diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/InstructionSimplify.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/InstructionSimplify.cpp | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp new file mode 100644 index 0000000..dbefc2d --- /dev/null +++ b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp @@ -0,0 +1,466 @@ +//===- InstructionSimplify.cpp - Fold instruction operands ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements routines for folding instructions into simpler forms +// that do not require creating new instructions. For example, this does +// constant folding, and can handle identities like (X&0)->0. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Instructions.h" +#include "llvm/Support/PatternMatch.h" +using namespace llvm; +using namespace llvm::PatternMatch; + +/// SimplifyAddInst - Given operands for an Add, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, + const TargetData *TD) { + if (Constant *CLHS = dyn_cast<Constant>(Op0)) { + if (Constant *CRHS = dyn_cast<Constant>(Op1)) { + Constant *Ops[] = { CLHS, CRHS }; + return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), + Ops, 2, TD); + } + + // Canonicalize the constant to the RHS. + std::swap(Op0, Op1); + } + + if (Constant *Op1C = dyn_cast<Constant>(Op1)) { + // X + undef -> undef + if (isa<UndefValue>(Op1C)) + return Op1C; + + // X + 0 --> X + if (Op1C->isNullValue()) + return Op0; + } + + // FIXME: Could pull several more out of instcombine. + return 0; +} + +/// SimplifyAndInst - Given operands for an And, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) { + if (Constant *CLHS = dyn_cast<Constant>(Op0)) { + if (Constant *CRHS = dyn_cast<Constant>(Op1)) { + Constant *Ops[] = { CLHS, CRHS }; + return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), + Ops, 2, TD); + } + + // Canonicalize the constant to the RHS. + std::swap(Op0, Op1); + } + + // X & undef -> 0 + if (isa<UndefValue>(Op1)) + return Constant::getNullValue(Op0->getType()); + + // X & X = X + if (Op0 == Op1) + return Op0; + + // X & <0,0> = <0,0> + if (isa<ConstantAggregateZero>(Op1)) + return Op1; + + // X & <-1,-1> = X + if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) + if (CP->isAllOnesValue()) + return Op0; + + if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { + // X & 0 = 0 + if (Op1CI->isZero()) + return Op1CI; + // X & -1 = X + if (Op1CI->isAllOnesValue()) + return Op0; + } + + // A & ~A = ~A & A = 0 + Value *A, *B; + if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || + (match(Op1, m_Not(m_Value(A))) && A == Op0)) + return Constant::getNullValue(Op0->getType()); + + // (A | ?) & A = A + if (match(Op0, m_Or(m_Value(A), m_Value(B))) && + (A == Op1 || B == Op1)) + return Op1; + + // A & (A | ?) = A + if (match(Op1, m_Or(m_Value(A), m_Value(B))) && + (A == Op0 || B == Op0)) + return Op0; + + return 0; +} + +/// SimplifyOrInst - Given operands for an Or, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) { + if (Constant *CLHS = dyn_cast<Constant>(Op0)) { + if (Constant *CRHS = dyn_cast<Constant>(Op1)) { + Constant *Ops[] = { CLHS, CRHS }; + return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), + Ops, 2, TD); + } + + // Canonicalize the constant to the RHS. + std::swap(Op0, Op1); + } + + // X | undef -> -1 + if (isa<UndefValue>(Op1)) + return Constant::getAllOnesValue(Op0->getType()); + + // X | X = X + if (Op0 == Op1) + return Op0; + + // X | <0,0> = X + if (isa<ConstantAggregateZero>(Op1)) + return Op0; + + // X | <-1,-1> = <-1,-1> + if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) + if (CP->isAllOnesValue()) + return Op1; + + if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { + // X | 0 = X + if (Op1CI->isZero()) + return Op0; + // X | -1 = -1 + if (Op1CI->isAllOnesValue()) + return Op1CI; + } + + // A | ~A = ~A | A = -1 + Value *A, *B; + if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || + (match(Op1, m_Not(m_Value(A))) && A == Op0)) + return Constant::getAllOnesValue(Op0->getType()); + + // (A & ?) | A = A + if (match(Op0, m_And(m_Value(A), m_Value(B))) && + (A == Op1 || B == Op1)) + return Op1; + + // A | (A & ?) = A + if (match(Op1, m_And(m_Value(A), m_Value(B))) && + (A == Op0 || B == Op0)) + return Op0; + + return 0; +} + + +static const Type *GetCompareTy(Value *Op) { + return CmpInst::makeCmpResultType(Op->getType()); +} + + +/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, + const TargetData *TD) { + CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; + assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); + + if (Constant *CLHS = dyn_cast<Constant>(LHS)) { + if (Constant *CRHS = dyn_cast<Constant>(RHS)) + return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); + + // If we have a constant, make sure it is on the RHS. + std::swap(LHS, RHS); + Pred = CmpInst::getSwappedPredicate(Pred); + } + + // ITy - This is the return type of the compare we're considering. + const Type *ITy = GetCompareTy(LHS); + + // icmp X, X -> true/false + // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false + // because X could be 0. + if (LHS == RHS || isa<UndefValue>(RHS)) + return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); + + // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value + // addresses never equal each other! We already know that Op0 != Op1. + if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || + isa<ConstantPointerNull>(LHS)) && + (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || + isa<ConstantPointerNull>(RHS))) + return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); + + // See if we are doing a comparison with a constant. + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { + // If we have an icmp le or icmp ge instruction, turn it into the + // appropriate icmp lt or icmp gt instruction. This allows us to rely on + // them being folded in the code below. + switch (Pred) { + default: break; + case ICmpInst::ICMP_ULE: + if (CI->isMaxValue(false)) // A <=u MAX -> TRUE + return ConstantInt::getTrue(CI->getContext()); + break; + case ICmpInst::ICMP_SLE: + if (CI->isMaxValue(true)) // A <=s MAX -> TRUE + return ConstantInt::getTrue(CI->getContext()); + break; + case ICmpInst::ICMP_UGE: + if (CI->isMinValue(false)) // A >=u MIN -> TRUE + return ConstantInt::getTrue(CI->getContext()); + break; + case ICmpInst::ICMP_SGE: + if (CI->isMinValue(true)) // A >=s MIN -> TRUE + return ConstantInt::getTrue(CI->getContext()); + break; + } + } + + + return 0; +} + +/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, + const TargetData *TD) { + CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; + assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); + + if (Constant *CLHS = dyn_cast<Constant>(LHS)) { + if (Constant *CRHS = dyn_cast<Constant>(RHS)) + return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); + + // If we have a constant, make sure it is on the RHS. + std::swap(LHS, RHS); + Pred = CmpInst::getSwappedPredicate(Pred); + } + + // Fold trivial predicates. + if (Pred == FCmpInst::FCMP_FALSE) + return ConstantInt::get(GetCompareTy(LHS), 0); + if (Pred == FCmpInst::FCMP_TRUE) + return ConstantInt::get(GetCompareTy(LHS), 1); + + if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef + return UndefValue::get(GetCompareTy(LHS)); + + // fcmp x,x -> true/false. Not all compares are foldable. + if (LHS == RHS) { + if (CmpInst::isTrueWhenEqual(Pred)) + return ConstantInt::get(GetCompareTy(LHS), 1); + if (CmpInst::isFalseWhenEqual(Pred)) + return ConstantInt::get(GetCompareTy(LHS), 0); + } + + // Handle fcmp with constant RHS + if (Constant *RHSC = dyn_cast<Constant>(RHS)) { + // If the constant is a nan, see if we can fold the comparison based on it. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { + if (CFP->getValueAPF().isNaN()) { + if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" + return ConstantInt::getFalse(CFP->getContext()); + assert(FCmpInst::isUnordered(Pred) && + "Comparison must be either ordered or unordered!"); + // True if unordered. + return ConstantInt::getTrue(CFP->getContext()); + } + // Check whether the constant is an infinity. + if (CFP->getValueAPF().isInfinity()) { + if (CFP->getValueAPF().isNegative()) { + switch (Pred) { + case FCmpInst::FCMP_OLT: + // No value is ordered and less than negative infinity. + return ConstantInt::getFalse(CFP->getContext()); + case FCmpInst::FCMP_UGE: + // All values are unordered with or at least negative infinity. + return ConstantInt::getTrue(CFP->getContext()); + default: + break; + } + } else { + switch (Pred) { + case FCmpInst::FCMP_OGT: + // No value is ordered and greater than infinity. + return ConstantInt::getFalse(CFP->getContext()); + case FCmpInst::FCMP_ULE: + // All values are unordered with and at most infinity. + return ConstantInt::getTrue(CFP->getContext()); + default: + break; + } + } + } + } + } + + return 0; +} + +/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold +/// the result. If not, this returns null. +Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, + const TargetData *TD) { + // select true, X, Y -> X + // select false, X, Y -> Y + if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) + return CB->getZExtValue() ? TrueVal : FalseVal; + + // select C, X, X -> X + if (TrueVal == FalseVal) + return TrueVal; + + if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X + return FalseVal; + if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X + return TrueVal; + if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y + if (isa<Constant>(TrueVal)) + return TrueVal; + return FalseVal; + } + + + + return 0; +} + + +/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, + const TargetData *TD) { + // getelementptr P -> P. + if (NumOps == 1) + return Ops[0]; + + // TODO. + //if (isa<UndefValue>(Ops[0])) + // return UndefValue::get(GEP.getType()); + + // getelementptr P, 0 -> P. + if (NumOps == 2) + if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) + if (C->isZero()) + return Ops[0]; + + // Check to see if this is constant foldable. + for (unsigned i = 0; i != NumOps; ++i) + if (!isa<Constant>(Ops[i])) + return 0; + + return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), + (Constant *const*)Ops+1, NumOps-1); +} + + +//=== Helper functions for higher up the class hierarchy. + +/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can +/// fold the result. If not, this returns null. +Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, + const TargetData *TD) { + switch (Opcode) { + case Instruction::And: return SimplifyAndInst(LHS, RHS, TD); + case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD); + default: + if (Constant *CLHS = dyn_cast<Constant>(LHS)) + if (Constant *CRHS = dyn_cast<Constant>(RHS)) { + Constant *COps[] = {CLHS, CRHS}; + return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); + } + return 0; + } +} + +/// SimplifyCmpInst - Given operands for a CmpInst, see if we can +/// fold the result. +Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, + const TargetData *TD) { + if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) + return SimplifyICmpInst(Predicate, LHS, RHS, TD); + return SimplifyFCmpInst(Predicate, LHS, RHS, TD); +} + + +/// SimplifyInstruction - See if we can compute a simplified version of this +/// instruction. If not, this returns null. +Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) { + switch (I->getOpcode()) { + default: + return ConstantFoldInstruction(I, TD); + case Instruction::Add: + return SimplifyAddInst(I->getOperand(0), I->getOperand(1), + cast<BinaryOperator>(I)->hasNoSignedWrap(), + cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD); + case Instruction::And: + return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD); + case Instruction::Or: + return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD); + case Instruction::ICmp: + return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), + I->getOperand(0), I->getOperand(1), TD); + case Instruction::FCmp: + return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), + I->getOperand(0), I->getOperand(1), TD); + case Instruction::Select: + return SimplifySelectInst(I->getOperand(0), I->getOperand(1), + I->getOperand(2), TD); + case Instruction::GetElementPtr: { + SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); + return SimplifyGEPInst(&Ops[0], Ops.size(), TD); + } + } +} + +/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then +/// delete the From instruction. In addition to a basic RAUW, this does a +/// recursive simplification of the newly formed instructions. This catches +/// things where one simplification exposes other opportunities. This only +/// simplifies and deletes scalar operations, it does not change the CFG. +/// +void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, + const TargetData *TD) { + assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); + + // FromHandle - This keeps a weakvh on the from value so that we can know if + // it gets deleted out from under us in a recursive simplification. + WeakVH FromHandle(From); + + while (!From->use_empty()) { + // Update the instruction to use the new value. + Use &U = From->use_begin().getUse(); + Instruction *User = cast<Instruction>(U.getUser()); + U = To; + + // See if we can simplify it. + if (Value *V = SimplifyInstruction(User, TD)) { + // Recursively simplify this. + ReplaceAndSimplifyAllUses(User, V, TD); + + // If the recursive simplification ended up revisiting and deleting 'From' + // then we're done. + if (FromHandle == 0) + return; + } + } + From->eraseFromParent(); +} + |