diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/InlineCost.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/InlineCost.cpp | 655 |
1 files changed, 655 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/InlineCost.cpp b/contrib/llvm/lib/Analysis/InlineCost.cpp new file mode 100644 index 0000000..e12e322 --- /dev/null +++ b/contrib/llvm/lib/Analysis/InlineCost.cpp @@ -0,0 +1,655 @@ +//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements inline cost analysis. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/InlineCost.h" +#include "llvm/Support/CallSite.h" +#include "llvm/CallingConv.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Target/TargetData.h" +#include "llvm/ADT/SmallPtrSet.h" + +using namespace llvm; + +/// callIsSmall - If a call is likely to lower to a single target instruction, +/// or is otherwise deemed small return true. +/// TODO: Perhaps calls like memcpy, strcpy, etc? +bool llvm::callIsSmall(const Function *F) { + if (!F) return false; + + if (F->hasLocalLinkage()) return false; + + if (!F->hasName()) return false; + + StringRef Name = F->getName(); + + // These will all likely lower to a single selection DAG node. + if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || + Name == "fabs" || Name == "fabsf" || Name == "fabsl" || + Name == "sin" || Name == "sinf" || Name == "sinl" || + Name == "cos" || Name == "cosf" || Name == "cosl" || + Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" ) + return true; + + // These are all likely to be optimized into something smaller. + if (Name == "pow" || Name == "powf" || Name == "powl" || + Name == "exp2" || Name == "exp2l" || Name == "exp2f" || + Name == "floor" || Name == "floorf" || Name == "ceil" || + Name == "round" || Name == "ffs" || Name == "ffsl" || + Name == "abs" || Name == "labs" || Name == "llabs") + return true; + + return false; +} + +/// analyzeBasicBlock - Fill in the current structure with information gleaned +/// from the specified block. +void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB, + const TargetData *TD) { + ++NumBlocks; + unsigned NumInstsBeforeThisBB = NumInsts; + for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); + II != E; ++II) { + if (isa<PHINode>(II)) continue; // PHI nodes don't count. + + // Special handling for calls. + if (isa<CallInst>(II) || isa<InvokeInst>(II)) { + if (isa<DbgInfoIntrinsic>(II)) + continue; // Debug intrinsics don't count as size. + + ImmutableCallSite CS(cast<Instruction>(II)); + + if (const Function *F = CS.getCalledFunction()) { + // If a function is both internal and has a single use, then it is + // extremely likely to get inlined in the future (it was probably + // exposed by an interleaved devirtualization pass). + if (F->hasInternalLinkage() && F->hasOneUse()) + ++NumInlineCandidates; + + // If this call is to function itself, then the function is recursive. + // Inlining it into other functions is a bad idea, because this is + // basically just a form of loop peeling, and our metrics aren't useful + // for that case. + if (F == BB->getParent()) + isRecursive = true; + } + + if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) { + // Each argument to a call takes on average one instruction to set up. + NumInsts += CS.arg_size(); + + // We don't want inline asm to count as a call - that would prevent loop + // unrolling. The argument setup cost is still real, though. + if (!isa<InlineAsm>(CS.getCalledValue())) + ++NumCalls; + } + } + + if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { + if (!AI->isStaticAlloca()) + this->usesDynamicAlloca = true; + } + + if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy()) + ++NumVectorInsts; + + if (const CastInst *CI = dyn_cast<CastInst>(II)) { + // Noop casts, including ptr <-> int, don't count. + if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || + isa<PtrToIntInst>(CI)) + continue; + // trunc to a native type is free (assuming the target has compare and + // shift-right of the same width). + if (isa<TruncInst>(CI) && TD && + TD->isLegalInteger(TD->getTypeSizeInBits(CI->getType()))) + continue; + // Result of a cmp instruction is often extended (to be used by other + // cmp instructions, logical or return instructions). These are usually + // nop on most sane targets. + if (isa<CmpInst>(CI->getOperand(0))) + continue; + } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){ + // If a GEP has all constant indices, it will probably be folded with + // a load/store. + if (GEPI->hasAllConstantIndices()) + continue; + } + + ++NumInsts; + } + + if (isa<ReturnInst>(BB->getTerminator())) + ++NumRets; + + // We never want to inline functions that contain an indirectbr. This is + // incorrect because all the blockaddress's (in static global initializers + // for example) would be referring to the original function, and this indirect + // jump would jump from the inlined copy of the function into the original + // function which is extremely undefined behavior. + if (isa<IndirectBrInst>(BB->getTerminator())) + containsIndirectBr = true; + + // Remember NumInsts for this BB. + NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB; +} + +// CountCodeReductionForConstant - Figure out an approximation for how many +// instructions will be constant folded if the specified value is constant. +// +unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) { + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { + // We will be able to eliminate all but one of the successors. + const TerminatorInst &TI = cast<TerminatorInst>(*U); + const unsigned NumSucc = TI.getNumSuccessors(); + unsigned Instrs = 0; + for (unsigned I = 0; I != NumSucc; ++I) + Instrs += NumBBInsts[TI.getSuccessor(I)]; + // We don't know which blocks will be eliminated, so use the average size. + Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; + } else { + // Figure out if this instruction will be removed due to simple constant + // propagation. + Instruction &Inst = cast<Instruction>(*U); + + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa<AllocaInst>(Inst)) + continue; + + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) { + // We will get to remove this instruction... + Reduction += InlineConstants::InstrCost; + + // And any other instructions that use it which become constants + // themselves. + Reduction += CountCodeReductionForConstant(&Inst); + } + } + } + return Reduction; +} + +// CountCodeReductionForAlloca - Figure out an approximation of how much smaller +// the function will be if it is inlined into a context where an argument +// becomes an alloca. +// +unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) { + if (!V->getType()->isPointerTy()) return 0; // Not a pointer + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + Instruction *I = cast<Instruction>(*UI); + if (isa<LoadInst>(I) || isa<StoreInst>(I)) + Reduction += InlineConstants::InstrCost; + else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { + // If the GEP has variable indices, we won't be able to do much with it. + if (GEP->hasAllConstantIndices()) + Reduction += CountCodeReductionForAlloca(GEP); + } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { + // Track pointer through bitcasts. + Reduction += CountCodeReductionForAlloca(BCI); + } else { + // If there is some other strange instruction, we're not going to be able + // to do much if we inline this. + return 0; + } + } + + return Reduction; +} + +/// analyzeFunction - Fill in the current structure with information gleaned +/// from the specified function. +void CodeMetrics::analyzeFunction(Function *F, const TargetData *TD) { + // If this function contains a call to setjmp or _setjmp, never inline + // it. This is a hack because we depend on the user marking their local + // variables as volatile if they are live across a setjmp call, and they + // probably won't do this in callers. + if (F->callsFunctionThatReturnsTwice()) + callsSetJmp = true; + + // Look at the size of the callee. + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + analyzeBasicBlock(&*BB, TD); +} + +/// analyzeFunction - Fill in the current structure with information gleaned +/// from the specified function. +void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F, + const TargetData *TD) { + Metrics.analyzeFunction(F, TD); + + // A function with exactly one return has it removed during the inlining + // process (see InlineFunction), so don't count it. + // FIXME: This knowledge should really be encoded outside of FunctionInfo. + if (Metrics.NumRets==1) + --Metrics.NumInsts; + + // Check out all of the arguments to the function, figuring out how much + // code can be eliminated if one of the arguments is a constant. + ArgumentWeights.reserve(F->arg_size()); + for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) + ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I), + Metrics.CountCodeReductionForAlloca(I))); +} + +/// NeverInline - returns true if the function should never be inlined into +/// any caller +bool InlineCostAnalyzer::FunctionInfo::NeverInline() { + return (Metrics.callsSetJmp || Metrics.isRecursive || + Metrics.containsIndirectBr); +} +// getSpecializationBonus - The heuristic used to determine the per-call +// performance boost for using a specialization of Callee with argument +// specializedArgNo replaced by a constant. +int InlineCostAnalyzer::getSpecializationBonus(Function *Callee, + SmallVectorImpl<unsigned> &SpecializedArgNos) +{ + if (Callee->mayBeOverridden()) + return 0; + + int Bonus = 0; + // If this function uses the coldcc calling convention, prefer not to + // specialize it. + if (Callee->getCallingConv() == CallingConv::Cold) + Bonus -= InlineConstants::ColdccPenalty; + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee, TD); + + unsigned ArgNo = 0; + unsigned i = 0; + for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end(); + I != E; ++I, ++ArgNo) + if (ArgNo == SpecializedArgNos[i]) { + ++i; + Bonus += CountBonusForConstant(I); + } + + // Calls usually take a long time, so they make the specialization gain + // smaller. + Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + + return Bonus; +} + +// ConstantFunctionBonus - Figure out how much of a bonus we can get for +// possibly devirtualizing a function. We'll subtract the size of the function +// we may wish to inline from the indirect call bonus providing a limit on +// growth. Leave an upper limit of 0 for the bonus - we don't want to penalize +// inlining because we decide we don't want to give a bonus for +// devirtualizing. +int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) { + + // This could just be NULL. + if (!C) return 0; + + Function *F = dyn_cast<Function>(C); + if (!F) return 0; + + int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F); + return (Bonus > 0) ? 