diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LazyValueInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/LazyValueInfo.cpp | 1128 |
1 files changed, 1128 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp new file mode 100644 index 0000000..f80595c --- /dev/null +++ b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp @@ -0,0 +1,1128 @@ +//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interface for lazy computation of value constraint +// information. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "lazy-value-info" +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include <map> +#include <stack> +using namespace llvm; + +char LazyValueInfo::ID = 0; +INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", + "Lazy Value Information Analysis", false, true) + +namespace llvm { + FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } +} + + +//===----------------------------------------------------------------------===// +// LVILatticeVal +//===----------------------------------------------------------------------===// + +/// LVILatticeVal - This is the information tracked by LazyValueInfo for each +/// value. +/// +/// FIXME: This is basically just for bringup, this can be made a lot more rich +/// in the future. +/// +namespace { +class LVILatticeVal { + enum LatticeValueTy { + /// undefined - This Value has no known value yet. + undefined, + + /// constant - This Value has a specific constant value. + constant, + /// notconstant - This Value is known to not have the specified value. + notconstant, + + /// constantrange - The Value falls within this range. + constantrange, + + /// overdefined - This value is not known to be constant, and we know that + /// it has a value. + overdefined + }; + + /// Val: This stores the current lattice value along with the Constant* for + /// the constant if this is a 'constant' or 'notconstant' value. + LatticeValueTy Tag; + Constant *Val; + ConstantRange Range; + +public: + LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} + + static LVILatticeVal get(Constant *C) { + LVILatticeVal Res; + if (!isa<UndefValue>(C)) + Res.markConstant(C); + return Res; + } + static LVILatticeVal getNot(Constant *C) { + LVILatticeVal Res; + if (!isa<UndefValue>(C)) + Res.markNotConstant(C); + return Res; + } + static LVILatticeVal getRange(ConstantRange CR) { + LVILatticeVal Res; + Res.markConstantRange(CR); + return Res; + } + + bool isUndefined() const { return Tag == undefined; } + bool isConstant() const { return Tag == constant; } + bool isNotConstant() const { return Tag == notconstant; } + bool isConstantRange() const { return Tag == constantrange; } + bool isOverdefined() const { return Tag == overdefined; } + + Constant *getConstant() const { + assert(isConstant() && "Cannot get the constant of a non-constant!"); + return Val; + } + + Constant *getNotConstant() const { + assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); + return Val; + } + + ConstantRange getConstantRange() const { + assert(isConstantRange() && + "Cannot get the constant-range of a non-constant-range!"); + return Range; + } + + /// markOverdefined - Return true if this is a change in status. + bool markOverdefined() { + if (isOverdefined()) + return false; + Tag = overdefined; + return true; + } + + /// markConstant - Return true if this is a change in status. + bool markConstant(Constant *V) { + assert(V && "Marking constant with NULL"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return markConstantRange(ConstantRange(CI->getValue())); + if (isa<UndefValue>(V)) + return false; + + assert((!isConstant() || getConstant() == V) && + "Marking constant with different value"); + assert(isUndefined()); + Tag = constant; + Val = V; + return true; + } + + /// markNotConstant - Return true if this is a change in status. + bool markNotConstant(Constant *V) { + assert(V && "Marking constant with NULL"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); + if (isa<UndefValue>(V)) + return false; + + assert((!isConstant() || getConstant() != V) && + "Marking constant !constant with same value"); + assert((!isNotConstant() || getNotConstant() == V) && + "Marking !constant with different value"); + assert(isUndefined() || isConstant()); + Tag = notconstant; + Val = V; + return true; + } + + /// markConstantRange - Return true if this is a change in status. + bool markConstantRange(const ConstantRange NewR) { + if (isConstantRange()) { + if (NewR.isEmptySet()) + return markOverdefined(); + + bool changed = Range == NewR; + Range = NewR; + return changed; + } + + assert(isUndefined()); + if (NewR.isEmptySet()) + return markOverdefined(); + + Tag = constantrange; + Range = NewR; + return true; + } + + /// mergeIn - Merge the specified lattice value into this one, updating this + /// one and returning true if anything changed. + bool mergeIn(const