summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/InstructionSimplify.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/InstructionSimplify.cpp466
1 files changed, 466 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
new file mode 100644
index 0000000..dbefc2d
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
@@ -0,0 +1,466 @@
+//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements routines for folding instructions into simpler forms
+// that do not require creating new instructions. For example, this does
+// constant folding, and can handle identities like (X&0)->0.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Instructions.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+/// SimplifyAddInst - Given operands for an Add, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
+ const TargetData *TD) {
+ if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
+ if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
+ Constant *Ops[] = { CLHS, CRHS };
+ return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
+ Ops, 2, TD);
+ }
+
+ // Canonicalize the constant to the RHS.
+ std::swap(Op0, Op1);
+ }
+
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ // X + undef -> undef
+ if (isa<UndefValue>(Op1C))
+ return Op1C;
+
+ // X + 0 --> X
+ if (Op1C->isNullValue())
+ return Op0;
+ }
+
+ // FIXME: Could pull several more out of instcombine.
+ return 0;
+}
+
+/// SimplifyAndInst - Given operands for an And, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) {
+ if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
+ if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
+ Constant *Ops[] = { CLHS, CRHS };
+ return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
+ Ops, 2, TD);
+ }
+
+ // Canonicalize the constant to the RHS.
+ std::swap(Op0, Op1);
+ }
+
+ // X & undef -> 0
+ if (isa<UndefValue>(Op1))
+ return Constant::getNullValue(Op0->getType());
+
+ // X & X = X
+ if (Op0 == Op1)
+ return Op0;
+
+ // X & <0,0> = <0,0>
+ if (isa<ConstantAggregateZero>(Op1))
+ return Op1;
+
+ // X & <-1,-1> = X
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
+ if (CP->isAllOnesValue())
+ return Op0;
+
+ if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
+ // X & 0 = 0
+ if (Op1CI->isZero())
+ return Op1CI;
+ // X & -1 = X
+ if (Op1CI->isAllOnesValue())
+ return Op0;
+ }
+
+ // A & ~A = ~A & A = 0
+ Value *A, *B;
+ if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
+ (match(Op1, m_Not(m_Value(A))) && A == Op0))
+ return Constant::getNullValue(Op0->getType());
+
+ // (A | ?) & A = A
+ if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ (A == Op1 || B == Op1))
+ return Op1;
+
+ // A & (A | ?) = A
+ if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
+ (A == Op0 || B == Op0))
+ return Op0;
+
+ return 0;
+}
+
+/// SimplifyOrInst - Given operands for an Or, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) {
+ if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
+ if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
+ Constant *Ops[] = { CLHS, CRHS };
+ return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
+ Ops, 2, TD);
+ }
+
+ // Canonicalize the constant to the RHS.
+ std::swap(Op0, Op1);
+ }
+
+ // X | undef -> -1
+ if (isa<UndefValue>(Op1))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // X | X = X
+ if (Op0 == Op1)
+ return Op0;
+
+ // X | <0,0> = X
+ if (isa<ConstantAggregateZero>(Op1))
+ return Op0;
+
+ // X | <-1,-1> = <-1,-1>
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
+ if (CP->isAllOnesValue())
+ return Op1;
+
+ if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
+ // X | 0 = X
+ if (Op1CI->isZero())
+ return Op0;
+ // X | -1 = -1
+ if (Op1CI->isAllOnesValue())
+ return Op1CI;
+ }
+
+ // A | ~A = ~A | A = -1
+ Value *A, *B;
+ if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
+ (match(Op1, m_Not(m_Value(A))) && A == Op0))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // (A & ?) | A = A
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ (A == Op1 || B == Op1))
+ return Op1;
+
+ // A | (A & ?) = A
+ if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
+ (A == Op0 || B == Op0))
+ return Op0;
+
+ return 0;
+}
+
+
+static const Type *GetCompareTy(Value *Op) {
+ return CmpInst::makeCmpResultType(Op->getType());
+}
+
+
+/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const TargetData *TD) {
+ CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
+ assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
+
+ // If we have a constant, make sure it is on the RHS.
