diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/InlineCost.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/InlineCost.cpp | 486 |
1 files changed, 326 insertions, 160 deletions
diff --git a/contrib/llvm/lib/Analysis/InlineCost.cpp b/contrib/llvm/lib/Analysis/InlineCost.cpp index 3e550f3..47f91cf 100644 --- a/contrib/llvm/lib/Analysis/InlineCost.cpp +++ b/contrib/llvm/lib/Analysis/InlineCost.cpp @@ -16,97 +16,8 @@ #include "llvm/CallingConv.h" #include "llvm/IntrinsicInst.h" #include "llvm/ADT/SmallPtrSet.h" -using namespace llvm; - -// CountCodeReductionForConstant - Figure out an approximation for how many -// instructions will be constant folded if the specified value is constant. -// -unsigned InlineCostAnalyzer::FunctionInfo:: -CountCodeReductionForConstant(Value *V) { - unsigned Reduction = 0; - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ - User *U = *UI; - if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { - // We will be able to eliminate all but one of the successors. - const TerminatorInst &TI = cast<TerminatorInst>(*U); - const unsigned NumSucc = TI.getNumSuccessors(); - unsigned Instrs = 0; - for (unsigned I = 0; I != NumSucc; ++I) - Instrs += Metrics.NumBBInsts[TI.getSuccessor(I)]; - // We don't know which blocks will be eliminated, so use the average size. - Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; - } else if (CallInst *CI = dyn_cast<CallInst>(U)) { - // Turning an indirect call into a direct call is a BIG win - if (CI->getCalledValue() == V) - Reduction += InlineConstants::IndirectCallBonus; - } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { - // Turning an indirect call into a direct call is a BIG win - if (II->getCalledValue() == V) - Reduction += InlineConstants::IndirectCallBonus; - } else { - // Figure out if this instruction will be removed due to simple constant - // propagation. - Instruction &Inst = cast<Instruction>(*U); - - // We can't constant propagate instructions which have effects or - // read memory. - // - // FIXME: It would be nice to capture the fact that a load from a - // pointer-to-constant-global is actually a *really* good thing to zap. - // Unfortunately, we don't know the pointer that may get propagated here, - // so we can't make this decision. - if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || - isa<AllocaInst>(Inst)) - continue; - - bool AllOperandsConstant = true; - for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) - if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { - AllOperandsConstant = false; - break; - } - if (AllOperandsConstant) { - // We will get to remove this instruction... - Reduction += InlineConstants::InstrCost; - - // And any other instructions that use it which become constants - // themselves. - Reduction += CountCodeReductionForConstant(&Inst); - } - } - } - return Reduction; -} - -// CountCodeReductionForAlloca - Figure out an approximation of how much smaller -// the function will be if it is inlined into a context where an argument -// becomes an alloca. -// -unsigned InlineCostAnalyzer::FunctionInfo:: - CountCodeReductionForAlloca(Value *V) { - if (!V->getType()->isPointerTy()) return 0; // Not a pointer - unsigned Reduction = 0; - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ - Instruction *I = cast<Instruction>(*UI); - if (isa<LoadInst>(I) || isa<StoreInst>(I)) - Reduction += InlineConstants::InstrCost; - else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { - // If the GEP has variable indices, we won't be able to do much with it. - if (GEP->hasAllConstantIndices()) - Reduction += CountCodeReductionForAlloca(GEP); - } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { - // Track pointer through bitcasts. - Reduction += CountCodeReductionForAlloca(BCI); - } else { - // If there is some other strange instruction, we're not going to be able - // to do much if we inline this. - return 0; - } - } - - return Reduction; -} +using namespace llvm; /// callIsSmall - If a call is likely to lower to a single target instruction, /// or is otherwise deemed small return true. @@ -160,6 +71,12 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { // variables as volatile if they are live across a setjmp call, and they // probably won't do this in callers. if (const Function *F = CS.getCalledFunction()) { + // If a function is both internal and has a single use, then it is + // extremely likely to get inlined in the future (it was probably + // exposed by an interleaved devirtualization pass). + if (F->hasInternalLinkage() && F->hasOneUse()) + ++NumInlineCandidates; + if (F->isDeclaration() && (F->getName() == "setjmp" || F->getName() == "_setjmp")) callsSetJmp = true; @@ -226,6 +143,86 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB; } +// CountCodeReductionForConstant - Figure out an approximation for how many +// instructions will be constant folded if the specified value is constant. +// +unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) { + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { + // We will be able to eliminate all but one of the successors. + const TerminatorInst &TI = cast<TerminatorInst>(*U); + const unsigned NumSucc = TI.getNumSuccessors(); + unsigned Instrs = 0; + for (unsigned I = 0; I != NumSucc; ++I) + Instrs += NumBBInsts[TI.getSuccessor(I)]; + // We don't know which blocks will be eliminated, so use the average size. + Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; + } else { + // Figure out if this instruction will be removed due to simple constant + // propagation. + Instruction &Inst = cast<Instruction>(*U); + + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa<AllocaInst>(Inst)) + continue; + + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) { + // We will get to remove this instruction... + Reduction += InlineConstants::InstrCost; + + // And any other instructions that use it which become constants + // themselves. + Reduction += CountCodeReductionForConstant(&Inst); + } + } + } + return Reduction; +} + +// CountCodeReductionForAlloca - Figure out an approximation of how much smaller +// the function will be if it is inlined into a context where an argument +// becomes an alloca. +// +unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) { + if (!V->getType()->isPointerTy()) return 0; // Not a pointer + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + Instruction *I = cast<Instruction>(*UI); + if (isa<LoadInst>(I) || isa<StoreInst>(I)) + Reduction += InlineConstants::InstrCost; + else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { + // If the GEP has variable indices, we won't be able to do much with it. + if (GEP->hasAllConstantIndices()) + Reduction += CountCodeReductionForAlloca(GEP); + } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { + // Track pointer through bitcasts. + Reduction += CountCodeReductionForAlloca(BCI); + } else { + // If there is some other strange instruction, we're not going to be able + // to do much if we inline this. + return 0; + } + } + + return Reduction; +} + /// analyzeFunction - Fill in the current structure with information gleaned /// from the specified function. void CodeMetrics::analyzeFunction(Function *F) { @@ -245,76 +242,246 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) { if (Metrics.NumRets==1) --Metrics.NumInsts; - // Don't bother calculating argument weights if we are never going to inline - // the function anyway. - if (NeverInline()) - return; - // Check out all of the arguments to the function, figuring out how much // code can be eliminated if one of the arguments is a constant. ArgumentWeights.reserve(F->arg_size()); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) - ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I), - CountCodeReductionForAlloca(I))); + ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I), + Metrics.CountCodeReductionForAlloca(I))); } /// NeverInline - returns true if the function should never be inlined into /// any caller -bool InlineCostAnalyzer::FunctionInfo::NeverInline() -{ +bool InlineCostAnalyzer::FunctionInfo::NeverInline() { return (Metrics.callsSetJmp || Metrics.isRecursive || Metrics.containsIndirectBr); +} +// getSpecializationBonus - The heuristic used to determine the per-call +// performance boost for using a specialization of Callee with argument +// specializedArgNo replaced by a constant. +int InlineCostAnalyzer::getSpecializationBonus(Function *Callee, + SmallVectorImpl<unsigned> &SpecializedArgNos) +{ + if (Callee->mayBeOverridden()) + return 0; + + int Bonus = 0; + // If this function uses the coldcc calling convention, prefer not to + // specialize it. + if (Callee->getCallingConv() == CallingConv::Cold) + Bonus -= InlineConstants::ColdccPenalty; + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); + unsigned ArgNo = 0; + unsigned i = 0; + for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end(); + I != E; ++I, ++ArgNo) + if (ArgNo == SpecializedArgNos[i]) { + ++i; + Bonus += CountBonusForConstant(I); + } + + // Calls usually take a long time, so they make the specialization gain + // smaller. + Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + + return Bonus; } -// getInlineCost - The heuristic used to determine if we should inline the -// function call or not. -// -InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, - SmallPtrSet<const Function*, 16> &NeverInline) { - return getInlineCost(CS, CS.getCalledFunction(), NeverInline); + +// ConstantFunctionBonus - Figure out how much of a bonus we can get for +// possibly devirtualizing a function. We'll subtract the size of the function +// we may wish to inline from the indirect call bonus providing a limit on +// growth. Leave an upper limit of 0 for the bonus - we don't want to penalize +// inlining because we decide we don't want to give a bonus for +// devirtualizing. +int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) { + + // This could just be NULL. + if (!C) return 0; + + Function *F = dyn_cast<Function>(C); + if (!F) return 0; + + int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F); + return (Bonus > 0) ? 