LVILatticeVal &RHS) { + if (RHS.isUndefined() || isOverdefined()) return false; + if (RHS.isOverdefined()) return markOverdefined(); + + if (isUndefined()) { + Tag = RHS.Tag; + Val = RHS.Val; + Range = RHS.Range; + return true; + } + + if (isConstant()) { + if (RHS.isConstant()) { + if (Val == RHS.Val) + return false; + return markOverdefined(); + } + + if (RHS.isNotConstant()) { + if (Val == RHS.Val) + return markOverdefined(); + + // Unless we can prove that the two Constants are different, we must + // move to overdefined. + // FIXME: use TargetData for smarter constant folding. + if (ConstantInt *Res = dyn_cast<ConstantInt>( + ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, + getConstant(), + RHS.getNotConstant()))) + if (Res->isOne()) + return markNotConstant(RHS.getNotConstant()); + + return markOverdefined(); + } + + // RHS is a ConstantRange, LHS is a non-integer Constant. + + // FIXME: consider the case where RHS is a range [1, 0) and LHS is + // a function. The correct result is to pick up RHS. + + return markOverdefined(); + } + + if (isNotConstant()) { + if (RHS.isConstant()) { + if (Val == RHS.Val) + return markOverdefined(); + + // Unless we can prove that the two Constants are different, we must + // move to overdefined. + // FIXME: use TargetData for smarter constant folding. + if (ConstantInt *Res = dyn_cast<ConstantInt>( + ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, + getNotConstant(), + RHS.getConstant()))) + if (Res->isOne()) + return false; + + return markOverdefined(); + } + + if (RHS.isNotConstant()) { + if (Val == RHS.Val) + return false; + return markOverdefined(); + } + + return markOverdefined(); + } + + assert(isConstantRange() && "New LVILattice type?"); + if (!RHS.isConstantRange()) + return markOverdefined(); + + ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); + if (NewR.isFullSet()) + return markOverdefined(); + return markConstantRange(NewR); + } +}; + +} // end anonymous namespace. + +namespace llvm { +raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) + LLVM_ATTRIBUTE_USED; +raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { + if (Val.isUndefined()) + return OS << "undefined"; + if (Val.isOverdefined()) + return OS << "overdefined"; + + if (Val.isNotConstant()) + return OS << "notconstant<" << *Val.getNotConstant() << '>'; + else if (Val.isConstantRange()) + return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " + << Val.getConstantRange().getUpper() << '>'; + return OS << "constant<" << *Val.getConstant() << '>'; +} +} + +//===----------------------------------------------------------------------===// +// LazyValueInfoCache Decl +//===----------------------------------------------------------------------===// + +namespace { + /// LVIValueHandle - A callback value handle update the cache when + /// values are erased. + class LazyValueInfoCache; + struct LVIValueHandle : public CallbackVH { + LazyValueInfoCache *Parent; + + LVIValueHandle(Value *V, LazyValueInfoCache *P) + : CallbackVH(V), Parent(P) { } + + void deleted(); + void allUsesReplacedWith(Value *V) { + deleted(); + } + }; +} + +namespace llvm { + template<> + struct DenseMapInfo<LVIValueHandle> { + typedef DenseMapInfo<Value*> PointerInfo; + static inline LVIValueHandle getEmptyKey() { + return LVIValueHandle(PointerInfo::getEmptyKey(), + static_cast<LazyValueInfoCache*>(0)); + } + static inline LVIValueHandle getTombstoneKey() { + return LVIValueHandle(PointerInfo::getTombstoneKey(), + static_cast<LazyValueInfoCache*>(0)); + } + static unsigned getHashValue(const LVIValueHandle &Val) { + return PointerInfo::getHashValue(Val); + } + static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) { + return LHS == RHS; + } + }; + + template<> + struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > { + typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy; + typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo; + typedef DenseMapInfo<Value*> BPointerInfo; + static inline PairTy getEmptyKey() { + return std::make_pair(APointerInfo::getEmptyKey(), + BPointerInfo::getEmptyKey()); + } + static inline PairTy getTombstoneKey() { + return std::make_pair(APointerInfo::getTombstoneKey(), + BPointerInfo::getTombstoneKey()); + } + static unsigned getHashValue( const PairTy &Val) { + return APointerInfo::getHashValue(Val.first) ^ + BPointerInfo::getHashValue(Val.second); + } + static bool isEqual(const PairTy &LHS, const PairTy &RHS) { + return APointerInfo::isEqual(LHS.first, RHS.first) && + BPointerInfo::isEqual(LHS.second, RHS.second); + } + }; +} + +namespace { + /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which + /// maintains information about queries across the clients' queries. + class LazyValueInfoCache { + /// ValueCacheEntryTy - This is all of the cached block information for + /// exactly one Value*. The entries are sorted by