Recursive query changed our cache?");
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
+ BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
+ return ODCacheUpdater.markResult(true);
+ }
// We can only analyze the definitions of certain classes of instructions
// (integral binops and casts at the moment), so bail if this isn't one.
@@ -536,10 +557,10 @@ LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
!BBI->getType()->isIntegerTy()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
- Result.markOverdefined();
- return Result;
+ BBLV.markOverdefined();
+ return ODCacheUpdater.markResult(true);
}
-
+
// FIXME: We're currently limited to binops with a constant RHS. This should
// be improved.
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
@@ -547,34 +568,177 @@ LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
- Result.markOverdefined();
- return Result;
- }
+ BBLV.markOverdefined();
+ return ODCacheUpdater.markResult(true);
+ }
+
+ return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
+}
+
+static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I)) {
+ return L->getPointerAddressSpace() == 0 &&
+ GetUnderlyingObject(L->getPointerOperand()) ==
+ GetUnderlyingObject(Ptr);
+ }
+ if (StoreInst *S = dyn_cast<StoreInst>(I)) {
+ return S->getPointerAddressSpace() == 0 &&
+ GetUnderlyingObject(S->getPointerOperand()) ==
+ GetUnderlyingObject(Ptr);
+ }
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
+ if (MI->isVolatile()) return false;
+ if (MI->getAddressSpace() != 0) return false;
+
+ // FIXME: check whether it has a valuerange that excludes zero?
+ ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
+ if (!Len || Len->isZero()) return false;
+
+ if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
+ return true;
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
+ return MTI->getRawSource() == Ptr || MTI->getSource() == Ptr;
+ }
+ return false;
+}
+
+bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
+ Value *Val, BasicBlock *BB) {
+ LVILatticeVal Result; // Start Undefined.
+
+ // If this is a pointer, and there's a load from that pointer in this BB,
+ // then we know that the pointer can't be NULL.
+ bool NotNull = false;
+ if (Val->getType()->isPointerTy()) {
+ if (isa<AllocaInst>(Val)) {
+ NotNull = true;
+ } else {
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
+ if (InstructionDereferencesPointer(BI, Val)) {
+ NotNull = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // If this is the entry block, we must be asking about an argument. The
+ // value is overdefined.
+ if (BB == &BB->getParent()->getEntryBlock()) {
+ assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
+ if (NotNull) {
+ const PointerType *PTy = cast<PointerType>(Val->getType());
+ Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
+ } else {
+ Result.markOverdefined();
+ }
+ BBLV = Result;
+ return true;
+ }
+
+ // Loop over all of our predecessors, merging what we know from them into
+ // result.
+ bool EdgesMissing = false;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ LVILatticeVal EdgeResult;
+ EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
+ if (EdgesMissing)
+ continue;
+ Result.mergeIn(EdgeResult);
+
+ // If we hit overdefined, exit early. The BlockVals entry is already set
+ // to overdefined.
+ if (Result.isOverdefined()) {
+ DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined because of pred.\n");
+ // If we previously determined that this is a pointer that can't be null
+ // then return that rather than giving up entirely.
+ if (NotNull) {
+ const PointerType *PTy = cast<PointerType>(Val->getType());
+ Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
+ }
+
+ BBLV = Result;
+ return true;
+ }
+ }
+ if (EdgesMissing)
+ return false;
+
+ // Return the merged value, which is more precise than 'overdefined'.
+ assert(!Result.isOverdefined());
+ BBLV = Result;
+ return true;
+}
+
+bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
+ PHINode *PN, BasicBlock *BB) {
+ LVILatticeVal Result; // Start Undefined.
+
+ // Loop over all of our predecessors, merging what we know from them into
+ // result.
+ bool EdgesMissing = false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PhiBB = PN->getIncomingBlock(i);
+ Value *PhiVal = PN->getIncomingValue(i);
+ LVILatticeVal EdgeResult;
+ EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
+ if (EdgesMissing)
+ continue;
+
+ Result.mergeIn(EdgeResult);
+
+ // If we hit overdefined, exit early. The BlockVals entry is already set
+ // to overdefined.
+ if (Result.isOverdefined()) {
+ DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined because of pred.\n");
+
+ BBLV = Result;
+ return true;
+ }
+ }
+ if (EdgesMissing)
+ return false;
+
+ // Return the merged value, which is more precise than 'overdefined'.
