diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/IPA')
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/CMakeLists.txt | 6 | ||||
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/CallGraph.cpp | 323 | ||||
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp | 609 | ||||
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp | 103 | ||||
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp | 579 | ||||
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/Makefile | 15 |
6 files changed, 1635 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt b/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt new file mode 100644 index 0000000..007ad22 --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt @@ -0,0 +1,6 @@ +add_llvm_library(LLVMipa + CallGraph.cpp + CallGraphSCCPass.cpp + FindUsedTypes.cpp + GlobalsModRef.cpp + ) diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp new file mode 100644 index 0000000..2bde56d7 --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp @@ -0,0 +1,323 @@ +//===- CallGraph.cpp - Build a Module's call graph ------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the CallGraph class and provides the BasicCallGraph +// default implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +namespace { + +//===----------------------------------------------------------------------===// +// BasicCallGraph class definition +// +class BasicCallGraph : public ModulePass, public CallGraph { + // Root is root of the call graph, or the external node if a 'main' function + // couldn't be found. + // + CallGraphNode *Root; + + // ExternalCallingNode - This node has edges to all external functions and + // those internal functions that have their address taken. + CallGraphNode *ExternalCallingNode; + + // CallsExternalNode - This node has edges to it from all functions making + // indirect calls or calling an external function. + CallGraphNode *CallsExternalNode; + +public: + static char ID; // Class identification, replacement for typeinfo + BasicCallGraph() : ModulePass(&ID), Root(0), + ExternalCallingNode(0), CallsExternalNode(0) {} + + // runOnModule - Compute the call graph for the specified module. + virtual bool runOnModule(Module &M) { + CallGraph::initialize(M); + + ExternalCallingNode = getOrInsertFunction(0); + CallsExternalNode = new CallGraphNode(0); + Root = 0; + + // Add every function to the call graph. + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + addToCallGraph(I); + + // If we didn't find a main function, use the external call graph node + if (Root == 0) Root = ExternalCallingNode; + + return false; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + + virtual void print(raw_ostream &OS, const Module *) const { + OS << "CallGraph Root is: "; + if (Function *F = getRoot()->getFunction()) + OS << F->getName() << "\n"; + else { + OS << "<<null function: 0x" << getRoot() << ">>\n"; + } + + CallGraph::print(OS, 0); + } + + virtual void releaseMemory() { + destroy(); + } + + /// getAdjustedAnalysisPointer - This method is used when a pass implements + /// an analysis interface through multiple inheritance. If needed, it should + /// override this to adjust the this pointer as needed for the specified pass + /// info. + virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { + if (PI->isPassID(&CallGraph::ID)) + return (CallGraph*)this; + return this; + } + + CallGraphNode* getExternalCallingNode() const { return ExternalCallingNode; } + CallGraphNode* getCallsExternalNode() const { return CallsExternalNode; } + + // getRoot - Return the root of the call graph, which is either main, or if + // main cannot be found, the external node. + // + CallGraphNode *getRoot() { return Root; } + const CallGraphNode *getRoot() const { return Root; } + +private: + //===--------------------------------------------------------------------- + // Implementation of CallGraph construction + // + + // addToCallGraph - Add a function to the call graph, and link the node to all + // of the functions that it calls. + // + void addToCallGraph(Function *F) { + CallGraphNode *Node = getOrInsertFunction(F); + + // If this function has external linkage, anything could call it. + if (!F->hasLocalLinkage()) { + ExternalCallingNode->addCalledFunction(CallSite(), Node); + + // Found the entry point? + if (F->getName() == "main") { + if (Root) // Found multiple external mains? Don't pick one. + Root = ExternalCallingNode; + else + Root = Node; // Found a main, keep