the BasicBlock* of the + /// entries, allowing us to do a lookup with a binary search. + typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy; + + /// ValueCache - This is all of the cached information for all values, + /// mapped from Value* to key information. + DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache; + + /// OverDefinedCache - This tracks, on a per-block basis, the set of + /// values that are over-defined at the end of that block. This is required + /// for cache updating. + typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; + DenseSet<OverDefinedPairTy> OverDefinedCache; + + /// BlockValueStack - This stack holds the state of the value solver + /// during a query. It basically emulates the callstack of the naive + /// recursive value lookup process. + std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; + + friend struct LVIValueHandle; + + /// OverDefinedCacheUpdater - A helper object that ensures that the + /// OverDefinedCache is updated whenever solveBlockValue returns. + struct OverDefinedCacheUpdater { + LazyValueInfoCache *Parent; + Value *Val; + BasicBlock *BB; + LVILatticeVal &BBLV; + + OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV, + LazyValueInfoCache *P) + : Parent(P), Val(V), BB(B), BBLV(LV) { } + + bool markResult(bool changed) { + if (changed && BBLV.isOverdefined()) + Parent->OverDefinedCache.insert(std::make_pair(BB, Val)); + return changed; + } + }; + + + + LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); + bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, + LVILatticeVal &Result); + bool hasBlockValue(Value *Val, BasicBlock *BB); + + // These methods process one work item and may add more. A false value + // returned means that the work item was not completely processed and must + // be revisited after going through the new items. + bool solveBlockValue(Value *Val, BasicBlock *BB); + bool solveBlockValueNonLocal(LVILatticeVal &BBLV, + Value *Val, BasicBlock *BB); + bool solveBlockValuePHINode(LVILatticeVal &BBLV, + PHINode *PN, BasicBlock *BB); + bool solveBlockValueConstantRange(LVILatticeVal &BBLV, + Instruction *BBI, BasicBlock *BB); + + void solve(); + + ValueCacheEntryTy &lookup(Value *V) { + return ValueCache[LVIValueHandle(V, this)]; + } + + public: + /// getValueInBlock - This is the query interface to determine the lattice + /// value for the specified Value* at the end of the specified block. + LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); + + /// getValueOnEdge - This is the query interface to determine the lattice + /// value for the specified Value* that is true on the specified edge. + LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); + + /// threadEdge - This is the update interface to inform the cache that an + /// edge from PredBB to OldSucc has been threaded to be from PredBB to + /// NewSucc. + void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); + + /// eraseBlock - This is part of the update interface to inform the cache + /// that a block has been deleted. + void eraseBlock(BasicBlock *BB); + + /// clear - Empty the cache. + void clear() { + ValueCache.clear(); + OverDefinedCache.clear(); + } + }; +} // end anonymous namespace + +void LVIValueHandle::deleted() { + typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; + + SmallVector<OverDefinedPairTy, 4> ToErase; + for (DenseSet<OverDefinedPairTy>::iterator + I = Parent->OverDefinedCache.begin(), + E = Parent->OverDefinedCache.end(); + I != E; ++I) { + if (I->second == getValPtr()) + ToErase.push_back(*I); + } + + for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), + E = ToErase.end(); I != E; ++I) + Parent->OverDefinedCache.erase(*I); + + // This erasure deallocates *this, so it MUST happen after we're done + // using any and all members of *this. + Parent->ValueCache.erase(*this); +} + +void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { + SmallVector<OverDefinedPairTy, 4> ToErase; + for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), + E = OverDefinedCache.end(); I != E; ++I) { + if (I->first == BB) + ToErase.push_back(*I); + } + + for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), + E = ToErase.end(); I != E; ++I) + OverDefinedCache.erase(*I); + + for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator + I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) + I->second.erase(BB); +} + +void LazyValueInfoCache::solve() { + while (!BlockValueStack.empty()) { + std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); + if (solveBlockValue(e.second, e.first)) + BlockValueStack.pop(); + } +} + +bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { + // If already a constant, there is nothing to compute. + if (isa<Constant>(Val)) + return true; + + LVIValueHandle ValHandle(Val, this); + if (!ValueCache.count(ValHandle)) return false; + return