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+
+ // ITy - This is the return type of the compare we're considering.
+ const Type *ITy = GetCompareTy(LHS);
+
+ // icmp X, X -> true/false
+ // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
+ // because X could be 0.
+ if (LHS == RHS || isa<UndefValue>(RHS))
+ return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
+
+ // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
+ // addresses never equal each other! We already know that Op0 != Op1.
+ if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
+ isa<ConstantPointerNull>(LHS)) &&
+ (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
+ isa<ConstantPointerNull>(RHS)))
+ return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
+
+ // See if we are doing a comparison with a constant.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // If we have an icmp le or icmp ge instruction, turn it into the
+ // appropriate icmp lt or icmp gt instruction. This allows us to rely on
+ // them being folded in the code below.
+ switch (Pred) {
+ default: break;
+ case ICmpInst::ICMP_ULE:
+ if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
+ return ConstantInt::getTrue(CI->getContext());
+ break;
+ case ICmpInst::ICMP_SLE:
+ if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
+ return ConstantInt::getTrue(CI->getContext());
+ break;
+ case ICmpInst::ICMP_UGE:
+ if (CI->isMinValue(false)) // A >=u MIN -> TRUE
+ return ConstantInt::getTrue(CI->getContext());
+ break;
+ case ICmpInst::ICMP_SGE:
+ if (CI->isMinValue(true)) // A >=s MIN -> TRUE
+ return ConstantInt::getTrue(CI->getContext());
+ break;
+ }
+ }
+
+
+ return 0;
+}
+
+/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const TargetData *TD) {
+ CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
+ assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
+
+ // If we have a constant, make sure it is on the RHS.
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Fold trivial predicates.
+ if (Pred == FCmpInst::FCMP_FALSE)
+ return ConstantInt::get(GetCompareTy(LHS), 0);
+ if (Pred == FCmpInst::FCMP_TRUE)
+ return ConstantInt::get(GetCompareTy(LHS), 1);
+
+ if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
+ return UndefValue::get(GetCompareTy(LHS));
+
+ // fcmp x,x -> true/false. Not all compares are foldable.
+ if (LHS == RHS) {
+ if (CmpInst::isTrueWhenEqual(Pred))
+ return ConstantInt::get(GetCompareTy(LHS), 1);
+ if (CmpInst::isFalseWhenEqual(Pred))
+ return ConstantInt::get(GetCompareTy(LHS), 0);
+ }
+
+ // Handle fcmp with constant RHS
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ // If the constant is a nan, see if we can fold the comparison based on it.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
+ if (CFP->getValueAPF().isNaN()) {
+ if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
+ return ConstantInt::getFalse(CFP->getContext());
+ assert(FCmpInst::isUnordered(Pred) &&
+ "Comparison must be either ordered or unordered!");
+ // True if unordered.
+ return ConstantInt::getTrue(CFP->getContext());
+ }
+ // Check whether the constant is an infinity.
+ if (CFP->getValueAPF().isInfinity()) {
+ if (CFP->getValueAPF().isNegative()) {
+ switch (Pred) {
+ case FCmpInst::FCMP_OLT:
+ // No value is ordered and less than negative infinity.
+ return ConstantInt::getFalse(CFP->getContext());
+ case FCmpInst::FCMP_UGE:
+ // All values are unordered with or at least negative infinity.
+ return ConstantInt::getTrue(CFP->getContext());
+ default:
+ break;
+ }
+ } else {
+ switch (Pred) {
+ case FCmpInst::FCMP_OGT:
+ // No value is ordered and greater than infinity.
+ return ConstantInt::getFalse(CFP->getContext());
+ case FCmpInst::FCMP_ULE:
+ // All values are unordered with and at most infinity.
+ return ConstantInt::getTrue(CFP->getContext());
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
+/// the result. If not, this returns null.
+Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
+ const TargetData *TD) {
+ // select true, X, Y -> X
+ // select false, X, Y -> Y
+ if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
+ return CB->getZExtValue() ? TrueVal : FalseVal;
+
+ // select C, X, X -> X
+ if (TrueVal == FalseVal)
+ return TrueVal;
+
+ if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
+ return FalseVal;
+ if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
+ return TrueVal;
+ if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
+ if (isa<Constant>(TrueVal))
+ return TrueVal;
+ return FalseVal;
+ }
+
+
+
+ return 0;
+}
+
+
+/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
+ const TargetData *TD) {
+ // getelementptr P -> P.
+ if (NumOps == 1)
+ return Ops[0];
+
+ // TODO.
+ //if (isa<UndefValue>(Ops[0]))
+ // return UndefValue::get(GEP.getType());
+
+ // getelementptr P, 0 -> P.
+ if (NumOps == 2)
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
+ if (C->isZero())
+ return Ops[0];
+
+ // Check to see if this is constant foldable.
+ for (unsigned i = 0; i != NumOps; ++i)
+ if (!isa<Constant>(Ops[i]))
+ return 0;
+
+ return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
+ (Constant *const*)Ops+1, NumOps-1);
+}
+
+
+//=== Helper functions for higher up the class hierarchy.
+
+/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
+/// fold the result. If not, this returns null.
+Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
+ const TargetData *TD) {
+ switch (Opcode) {
+ case Instruction::And: return SimplifyAndInst(LHS, RHS, TD);
+ case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD);
+ default:
+ if (Constant *CLHS = dyn_cast<Constant>(LHS))
+ if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
+ Constant *COps[] = {CLHS, CRHS};
+ return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
+ }
+ return 0;
+ }
+}
+
+/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
+/// fold the result.
+Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const TargetData *TD) {
+ if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
+ return SimplifyICmpInst(Predicate, LHS, RHS, TD);
+ return SimplifyFCmpInst(Predicate, LHS, RHS, TD);
+}
+
+
+/// SimplifyInstruction - See if we can compute a simplified version of this
+/// instruction. If not, this returns null.
+Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) {
+ switch (I->getOpcode()) {
+ default:
+ return ConstantFoldInstruction(I, TD);
+ case Instruction::Add:
+ return SimplifyAddInst(I->getOperand(0), I->getOperand(1),
+ cast<BinaryOperator>(I)->hasNoSignedWrap(),
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD);
+ case Instruction::And:
+ return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD);
+ case Instruction::Or:
+ return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD);
+ case Instruction::ICmp:
+ return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
+ I->getOperand(0), I->getOperand(1), TD);
+ case Instruction::FCmp:
+ return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
+ I->getOperand(0), I->getOperand(1), TD);
+ case Instruction::Select:
+ return SimplifySelectInst(I->getOperand(0), I->getOperand(1),
+ I->getOperand(2), TD);
+ case Instruction::GetElementPtr: {
+ SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
+ return SimplifyGEPInst(&Ops[0], Ops.size(), TD);
+ }
+ }
+}
+
+/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
+/// delete the From instruction. In addition to a basic RAUW, this does a
+/// recursive simplification of the newly formed instructions. This catches
+/// things where one simplification exposes other opportunities. This only
+/// simplifies and deletes scalar operations, it does not change the CFG.
+///
+void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
+ const TargetData *TD) {
+ assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
+
+ // FromHandle - This keeps a weakvh on the from value so that we can know if
+ // it gets deleted out from under us in a recursive simplification.
+ WeakVH FromHandle(From);
+
+ while (!From->use_empty()) {
+ // Update the instruction to use the new value.
+ Use &U = From->use_begin().getUse();
+ Instruction *User = cast<Instruction>(U.getUser());
+ U = To;
+
+ // See if we can simplify it.
+ if (Value *V = SimplifyInstruction(User, TD)) {
+ // Recursively simplify this.
+ ReplaceAndSimplifyAllUses(User, V, TD);
+
+ // If the recursive simplification ended up revisiting and deleting 'From'
+ // then we're done.
+ if (FromHandle == 0)
+ return;
+ }
+ }
+ From->eraseFromParent();
+}
+
OpenPOWER on IntegriCloud