track of it! + } + } + + // Loop over all of the users of the function, looking for non-call uses. + for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; ++I) + if ((!isa<CallInst>(I) && !isa<InvokeInst>(I)) + || !CallSite(cast<Instruction>(I)).isCallee(I)) { + // Not a call, or being used as a parameter rather than as the callee. + ExternalCallingNode->addCalledFunction(CallSite(), Node); + break; + } + + // If this function is not defined in this translation unit, it could call + // anything. + if (F->isDeclaration() && !F->isIntrinsic()) + Node->addCalledFunction(CallSite(), CallsExternalNode); + + // Look for calls by this function. + for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) + for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); + II != IE; ++II) { + CallSite CS = CallSite::get(II); + if (CS.getInstruction() && !isa<DbgInfoIntrinsic>(II)) { + const Function *Callee = CS.getCalledFunction(); + if (Callee) + Node->addCalledFunction(CS, getOrInsertFunction(Callee)); + else + Node->addCalledFunction(CS, CallsExternalNode); + } + } + } + + // + // destroy - Release memory for the call graph + virtual void destroy() { + /// CallsExternalNode is not in the function map, delete it explicitly. + if (CallsExternalNode) { + CallsExternalNode->allReferencesDropped(); + delete CallsExternalNode; + CallsExternalNode = 0; + } + CallGraph::destroy(); + } +}; + +} //End anonymous namespace + +static RegisterAnalysisGroup<CallGraph> X("Call Graph"); +static RegisterPass<BasicCallGraph> +Y("basiccg", "Basic CallGraph Construction", false, true); +static RegisterAnalysisGroup<CallGraph, true> Z(Y); + +char CallGraph::ID = 0; +char BasicCallGraph::ID = 0; + +void CallGraph::initialize(Module &M) { + Mod = &M; +} + +void CallGraph::destroy() { + if (FunctionMap.empty()) return; + + // Reset all node's use counts to zero before deleting them to prevent an + // assertion from firing. +#ifndef NDEBUG + for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end(); + I != E; ++I) + I->second->allReferencesDropped(); +#endif + + for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end(); + I != E; ++I) + delete I->second; + FunctionMap.clear(); +} + +void CallGraph::print(raw_ostream &OS, Module*) const { + for (CallGraph::const_iterator I = begin(), E = end(); I != E; ++I) + I->second->print(OS); +} +void CallGraph::dump() const { + print(dbgs(), 0); +} + +//===----------------------------------------------------------------------===// +// Implementations of public modification methods +// + +// removeFunctionFromModule - Unlink the function from this module, returning +// it. Because this removes the function from the module, the call graph node +// is destroyed. This is only valid if the function does not call any other +// functions (ie, there are no edges in it's CGN). The easiest way to do this +// is to dropAllReferences before calling this. +// +Function *CallGraph::removeFunctionFromModule(CallGraphNode *CGN) { + assert(CGN->empty() && "Cannot remove function from call " + "graph if it references other functions!"); + Function *F = CGN->getFunction(); // Get the function for the call graph node + delete CGN; // Delete the call graph node for this func + FunctionMap.erase(F); // Remove the call graph node from the map + + Mod->getFunctionList().remove(F); + return F; +} + +// getOrInsertFunction - This method is identical to calling operator[], but +// it will insert a new CallGraphNode for the specified function if one does +// not already exist. +CallGraphNode *CallGraph::getOrInsertFunction(const Function *F) { + CallGraphNode *&CGN = FunctionMap[F]; + if (CGN) return CGN; + + assert((!F || F->getParent() == Mod) && "Function not in current module!"); + return CGN = new CallGraphNode(const_cast<Function*>(F)); +} + +void CallGraphNode::print(raw_ostream &OS) const { + if (Function *F = getFunction()) + OS << "Call graph node for function: '" << F->getName() << "'"; + else + OS << "Call graph node <<null function>>"; + + OS << "<<" << this << ">> #uses=" << getNumReferences() << '\n'; + + for (const_iterator I = begin(), E = end(); I != E; ++I) { + OS << " CS<" << I->first << "> calls "; + if (Function *FI = I->second->getFunction()) + OS << "function '" << FI->getName() <<"'\n"; + else + OS << "external node\n"; + } + OS << '\n'; +} + +void CallGraphNode::dump() const { print(dbgs()); } + +/// removeCallEdgeFor - This method removes the edge in the node for the +/// specified call site. Note