0 : Bonus; +} + +// CountBonusForConstant - Figure out an approximation for how much per-call +// performance boost we can expect if the specified value is constant. +int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) { + unsigned Bonus = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (CallInst *CI = dyn_cast<CallInst>(U)) { + // Turning an indirect call into a direct call is a BIG win + if (CI->getCalledValue() == V) + Bonus += ConstantFunctionBonus(CallSite(CI), C); + } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { + // Turning an indirect call into a direct call is a BIG win + if (II->getCalledValue() == V) + Bonus += ConstantFunctionBonus(CallSite(II), C); + } + // FIXME: Eliminating conditional branches and switches should + // also yield a per-call performance boost. + else { + // Figure out the bonuses that wll accrue due to simple constant + // propagation. + Instruction &Inst = cast<Instruction>(*U); + + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa<AllocaInst>(Inst)) + continue; + + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) + Bonus += CountBonusForConstant(&Inst); + } + } + + return Bonus; +} + +int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) { + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee, TD); + + // InlineCost - This value measures how good of an inline candidate this call + // site is to inline. A lower inline cost make is more likely for the call to + // be inlined. This value may go negative. + // + int InlineCost = 0; + + // Compute any size reductions we can expect due to arguments being passed into + // the function. + // + unsigned ArgNo = 0; + CallSite::arg_iterator I = CS.arg_begin(); + for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); + FI != FE; ++I, ++FI, ++ArgNo) { + + // If an alloca is passed in, inlining this function is likely to allow + // significant future optimization possibilities (like scalar promotion, and + // scalarization), so encourage the inlining of the function. + // + if (isa<AllocaInst>(I)) + InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; + + // If this is a constant being passed into the function, use the argument + // weights calculated for the callee to determine how much will be folded + // away with this information. + else if (isa<Constant>(I)) + InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; + } + + // Each argument passed in has a cost at both the caller and the callee + // sides. Measurements show that each argument costs about the same as an + // instruction. + InlineCost -= (CS.arg_size() * InlineConstants::InstrCost); + + // Now that we have considered all of the factors that make the call site more + // likely to be inlined, look at factors that make us not want to inline it. + + // Calls usually take a long time, so they make the inlining gain smaller. + InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + + // Look at the size of the callee. Each instruction counts as 5. + InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost; + + return InlineCost; +} + +int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) { + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee, TD); + + bool isDirectCall = CS.getCalledFunction() == Callee; + Instruction *TheCall = CS.getInstruction(); + int Bonus = 0; + + // If there is only one call of the function, and it has internal linkage, + // make it almost guaranteed to be inlined. + // + if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) + Bonus += InlineConstants::LastCallToStaticBonus; + + // If the instruction after the call, or if the normal destination of the + // invoke is an unreachable instruction, the function is noreturn. As such, + // there is little point in inlining this. + if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + if (isa<UnreachableInst>(II->getNormalDest()->begin())) + Bonus += InlineConstants::NoreturnPenalty; + } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) + Bonus += InlineConstants::NoreturnPenalty; + + // If this function uses the coldcc calling convention, prefer not to inline + // it. + if (Callee->getCallingConv() == CallingConv::Cold) + Bonus += InlineConstants::ColdccPenalty; + + // Add to the inline quality for properties that make the call valuable to + // inline. This includes factors that indicate that the result of inlining + // the function will be optimizable. Currently this just looks at arguments + // passed into the function. + // + CallSite::arg_iterator I = CS.arg_begin(); + for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); + FI != FE; ++I, ++FI) + // Compute any constant bonus due to inlining we want to give here. + if (isa<Constant>(I)) + Bonus += CountBonusForConstant(FI, cast<Constant>(I)); + + return Bonus; +} + +// getInlineCost - The heuristic used to determine if we should inline the +// function call or not. +// +InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, + SmallPtrSet<const Function*, 16> &NeverInline) { + return getInlineCost(CS, CS.getCalledFunction(), NeverInline); +} + +InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, + Function *Callee, + SmallPtrSet<const Function*, 16> &NeverInline) { + Instruction *TheCall = CS.getInstruction(); + Function *Caller = TheCall->getParent()->getParent(); + + // Don't inline functions which can be redefined at link-time to mean + // something else. Don't inline functions marked noinline or call sites + // marked noinline. + if (Callee->mayBeOverridden() || + Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || + CS.isNoInline()) + return llvm::InlineCost::getNever(); + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee, TD); + + // If we should never inline this, return a huge cost. + if (CalleeFI->NeverInline()) + return