ValueCache[ValHandle].count(BB); +} + +LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { + // If already a constant, there is nothing to compute. + if (Constant *VC = dyn_cast<Constant>(Val)) + return LVILatticeVal::get(VC); + + return lookup(Val)[BB]; +} + +bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { + if (isa<Constant>(Val)) + return true; + + ValueCacheEntryTy &Cache = lookup(Val); + LVILatticeVal &BBLV = Cache[BB]; + + // OverDefinedCacheUpdater is a helper object that will update + // the OverDefinedCache for us when this method exits. Make sure to + // call markResult on it as we exist, passing a bool to indicate if the + // cache needs updating, i.e. if we have solve a new value or not. + OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this); + + // If we've already computed this block's value, return it. + if (!BBLV.isUndefined()) { + DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); + + // Since we're reusing a cached value here, we don't need to update the + // OverDefinedCahce. The cache will have been properly updated + // whenever the cached value was inserted. + ODCacheUpdater.markResult(false); + return true; + } + + // Otherwise, this is the first time we're seeing this block. Reset the + // lattice value to overdefined, so that cycles will terminate and be + // conservatively correct. + BBLV.markOverdefined(); + + Instruction *BBI = dyn_cast<Instruction>(Val); + if (BBI == 0 || BBI->getParent() != BB) { + return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB)); + } + + if (PHINode *PN = dyn_cast<PHINode>(BBI)) { + return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB)); + } + + if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) { + BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType())); + return ODCacheUpdater.markResult(true); + } + + // We can only analyze the definitions of certain classes of instructions + // (integral binops and casts at the moment), so bail if this isn't one. + LVILatticeVal Result; + if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || + !BBI->getType()->isIntegerTy()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + BBLV.markOverdefined(); + return ODCacheUpdater.markResult(true); + } + + // FIXME: We're currently limited to binops with a constant RHS. This should + // be improved. + BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); + if (BO && !isa<ConstantInt>(BO->getOperand(1))) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + + BBLV.markOverdefined(); + return ODCacheUpdater.markResult(true); + } + + return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB)); +} + +static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { + if (LoadInst *L = dyn_cast<LoadInst>(I)) { + return L->getPointerAddressSpace() == 0 && + GetUnderlyingObject(L->getPointerOperand()) == + GetUnderlyingObject(Ptr); + } + if (StoreInst *S = dyn_cast<StoreInst>(I)) { + return S->getPointerAddressSpace() == 0 && + GetUnderlyingObject(S->getPointerOperand()) == + GetUnderlyingObject(Ptr); + } + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { + if (MI->isVolatile()) return false; + + // FIXME: check whether it has a valuerange that excludes zero? + ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); + if (!Len || Len->isZero()) return false; + + if (MI->getDestAddressSpace() == 0) + if (MI->getRawDest() == Ptr || MI->getDest() == Ptr) + return true; + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) + if (MTI->getSourceAddressSpace() == 0) + if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr) + return true; + } + return false; +} + +bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, + Value *Val, BasicBlock *BB) { + LVILatticeVal Result; // Start Undefined. + + // If this is a pointer, and there's a load from that pointer in this BB, + // then we know that the pointer can't be NULL. + bool NotNull = false; + if (Val->getType()->isPointerTy()) { + if (isa<AllocaInst>(Val)) { + NotNull = true; + } else { + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){ + if (InstructionDereferencesPointer(BI, Val)) { + NotNull = true; + break; + } + } + } + } + + // If this is the entry block, we must be asking about an argument. The + // value is overdefined. + if (BB == &BB->getParent()->getEntryBlock()) { + assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); + if (NotNull) { + PointerType *PTy = cast<PointerType>(Val->getType()); + Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); + } else { + Result.markOverdefined(); + } + BBLV = Result; + return true; + } + + // Loop over all of our predecessors, merging what we know from them into + // result. + bool EdgesMissing = false; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + LVILatticeVal EdgeResult; + EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); + if (EdgesMissing) + continue; + + Result.mergeIn(EdgeResult); + + // If we hit overdefined, exit early. The BlockVals entry is already set + // to overdefined. + if (Result.isOverdefined()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because of pred.