that this method takes linear time, so it +/// should be used sparingly. +void CallGraphNode::removeCallEdgeFor(CallSite CS) { + for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) { + assert(I != CalledFunctions.end() && "Cannot find callsite to remove!"); + if (I->first == CS.getInstruction()) { + I->second->DropRef(); + *I = CalledFunctions.back(); + CalledFunctions.pop_back(); + return; + } + } +} + + +// removeAnyCallEdgeTo - This method removes any call edges from this node to +// the specified callee function. This takes more time to execute than +// removeCallEdgeTo, so it should not be used unless necessary. +void CallGraphNode::removeAnyCallEdgeTo(CallGraphNode *Callee) { + for (unsigned i = 0, e = CalledFunctions.size(); i != e; ++i) + if (CalledFunctions[i].second == Callee) { + Callee->DropRef(); + CalledFunctions[i] = CalledFunctions.back(); + CalledFunctions.pop_back(); + --i; --e; + } +} + +/// removeOneAbstractEdgeTo - Remove one edge associated with a null callsite +/// from this node to the specified callee function. +void CallGraphNode::removeOneAbstractEdgeTo(CallGraphNode *Callee) { + for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) { + assert(I != CalledFunctions.end() && "Cannot find callee to remove!"); + CallRecord &CR = *I; + if (CR.second == Callee && CR.first == 0) { + Callee->DropRef(); + *I = CalledFunctions.back(); + CalledFunctions.pop_back(); + return; + } + } +} + +/// replaceCallEdge - This method replaces the edge in the node for the +/// specified call site with a new one. Note that this method takes linear +/// time, so it should be used sparingly. +void CallGraphNode::replaceCallEdge(CallSite CS, + CallSite NewCS, CallGraphNode *NewNode){ + for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) { + assert(I != CalledFunctions.end() && "Cannot find callsite to remove!"); + if (I->first == CS.getInstruction()) { + I->second->DropRef(); + I->first = NewCS.getInstruction(); + I->second = NewNode; + NewNode->AddRef(); + return; + } + } +} + +// Enuse that users of CallGraph.h also link with this file +DEFINING_FILE_FOR(CallGraph) diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp new file mode 100644 index 0000000..0c01ee5 --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp @@ -0,0 +1,609 @@ +//===- CallGraphSCCPass.cpp - Pass that operates BU on call graph ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the CallGraphSCCPass class, which is used for passes +// which are implemented as bottom-up traversals on the call graph. Because +// there may be cycles in the call graph, passes of this type operate on the +// call-graph in SCC order: that is, they process function bottom-up, except for +// recursive functions, which they process all at once. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "cgscc-passmgr" +#include "llvm/CallGraphSCCPass.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Function.h" +#include "llvm/PassManagers.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Timer.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +static cl::opt<unsigned> +MaxIterations("max-cg-scc-iterations", cl::ReallyHidden, cl::init(4)); + +STATISTIC(MaxSCCIterations, "Maximum CGSCCPassMgr iterations on one SCC"); + +//===----------------------------------------------------------------------===// +// CGPassManager +// +/// CGPassManager manages FPPassManagers and CallGraphSCCPasses. + +namespace { + +class CGPassManager : public ModulePass, public PMDataManager { +public: + static char ID; + explicit CGPassManager(int Depth) + : ModulePass(&ID), PMDataManager(Depth) { } + + /// run - Execute all of the passes scheduled for execution. Keep track of + /// whether any of the passes modifies the module, and if so, return true. + bool runOnModule(Module &M); + + bool doInitialization(CallGraph &CG); + bool doFinalization(CallGraph &CG); + + /// Pass Manager itself does not invalidate any analysis info. + void getAnalysisUsage(AnalysisUsage &Info) const { + // CGPassManager walks SCC and it needs CallGraph. + Info.addRequired<CallGraph>(); + Info.setPreservesAll(); + } + + virtual const char *getPassName() const { + return "CallGraph Pass Manager"; + } + + virtual PMDataManager *getAsPMDataManager() { return this; } + virtual Pass *getAsPass() { return this; } + + // Print passes managed by this manager + void dumpPassStructure(unsigned Offset) { + errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n"; + for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { + Pass *P = getContainedPass(Index); + P->dumpPassStructure(Offset + 1); + dumpLastUses(P, Offset+1); + } + } + + Pass *getContainedPass(unsigned N) { + assert(N < PassVector.size() && "Pass number out of range!"); + return static_cast<Pass *>(PassVector[N]); + } + + virtual PassManagerType getPassManagerType() const { + return PMT_CallGraphPassManager; + } + +private: + bool RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG, + bool &DevirtualizedCall); + + bool RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC, + CallGraph &CG, bool &CallGraphUpToDate, + bool &DevirtualizedCall); + bool RefreshCallGraph(CallGraphSCC &CurSCC, CallGraph &CG, + bool IsCheckingMode); +}; + +} // end anonymous namespace. + +char CGPassManager::ID = 0; + + +bool CGPassManager::RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC, + CallGraph &CG, bool &CallGraphUpToDate, + bool &DevirtualizedCall) { + bool Changed = false; + PMDataManager *PM = P->getAsPMDataManager(); + + if (PM == 0) { + CallGraphSCCPass *CGSP = (CallGraphSCCPass*)P; + if (!CallGraphUpToDate) { + DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false); + CallGraphUpToDate = true; + } + + { + TimeRegion PassTimer(getPassTimer(CGSP)); + Changed = CGSP->runOnSCC(CurSCC); + } + + // After the CGSCCPass is done, when assertions are enabled, use + // RefreshCallGraph to verify that the callgraph was correctly updated. +#ifndef NDEBUG + if (Changed) + RefreshCallGraph(CurSCC, CG, true); +#endif + + return Changed; + } + + + assert(PM->getPassManagerType() == PMT_FunctionPassManager && + "Invalid CGPassManager member"); + FPPassManager *FPP = (FPPassManager*)P; + + // Run pass P on all functions in the current SCC. + for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); + I != E; ++I) { + if (Function *F = (*I)->getFunction()) { + dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName()); + TimeRegion PassTimer(getPassTimer(FPP)); + Changed |= FPP->runOnFunction(*F); + } + } + + // The function pass(es) modified the IR, they may have clobbered the + // callgraph. + if (Changed && CallGraphUpToDate) { + DEBUG(dbgs() << "CGSCCPASSMGR: Pass Dirtied SCC: " + << P->getPassName() << '\n'); + CallGraphUpToDate = false; + } + return Changed; +} + + +/// RefreshCallGraph - Scan the functions in the specified CFG and resync the +/// callgraph with the call sites found in it. This is used after +/// FunctionPasses have potentially munged the callgraph, and can be used after +/// CallGraphSCC passes to verify that they correctly updated the callgraph. +/// +/// This function returns true if it devirtualized an existing function call, +/// meaning it turned an indirect call into a direct call. This happens when +/// a function pass like GVN optimizes away stuff feeding the indirect call. +/// This never happens in checking mode. +/// +bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC, + CallGraph &CG, bool CheckingMode) { + DenseMap<Value*, CallGraphNode*> CallSites; + + DEBUG(dbgs() << "CGSCCPASSMGR: Refreshing SCC with " << CurSCC.size() + << " nodes:\n"; + for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); + I != E; ++I) + (*I)->dump(); + ); + + bool MadeChange = false; + bool DevirtualizedCall = false; + + // Scan all functions in the SCC. + unsigned FunctionNo = 0; + for (CallGraphSCC::iterator SCCIdx = CurSCC.begin(), E = CurSCC.end(); + SCCIdx != E; ++SCCIdx, ++FunctionNo) { + CallGraphNode *CGN = *SCCIdx; + Function *F = CGN->getFunction(); + if (F == 0 || F->isDeclaration()) continue; + + // Walk the function body looking for call sites. Sync up the call sites in + // CGN with those actually in the function. + + // Keep track of the number of direct and indirect calls that were + // invalidated and removed. + unsigned NumDirectRemoved = 0, NumIndirectRemoved = 0; + + // Get the set of call sites currently in the function. + for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) { + // If this call site is null, then the function pass deleted the call + // entirely and the WeakVH nulled it out. + if (I->first == 0 || + // If we've already seen this call site, then the FunctionPass RAUW'd + // one call with another, which resulted in two "uses" in the edge + // list of the same call. + CallSites.count(I->first) || + + // If the call edge is not from a call or invoke, then the function + // pass RAUW'd a call with another value. This can happen when + // constant folding happens of well known