InlineCost::getNever(); + + // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we + // could move this up and avoid computing the FunctionInfo for + // things we are going to just return always inline for. This + // requires handling setjmp somewhere else, however. + if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) + return InlineCost::getAlways(); + + if (CalleeFI->Metrics.usesDynamicAlloca) { + // Get information about the caller. + FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; + + // If we haven't calculated this information yet, do so now. + if (CallerFI.Metrics.NumBlocks == 0) { + CallerFI.analyzeFunction(Caller, TD); + + // Recompute the CalleeFI pointer, getting Caller could have invalidated + // it. + CalleeFI = &CachedFunctionInfo[Callee]; + } + + // Don't inline a callee with dynamic alloca into a caller without them. + // Functions containing dynamic alloca's are inefficient in various ways; + // don't create more inefficiency. + if (!CallerFI.Metrics.usesDynamicAlloca) + return InlineCost::getNever(); + } + + // InlineCost - This value measures how good of an inline candidate this call + // site is to inline. A lower inline cost make is more likely for the call to + // be inlined. This value may go negative due to the fact that bonuses + // are negative numbers. + // + int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee); + return llvm::InlineCost::get(InlineCost); +} + +// getSpecializationCost - The heuristic used to determine the code-size +// impact of creating a specialized version of Callee with argument +// SpecializedArgNo replaced by a constant. +InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee, + SmallVectorImpl<unsigned> &SpecializedArgNos) +{ + // Don't specialize functions which can be redefined at link-time to mean + // something else. + if (Callee->mayBeOverridden()) + return llvm::InlineCost::getNever(); + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee, TD); + + int Cost = 0; + + // Look at the original size of the callee. Each instruction counts as 5. + Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; + + // Offset that with the amount of code that can be constant-folded + // away with the given arguments replaced by constants. + for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(), + ae = SpecializedArgNos.end(); an != ae; ++an) + Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight; + + return llvm::InlineCost::get(Cost); +} + +// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a +// higher threshold to determine if the function call should be inlined. +float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { + Function *Callee = CS.getCalledFunction(); + + // Get information about the callee. + FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI.Metrics.NumBlocks == 0) + CalleeFI.analyzeFunction(Callee, TD); + + float Factor = 1.0f; + // Single BB functions are often written to be inlined. + if (CalleeFI.Metrics.NumBlocks == 1) + Factor += 0.5f; + + // Be more aggressive if the function contains a good chunk (if it mades up + // at least 10% of the instructions) of vector instructions. + if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2) + Factor += 2.0f; + else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10) + Factor += 1.5f; + return Factor; +} + +/// growCachedCostInfo - update the cached cost info for Caller after Callee has +/// been inlined. +void +InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) { + CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics; + + // For small functions we prefer to recalculate the cost for better accuracy. + if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) { + resetCachedCostInfo(Caller); + return; + } + + // For large functions, we can save a lot of computation time by skipping + // recalculations. + if (CallerMetrics.NumCalls > 0) + --CallerMetrics.NumCalls; + + if (Callee == 0) return; + + CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics; + + // If we don't have metrics for the callee, don't recalculate them just to + // update an approximation in the caller. Instead, just recalculate the + // caller info from scratch. + if (CalleeMetrics.NumBlocks == 0) { + resetCachedCostInfo(Caller); + return; + } + + // Since CalleeMetrics were already calculated, we know that the CallerMetrics + // reference isn't invalidated: both were in the DenseMap. + CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca; + + // FIXME: If any of these three are true for the callee, the callee was + // not inlined into the caller, so I think they're redundant here. + CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp; + CallerMetrics.isRecursive |= CalleeMetrics.isRecursive; + CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr; + + CallerMetrics.NumInsts += CalleeMetrics.NumInsts; + CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks; + CallerMetrics.NumCalls += CalleeMetrics.NumCalls; + CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts; + CallerMetrics.NumRets += CalleeMetrics.NumRets; + + // analyzeBasicBlock counts each function argument as an inst. + if (CallerMetrics.NumInsts >= Callee->arg_size()) + CallerMetrics.NumInsts -= Callee->arg_size(); + else + CallerMetrics.NumInsts = 0; + + // We are not updating the argument weights. We have already determined that + // Caller is a fairly large function, so we accept the loss of precision. +} + +/// clear - empty the cache of inline costs +void InlineCostAnalyzer::clear() { + CachedFunctionInfo.clear(); +} |