\n"); + // If we previously determined that this is a pointer that can't be null + // then return that rather than giving up entirely. + if (NotNull) { + PointerType *PTy = cast<PointerType>(Val->getType()); + Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); + } + + BBLV = Result; + return true; + } + } + if (EdgesMissing) + return false; + + // Return the merged value, which is more precise than 'overdefined'. + assert(!Result.isOverdefined()); + BBLV = Result; + return true; +} + +bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, + PHINode *PN, BasicBlock *BB) { + LVILatticeVal Result; // Start Undefined. + + // Loop over all of our predecessors, merging what we know from them into + // result. + bool EdgesMissing = false; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *PhiBB = PN->getIncomingBlock(i); + Value *PhiVal = PN->getIncomingValue(i); + LVILatticeVal EdgeResult; + EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult); + if (EdgesMissing) + continue; + + Result.mergeIn(EdgeResult); + + // If we hit overdefined, exit early. The BlockVals entry is already set + // to overdefined. + if (Result.isOverdefined()) { + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because of pred.\n"); + + BBLV = Result; + return true; + } + } + if (EdgesMissing) + return false; + + // Return the merged value, which is more precise than 'overdefined'. + assert(!Result.isOverdefined() && "Possible PHI in entry block?"); + BBLV = Result; + return true; +} + +bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, + Instruction *BBI, + BasicBlock *BB) { + // Figure out the range of the LHS. If that fails, bail. + if (!hasBlockValue(BBI->getOperand(0), BB)) { + BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0))); + return false; + } + + LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); + if (!LHSVal.isConstantRange()) { + BBLV.markOverdefined(); + return true; + } + + ConstantRange LHSRange = LHSVal.getConstantRange(); + ConstantRange RHSRange(1); + IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); + if (isa<BinaryOperator>(BBI)) { + if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) { + RHSRange = ConstantRange(RHS->getValue()); + } else { + BBLV.markOverdefined(); + return true; + } + } + + // NOTE: We're currently limited by the set of operations that ConstantRange + // can evaluate symbolically. Enhancing that set will allows us to analyze + // more definitions. + LVILatticeVal Result; + switch (BBI->getOpcode()) { + case Instruction::Add: + Result.markConstantRange(LHSRange.add(RHSRange)); + break; + case Instruction::Sub: + Result.markConstantRange(LHSRange.sub(RHSRange)); + break; + case Instruction::Mul: + Result.markConstantRange(LHSRange.multiply(RHSRange)); + break; + case Instruction::UDiv: + Result.markConstantRange(LHSRange.udiv(RHSRange)); + break; + case Instruction::Shl: + Result.markConstantRange(LHSRange.shl(RHSRange)); + break; + case Instruction::LShr: + Result.markConstantRange(LHSRange.lshr(RHSRange)); + break; + case Instruction::Trunc: + Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); + break; + case Instruction::SExt: + Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); + break; + case Instruction::ZExt: + Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); + break; + case Instruction::BitCast: + Result.markConstantRange(LHSRange); + break; + case Instruction::And: + Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); + break; + case Instruction::Or: + Result.markConstantRange(LHSRange.binaryOr(RHSRange)); + break; + + // Unhandled instructions are overdefined. + default: + DEBUG(dbgs() << " compute BB '" << BB->getName() + << "' - overdefined because inst def found.\n"); + Result.markOverdefined(); + break; + } + + BBLV = Result; + return true; +} + +/// getEdgeValue - This method attempts to infer more complex +bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, + BasicBlock *BBTo, LVILatticeVal &Result) { + // If already a constant, there is nothing to compute. + if (Constant *VC = dyn_cast<Constant>(Val)) { + Result = LVILatticeVal::get(VC); + return true; + } + + // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we + // know that v != 0. + if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { + // If this is a conditional branch and only one successor goes to BBTo, then + // we maybe able to infer something from the condition. + if (BI->isConditional() && + BI->getSuccessor(0) != BI->getSuccessor(1)) { + bool isTrueDest = BI->getSuccessor(0) == BBTo; + assert(BI->getSuccessor(!isTrueDest) == BBTo && + "BBTo isn't a successor of BBFrom"); + + // If V is the condition of the branch itself, then