functions etc. + CallSite::get(I->first).getInstruction() == 0) { + assert(!CheckingMode && + "CallGraphSCCPass did not update the CallGraph correctly!"); + + // If this was an indirect call site, count it. + if (I->second->getFunction() == 0) + ++NumIndirectRemoved; + else + ++NumDirectRemoved; + + // Just remove the edge from the set of callees, keep track of whether + // I points to the last element of the vector. + bool WasLast = I + 1 == E; + CGN->removeCallEdge(I); + + // If I pointed to the last element of the vector, we have to bail out: + // iterator checking rejects comparisons of the resultant pointer with + // end. + if (WasLast) + break; + E = CGN->end(); + continue; + } + + assert(!CallSites.count(I->first) && + "Call site occurs in node multiple times"); + CallSites.insert(std::make_pair(I->first, I->second)); + ++I; + } + + // Loop over all of the instructions in the function, getting the callsites. + // Keep track of the number of direct/indirect calls added. + unsigned NumDirectAdded = 0, NumIndirectAdded = 0; + + for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + CallSite CS = CallSite::get(I); + if (!CS.getInstruction() || isa<DbgInfoIntrinsic>(I)) continue; + + // If this call site already existed in the callgraph, just verify it + // matches up to expectations and remove it from CallSites. + DenseMap<Value*, CallGraphNode*>::iterator ExistingIt = + CallSites.find(CS.getInstruction()); + if (ExistingIt != CallSites.end()) { + CallGraphNode *ExistingNode = ExistingIt->second; + + // Remove from CallSites since we have now seen it. + CallSites.erase(ExistingIt); + + // Verify that the callee is right. + if (ExistingNode->getFunction() == CS.getCalledFunction()) + continue; + + // If we are in checking mode, we are not allowed to actually mutate + // the callgraph. If this is a case where we can infer that the + // callgraph is less precise than it could be (e.g. an indirect call + // site could be turned direct), don't reject it in checking mode, and + // don't tweak it to be more precise. + if (CheckingMode && CS.getCalledFunction() && + ExistingNode->getFunction() == 0) + continue; + + assert(!CheckingMode && + "CallGraphSCCPass did not update the CallGraph correctly!"); + + // If not, we either went from a direct call to indirect, indirect to + // direct, or direct to different direct. + CallGraphNode *CalleeNode; + if (Function *Callee = CS.getCalledFunction()) { + CalleeNode = CG.getOrInsertFunction(Callee); + // Keep track of whether we turned an indirect call into a direct + // one. + if (ExistingNode->getFunction() == 0) { + DevirtualizedCall = true; + DEBUG(dbgs() << " CGSCCPASSMGR: Devirtualized call to '" + << Callee->getName() << "'\n"); + } + } else { + CalleeNode = CG.getCallsExternalNode(); + } + + // Update the edge target in CGN. + CGN->replaceCallEdge(CS, CS, CalleeNode); + MadeChange = true; + continue; + } + + assert(!CheckingMode && + "CallGraphSCCPass did not update the CallGraph correctly!"); + + // If the call site didn't exist in the CGN yet, add it. + CallGraphNode *CalleeNode; + if (Function *Callee = CS.getCalledFunction()) { + CalleeNode = CG.getOrInsertFunction(Callee); + ++NumDirectAdded; + } else { + CalleeNode = CG.getCallsExternalNode(); + ++NumIndirectAdded; + } + + CGN->addCalledFunction(CS, CalleeNode); + MadeChange = true; + } + + // We scanned the old callgraph node, removing invalidated call sites and + // then added back newly found call sites. One thing that can happen is + // that an old indirect call site was deleted and replaced with a new direct + // call. In this case, we have devirtualized a call, and CGSCCPM would like + // to iteratively optimize the new code. Unfortunately, we don't really + // have a great way to detect when this happens. As an approximation, we + // just look at whether the number of indirect calls is reduced and the + // number of direct calls is increased. There are tons of ways to fool this + // (e.g. DCE'ing an indirect call and duplicating an unrelated block with a + // direct call) but this is close enough. + if (NumIndirectRemoved > NumIndirectAdded && + NumDirectRemoved < NumDirectAdded) + DevirtualizedCall = true; + + // After scanning this function, if we still have entries in callsites, then + // they are dangling pointers. WeakVH should save us for this, so abort if + // this happens. + assert(CallSites.empty() && "Dangling pointers found in call sites map"); + + // Periodically do an explicit clear to remove tombstones when processing + // large scc's. + if ((FunctionNo & 15) == 15) + CallSites.clear(); + } + + DEBUG(if (MadeChange) { + dbgs() << "CGSCCPASSMGR: Refreshed SCC is now:\n"; + for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); + I != E; ++I) + (*I)->dump(); + if (DevirtualizedCall) + dbgs() << "CGSCCPASSMGR: Refresh devirtualized a call!