+ assert(!Result.isOverdefined() && "Possible PHI in entry block?");
+ BBLV = Result;
+ return true;
+}
+
+bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
+ Instruction *BBI,
+ BasicBlock *BB) {
// Figure out the range of the LHS. If that fails, bail.
- LVILatticeVal LHSVal = Parent.getValueInBlock(BBI->getOperand(0), BB);
+ if (!hasBlockValue(BBI->getOperand(0), BB)) {
+ BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
+ return false;
+ }
+
+ LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
if (!LHSVal.isConstantRange()) {
- Result.markOverdefined();
- return Result;
+ BBLV.markOverdefined();
+ return true;
}
- ConstantInt *RHS = 0;
ConstantRange LHSRange = LHSVal.getConstantRange();
ConstantRange RHSRange(1);
const IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
if (isa<BinaryOperator>(BBI)) {
- RHS = dyn_cast<ConstantInt>(BBI->getOperand(1));
- if (!RHS) {
- Result.markOverdefined();
- return Result;
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
+ RHSRange = ConstantRange(RHS->getValue());
+ } else {
+ BBLV.markOverdefined();
+ return true;
}
-
- RHSRange = ConstantRange(RHS->getValue(), RHS->getValue()+1);
}
-
+
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
+ LVILatticeVal Result;
switch (BBI->getOpcode()) {
case Instruction::Add:
Result.markConstantRange(LHSRange.add(RHSRange));
@@ -606,6 +770,12 @@ LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
case Instruction::BitCast:
Result.markConstantRange(LHSRange);
break;
+ case Instruction::And:
+ Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
+ break;
+ case Instruction::Or:
+ Result.markConstantRange(LHSRange.binaryOr(RHSRange));
+ break;
// Unhandled instructions are overdefined.
default:
@@ -615,12 +785,19 @@ LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
break;
}
- return Cache[BB] = Result;
+ BBLV = Result;
+ return true;
}
-
/// getEdgeValue - This method attempts to infer more complex
-LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
+bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
+ BasicBlock *BBTo, LVILatticeVal &Result) {
+ // If already a constant, there is nothing to compute.
+ if (Constant *VC = dyn_cast<Constant>(Val)) {
+ Result = LVILatticeVal::get(VC);
+ return true;
+ }
+
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
@@ -634,9 +811,11 @@ LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
// If V is the condition of the branch itself, then we know exactly what
// it is.
- if (BI->getCondition() == Val)
- return LVILatticeVal::get(ConstantInt::get(
+ if (BI->getCondition() == Val) {
+ Result = LVILatticeVal::get(ConstantInt::get(
Type::getInt1Ty(Val->getContext()), isTrueDest));
+ return true;
+ }
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
@@ -647,30 +826,40 @@ LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
// We know that V has the RHS constant if this is a true SETEQ or
// false SETNE.
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
- return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
- return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
+ Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
+ else
+ Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
+ return true;
}
-
+
if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
// Calculate the range of values that would satisfy the comparison.
ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
ConstantRange TrueValues =
ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
-
+
// If we're interested in the false dest, invert the condition.
if (!isTrueDest) TrueValues = TrueValues.inverse();
// Figure out the possible values of the query BEFORE this branch.
- LVILatticeVal InBlock = getBlockValue(BBFrom);
- if (!InBlock.isConstantRange())
- return LVILatticeVal::getRange(TrueValues);
-
+ if (!hasBlockValue(Val, BBFrom)) {
+ BlockValueStack.push(std::make_pair(BBFrom, Val));
+ return false;
+ }
+
+ LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
+ if (!InBlock.isConstantRange()) {
+ Result = LVILatticeVal::getRange(TrueValues);
+ return true;
+ }
+
// Find all potential values that satisfy both the input and output
// conditions.
ConstantRange PossibleValues =
TrueValues.intersectWith(InBlock.getConstantRange());
-
- return LVILatticeVal::getRange(PossibleValues);
+
+ Result = LVILatticeVal::getRange(PossibleValues);
+ return true;
}
}
}
@@ -682,9 +871,8 @@ LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
if (SI->getCondition() == Val) {
// We don't know anything in the default case.
if (SI->getDefaultDest() == BBTo) {
- LVILatticeVal Result;
Result.markOverdefined();
- return Result;
+ return true;
}
// We only know something if there is exactly one value that goes from
@@ -697,51 +885,48 @@ LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
EdgeVal = SI->getCaseValue(i);
}
assert(EdgeVal && "Missing successor?");
- if (NumEdges == 1)
- return LVILatticeVal::get(EdgeVal);
+ if (NumEdges == 1) {
+ Result = LVILatticeVal::get(EdgeVal);
+ return true;
+ }
}
}
// Otherwise see if the value is known in the block.