we know exactly what + // it is. + if (BI->getCondition() == Val) { + Result = LVILatticeVal::get(ConstantInt::get( + Type::getInt1Ty(Val->getContext()), isTrueDest)); + return true; + } + + // If the condition of the branch is an equality comparison, we may be + // able to infer the value. + ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()); + if (ICI && ICI->getOperand(0) == Val && + isa<Constant>(ICI->getOperand(1))) { + if (ICI->isEquality()) { + // We know that V has the RHS constant if this is a true SETEQ or + // false SETNE. + if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) + Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); + else + Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); + return true; + } + + if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) { + // Calculate the range of values that would satisfy the comparison. + ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); + ConstantRange TrueValues = + ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); + + // If we're interested in the false dest, invert the condition. + if (!isTrueDest) TrueValues = TrueValues.inverse(); + + // Figure out the possible values of the query BEFORE this branch. + if (!hasBlockValue(Val, BBFrom)) { + BlockValueStack.push(std::make_pair(BBFrom, Val)); + return false; + } + + LVILatticeVal InBlock = getBlockValue(Val, BBFrom); + if (!InBlock.isConstantRange()) { + Result = LVILatticeVal::getRange(TrueValues); + return true; + } + + // Find all potential values that satisfy both the input and output + // conditions. + ConstantRange PossibleValues = + TrueValues.intersectWith(InBlock.getConstantRange()); + + Result = LVILatticeVal::getRange(PossibleValues); + return true; + } + } + } + } + + // If the edge was formed by a switch on the value, then we may know exactly + // what it is. + if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { + if (SI->getCondition() == Val) { + // We don't know anything in the default case. + if (SI->getDefaultDest() == BBTo) { + Result.markOverdefined(); + return true; + } + + // We only know something if there is exactly one value that goes from + // BBFrom to BBTo. + unsigned NumEdges = 0; + ConstantInt *EdgeVal = 0; + for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { + if (SI->getSuccessor(i) != BBTo) continue; + if (NumEdges++) break; + EdgeVal = SI->getCaseValue(i); + } + assert(EdgeVal && "Missing successor?"); + if (NumEdges == 1) { + Result = LVILatticeVal::get(EdgeVal); + return true; + } + } + } + + // Otherwise see if the value is known in the block. + if (hasBlockValue(Val, BBFrom)) { + Result = getBlockValue(Val, BBFrom); + return true; + } + BlockValueStack.push(std::make_pair(BBFrom, Val)); + return false; +} + +LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { + DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" + << BB->getName() << "'\n"); + + BlockValueStack.push(std::make_pair(BB, V)); + solve(); + LVILatticeVal Result = getBlockValue(V, BB); + + DEBUG(dbgs() << " Result = " << Result << "\n"); + return Result; +} + +LVILatticeVal LazyValueInfoCache:: +getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { + DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" + << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); + + LVILatticeVal Result; + if (!getEdgeValue(V, FromBB, ToBB, Result)) { + solve(); + bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result); + (void)WasFastQuery; + assert(WasFastQuery && "More work to do after problem solved?"); + } + + DEBUG(dbgs() << " Result = " << Result << "\n"); + return Result; +} + +void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, + BasicBlock *NewSucc) { + // When an edge in the graph has been threaded, values that we could not + // determine a value for before (i.e. were marked overdefined) may be possible + // to solve now. We do NOT try to proactively update these values. Instead, + // we clear their entries from the cache, and allow lazy updating to recompute + // them when needed. + + // The updating process is fairly simple: we need to dropped cached info + // for all values that were marked overdefined in OldSucc, and for those same + // values in any successor of OldSucc (except NewSucc) in which they were + // also marked overdefined. + std::vector<BasicBlock*> worklist; + worklist.push_back(OldSucc); + + DenseSet<Value*> ClearSet; + for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), + E = OverDefinedCache.end(); I != E; ++I) { + if (I->first == OldSucc) + ClearSet.insert(I->second); + } + + // Use a worklist to perform a depth-first search of OldSucc's successors. + // NOTE: We do not need a visited list since any blocks we have already + // visited will have had their overdefined markers cleared already, and we + // thus won't loop to their successors. + while (!worklist.empty()) { + BasicBlock *ToUpdate = worklist.back(); + worklist.pop_back(); + + // Skip blocks only accessible through NewSucc. + if (ToUpdate == NewSucc) continue; + + bool changed = false; + for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end(); + I != E; ++I) { + // If a value was marked overdefined in OldSucc, and is here too... + DenseSet<OverDefinedPairTy>::iterator OI = + OverDefinedCache.find(std::make_pair(ToUpdate, *I)); + if (OI == OverDefinedCache.end()) continue; + + // Remove it from the caches. + ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; + ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); + + assert(CI != Entry.end() && "Couldn't find entry to update?"); + Entry.erase(CI); + OverDefinedCache.erase(OI); + + // If we removed anything, then we potentially need to update + // blocks successors too. + changed = true; + } + + if (!changed) continue; + + worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); + } +} + +//===----------------------------------------------------------------------===// +// LazyValueInfo Impl +//===----------------------------------------------------------------------===// + +/// getCache - This lazily constructs the LazyValueInfoCache. +static LazyValueInfoCache &getCache(void *&PImpl) { + if (!PImpl) + PImpl = new LazyValueInfoCache(); + return *static_cast<LazyValueInfoCache*>(PImpl); +} + +bool LazyValueInfo::runOnFunction(Function &F) { + if (PImpl) + getCache(PImpl).clear(); + + TD = getAnalysisIfAvailable<TargetData>(); + // Fully lazy. + return false; +} + +void LazyValueInfo::releaseMemory() { + // If the cache was allocated, free it. + if (PImpl) { + delete &getCache(PImpl); + PImpl = 0; + } +} + +Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { + LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); + + if (Result.isConstant()) + return Result.getConstant(); + if (Result.isConstantRange()) { + ConstantRange CR = Result.getConstantRange(); + if (const APInt *SingleVal = CR.getSingleElement()) + return ConstantInt::get(V->getContext(), *SingleVal); + } + return 0; +} + +/// getConstantOnEdge - Determine whether the specified value is known to be a +/// constant on the specified edge. Return null if not. +Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, + BasicBlock *ToBB) { + LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); + + if (Result.isConstant()) + return Result.getConstant(); + if (Result.isConstantRange()) { + ConstantRange CR = Result.getConstantRange(); + if (const APInt *SingleVal = CR.getSingleElement()) + return ConstantInt::get(V->getContext(), *SingleVal); + } + return 0; +} + +/// getPredicateOnEdge - Determine whether the specified value comparison +/// with a constant is known to be true or false on the specified CFG edge. +/// Pred is a CmpInst predicate. +LazyValueInfo::Tristate +LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, + BasicBlock *FromBB, BasicBlock *ToBB) { + LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); + + // If we know the value is a constant, evaluate the conditional. + Constant *Res = 0; + if (Result.isConstant()) { + Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); + if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) + return ResCI->isZero() ? False : True; + return Unknown; + } + + if (Result.isConstantRange()) { + ConstantInt *CI = dyn_cast<ConstantInt>(C); + if (!CI) return Unknown; + + ConstantRange CR = Result.getConstantRange(); + if (Pred == ICmpInst::ICMP_EQ) { + if (!CR.contains(CI->getValue())) + return False; + + if (CR.isSingleElement() && CR.contains(CI->getValue())) + return True; + } else if (Pred == ICmpInst::ICMP_NE) { + if (!CR.contains(CI->getValue())) + return True; + + if (CR.isSingleElement() && CR.contains(CI->getValue())) + return False; + } + + // Handle more complex predicates. + ConstantRange TrueValues = + ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); + if (TrueValues.contains(CR)) + return True; + if (TrueValues.inverse().contains(CR)) + return False; + return Unknown; + } + + if (Result.isNotConstant()) { + // If this is an equality comparison, we can try to fold it knowing that + // "V != C1". + if (Pred == ICmpInst::ICMP_EQ) { + // !C1 == C -> false iff C1 == C. + Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, + Result.getNotConstant(), C, TD); + if (Res->isNullValue()) + return False; + } else if (Pred == ICmpInst::ICMP_NE) { + // !C1 != C -> true iff C1 == C. + Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, + Result.getNotConstant(), C, TD); + if (Res->isNullValue()) + return True; + } + return Unknown; + } + + return Unknown; +} + +void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, + BasicBlock *NewSucc) { + if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); +} + +void LazyValueInfo::eraseBlock(BasicBlock *BB) { + if (PImpl) getCache(PImpl).eraseBlock(BB); +} |