0 : Bonus; } -InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, - Function *Callee, - SmallPtrSet<const Function*, 16> &NeverInline) { - Instruction *TheCall = CS.getInstruction(); - Function *Caller = TheCall->getParent()->getParent(); - bool isDirectCall = CS.getCalledFunction() == Callee; +// CountBonusForConstant - Figure out an approximation for how much per-call +// performance boost we can expect if the specified value is constant. +int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) { + unsigned Bonus = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (CallInst *CI = dyn_cast<CallInst>(U)) { + // Turning an indirect call into a direct call is a BIG win + if (CI->getCalledValue() == V) + Bonus += ConstantFunctionBonus(CallSite(CI), C); + } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { + // Turning an indirect call into a direct call is a BIG win + if (II->getCalledValue() == V) + Bonus += ConstantFunctionBonus(CallSite(II), C); + } + // FIXME: Eliminating conditional branches and switches should + // also yield a per-call performance boost. + else { + // Figure out the bonuses that wll accrue due to simple constant + // propagation. + Instruction &Inst = cast<Instruction>(*U); - // Don't inline functions which can be redefined at link-time to mean - // something else. Don't inline functions marked noinline or call sites - // marked noinline. - if (Callee->mayBeOverridden() || - Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || - CS.isNoInline()) - return llvm::InlineCost::getNever(); + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa<AllocaInst>(Inst)) + continue; + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) + Bonus += CountBonusForConstant(&Inst); + } + } + + return Bonus; +} + +int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) { + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); + // InlineCost - This value measures how good of an inline candidate this call // site is to inline. A lower inline cost make is more likely for the call to // be inlined. This value may go negative. // int InlineCost = 0; + // Compute any size reductions we can expect due to arguments being passed into + // the function. + // + unsigned ArgNo = 0; + CallSite::arg_iterator I = CS.arg_begin(); + for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); + FI != FE; ++I, ++FI, ++ArgNo) { + + // If an alloca is passed in, inlining this function is likely to allow + // significant future optimization possibilities (like scalar promotion, and + // scalarization), so encourage the inlining of the function. + // + if (isa<AllocaInst>(I)) + InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; + + // If this is a constant being passed into the function, use the argument + // weights calculated for the callee to determine how much will be folded + // away with this information. + else if (isa<Constant>(I)) + InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; + } + + // Each argument passed in has a cost at both the caller and the callee + // sides. Measurements show that each argument costs about the same as an + // instruction. + InlineCost -= (CS.arg_size() * InlineConstants::InstrCost); + + // Now that we have considered all of the factors that make the call site more + // likely to be inlined, look at factors that make us not want to inline it. + + // Calls usually take a long time, so they make the inlining gain smaller. + InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + + // Look at the size of the callee. Each instruction counts as 5. + InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost; + + return InlineCost; +} + +int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) { + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); + + bool isDirectCall = CS.getCalledFunction() == Callee; + Instruction *TheCall = CS.getInstruction(); + int Bonus = 0; + // If there is only one call of the function, and it has internal linkage, // make it almost guaranteed to be inlined. // if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) - InlineCost += InlineConstants::LastCallToStaticBonus; - - // If this function uses the coldcc calling convention, prefer not to inline - // it. - if (Callee->getCallingConv() == CallingConv::Cold) - InlineCost += InlineConstants::ColdccPenalty; + Bonus += InlineConstants::LastCallToStaticBonus; // If the instruction after the call, or if the normal destination of the // invoke is an unreachable instruction, the function is noreturn. As such, // there is little point in inlining this. if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { if (isa<UnreachableInst>(II->getNormalDest()->begin())) - InlineCost += InlineConstants::NoreturnPenalty; + Bonus += InlineConstants::NoreturnPenalty; } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) - InlineCost += InlineConstants::NoreturnPenalty; + Bonus += InlineConstants::NoreturnPenalty; + + // If this function uses the coldcc calling convention, prefer not to inline + // it. + if (Callee->getCallingConv() == CallingConv::Cold) + Bonus += InlineConstants::ColdccPenalty; + // Add to the inline quality for properties that make the call valuable to + // inline. This includes factors that indicate that the result of inlining + // the function will be optimizable. Currently this just looks at arguments + // passed into the function. + // + CallSite::arg_iterator I = CS.arg_begin(); + for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); + FI != FE; ++I, ++FI) + // Compute any constant bonus due to inlining we want to give here. + if (isa<Constant>(I)) + Bonus += CountBonusForConstant(FI, cast<Constant>(I)); + + return Bonus; +} + +// getInlineCost - The heuristic used to determine if we should inline the +// function call or not. +// +InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, + SmallPtrSet<const Function*, 16> &NeverInline) { + return getInlineCost(CS, CS.getCalledFunction(), NeverInline); +} + +InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, + Function *Callee, + SmallPtrSet<const Function*, 16> &NeverInline) { + Instruction *TheCall = CS.getInstruction(); + Function *Caller = TheCall->getParent()->getParent(); + + // Don't inline functions which can be redefined at link-time to mean + // something else. Don't inline functions marked noinline or call sites + // marked noinline. + if (Callee->mayBeOverridden() || + Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || + CS.isNoInline()) + return llvm::InlineCost::getNever(); + // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; @@ -353,46 +520,45 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, return InlineCost::getNever(); } - // Add to the inline quality for properties that make the call valuable to - // inline. This includes factors that indicate that the result of inlining - // the function will be optimizable. Currently this just looks at arguments - // passed into the function. + // InlineCost - This value measures how good of an inline candidate this call + // site is to inline. A lower inline cost make is more likely for the call to + // be inlined. This value may go negative due to the fact that bonuses + // are negative numbers. // - unsigned ArgNo = 0; - for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); - I != E; ++I, ++ArgNo) { - // Each argument passed in has a cost at both the caller and the callee - // sides. Measurements show that each argument costs about the same as an - // instruction. - InlineCost -= InlineConstants::InstrCost; + int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee); + return llvm::InlineCost::get(InlineCost); +} - // If an alloca is passed in, inlining this function is likely to allow - // significant future optimization possibilities (like scalar promotion, and - // scalarization), so encourage the inlining of the function. - // - if (isa<AllocaInst>(I)) { - if (ArgNo < CalleeFI->ArgumentWeights.size()) - InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; - - // If this is a constant being passed into the function, use the argument - // weights calculated for the callee to determine how much will be folded - // away with this information. - } else if (isa<Constant>(I)) { - if (ArgNo < CalleeFI->ArgumentWeights.size()) - InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; - } - } +// getSpecializationCost - The heuristic used to determine the code-size +// impact of creating a specialized version of Callee with argument +// SpecializedArgNo replaced by a constant. +InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee, + SmallVectorImpl<unsigned> &SpecializedArgNos) +{ + // Don't specialize functions which can be redefined at link-time to mean + // something else. + if (Callee->mayBeOverridden()) + return llvm::InlineCost::getNever(); - // Now that we have considered all of the factors that make the call site more - // likely to be inlined, look at factors that make us not want to inline it. + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); - // Calls usually take a long time, so they make the inlining gain smaller. - InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + int Cost = 0; + + // Look at the orginal size of the callee. Each instruction counts as 5. + Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; - // Look at the size of the callee. Each instruction counts as 5. - InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost; + // Offset that with the amount of code that can be constant-folded + // away with the given arguments replaced by constants. + for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(), + ae = SpecializedArgNos.end(); an != ae; ++an) + Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight; - return llvm::InlineCost::get(InlineCost); + return llvm::InlineCost::get(Cost); } // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a |