- return getBlockValue(BBFrom);
+ if (hasBlockValue(Val, BBFrom)) {
+ Result = getBlockValue(Val, BBFrom);
+ return true;
+ }
+ BlockValueStack.push(std::make_pair(BBFrom, Val));
+ return false;
}
-
-//===----------------------------------------------------------------------===//
-// LazyValueInfoCache Impl
-//===----------------------------------------------------------------------===//
-
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
- // If already a constant, there is nothing to compute.
- if (Constant *VC = dyn_cast<Constant>(V))
- return LVILatticeVal::get(VC);
-
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
<< BB->getName() << "'\n");
- LVILatticeVal Result = LVIQuery(V, *this,
- ValueCache[LVIValueHandle(V, this)],
- OverDefinedCache).getBlockValue(BB);
-
+ BlockValueStack.push(std::make_pair(BB, V));
+ solve();
+ LVILatticeVal Result = getBlockValue(V, BB);
+
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
- // If already a constant, there is nothing to compute.
- if (Constant *VC = dyn_cast<Constant>(V))
- return LVILatticeVal::get(VC);
-
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
- LVILatticeVal Result =
- LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)],
- OverDefinedCache).getEdgeValue(FromBB, ToBB);
-
+ LVILatticeVal Result;
+ if (!getEdgeValue(V, FromBB, ToBB, Result)) {
+ solve();
+ bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
+ (void)WasFastQuery;
+ assert(WasFastQuery && "More work to do after problem solved?");
+ }
+
DEBUG(dbgs() << " Result = " << Result << "\n");
-
return Result;
}
@@ -761,8 +946,8 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
worklist.push_back(OldSucc);
DenseSet<Value*> ClearSet;
- for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
- I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) {
+ for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
+ E = OverDefinedCache.end(); I != E; ++I) {
if (I->first == OldSucc)
ClearSet.insert(I->second);
}
@@ -779,17 +964,17 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
if (ToUpdate == NewSucc) continue;
bool changed = false;
- for (DenseSet<Value*>::iterator I = ClearSet.begin(),E = ClearSet.end();
+ for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
I != E; ++I) {
// If a value was marked overdefined in OldSucc, and is here too...
- std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator OI =
+ DenseSet<OverDefinedPairTy>::iterator OI =
OverDefinedCache.find(std::make_pair(ToUpdate, *I));
if (OI == OverDefinedCache.end()) continue;
// Remove it from the caches.
ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
-
+
assert(CI != Entry.end() && "Couldn't find entry to update?");
Entry.erase(CI);
OverDefinedCache.erase(OI);
@@ -798,7 +983,7 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
// blocks successors too.
changed = true;
}
-
+
if (!changed) continue;
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
@@ -838,7 +1023,7 @@ Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
if (Result.isConstant())
return Result.getConstant();
- else if (Result.isConstantRange()) {
+ if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
@@ -854,7 +1039,7 @@ Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
if (Result.isConstant())
return Result.getConstant();
- else if (Result.isConstantRange()) {
+ if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
@@ -874,7 +1059,7 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
Constant *Res = 0;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
- if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
+ if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
return ResCI->isZero() ? False : True;
return Unknown;
}
@@ -899,13 +1084,12 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
}
// Handle more complex predicates.
- ConstantRange RHS(CI->getValue(), CI->getValue()+1);
- ConstantRange TrueValues = ConstantRange::makeICmpRegion(Pred, RHS);
- if (CR.intersectWith(TrueValues).isEmptySet())
- return False;
- else if (TrueValues.contains(CR))
+ ConstantRange TrueValues =
+ ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
+ if (TrueValues.contains(CR))
return True;
-
+ if (TrueValues.inverse().contains(CR))
+ return False;
return Unknown;
}
@@ -932,7 +1116,7 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
- BasicBlock* NewSucc) {
+ BasicBlock *NewSucc) {
if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
}
OpenPOWER on IntegriCloud