\n"; + + } else { + dbgs() << "CGSCCPASSMGR: SCC Refresh didn't change call graph.\n"; + } + ); + + return DevirtualizedCall; +} + +/// RunAllPassesOnSCC - Execute the body of the entire pass manager on the +/// specified SCC. This keeps track of whether a function pass devirtualizes +/// any calls and returns it in DevirtualizedCall. +bool CGPassManager::RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG, + bool &DevirtualizedCall) { + bool Changed = false; + + // CallGraphUpToDate - Keep track of whether the callgraph is known to be + // up-to-date or not. The CGSSC pass manager runs two types of passes: + // CallGraphSCC Passes and other random function passes. Because other + // random function passes are not CallGraph aware, they may clobber the + // call graph by introducing new calls or deleting other ones. This flag + // is set to false when we run a function pass so that we know to clean up + // the callgraph when we need to run a CGSCCPass again. + bool CallGraphUpToDate = true; + + // Run all passes on current SCC. + for (unsigned PassNo = 0, e = getNumContainedPasses(); + PassNo != e; ++PassNo) { + Pass *P = getContainedPass(PassNo); + + // If we're in -debug-pass=Executions mode, construct the SCC node list, + // otherwise avoid constructing this string as it is expensive. + if (isPassDebuggingExecutionsOrMore()) { + std::string Functions; + #ifndef NDEBUG + raw_string_ostream OS(Functions); + for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); + I != E; ++I) { + if (I != CurSCC.begin()) OS << ", "; + (*I)->print(OS); + } + OS.flush(); + #endif + dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, Functions); + } + dumpRequiredSet(P); + + initializeAnalysisImpl(P); + + // Actually run this pass on the current SCC. + Changed |= RunPassOnSCC(P, CurSCC, CG, + CallGraphUpToDate, DevirtualizedCall); + + if (Changed) + dumpPassInfo(P, MODIFICATION_MSG, ON_CG_MSG, ""); + dumpPreservedSet(P); + + verifyPreservedAnalysis(P); + removeNotPreservedAnalysis(P); + recordAvailableAnalysis(P); + removeDeadPasses(P, "", ON_CG_MSG); + } + + // If the callgraph was left out of date (because the last pass run was a + // functionpass), refresh it before we move on to the next SCC. + if (!CallGraphUpToDate) + DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false); + return Changed; +} + +/// run - Execute all of the passes scheduled for execution. Keep track of +/// whether any of the passes modifies the module, and if so, return true. +bool CGPassManager::runOnModule(Module &M) { + CallGraph &CG = getAnalysis<CallGraph>(); + bool Changed = doInitialization(CG); + + // Walk the callgraph in bottom-up SCC order. + scc_iterator<CallGraph*> CGI = scc_begin(&CG); + + CallGraphSCC CurSCC(&CGI); + while (!CGI.isAtEnd()) { + // Copy the current SCC and increment past it so that the pass can hack + // on the SCC if it wants to without invalidating our iterator. + std::vector<CallGraphNode*> &NodeVec = *CGI; + CurSCC.initialize(&NodeVec[0], &NodeVec[0]+NodeVec.size()); + ++CGI; + + // At the top level, we run all the passes in this pass manager on the + // functions in this SCC. However, we support iterative compilation in the + // case where a function pass devirtualizes a call to a function. For + // example, it is very common for a function pass (often GVN or instcombine) + // to eliminate the addressing that feeds into a call. With that improved + // information, we would like the call to be an inline candidate, infer + // mod-ref information etc. + // + // Because of this, we allow iteration up to a specified iteration count. + // This only happens in the case of a devirtualized call, so we only burn + // compile time in the case that we're making progress. We also have a hard + // iteration count limit in case there is crazy code. + unsigned Iteration = 0; + bool DevirtualizedCall = false; + do { + DEBUG(if (Iteration) + dbgs() << " SCCPASSMGR: Re-visiting SCC, iteration #" + << Iteration << '\n'); + DevirtualizedCall = false; + Changed |= RunAllPassesOnSCC(CurSCC, CG, DevirtualizedCall); + } while (Iteration++ < MaxIterations && DevirtualizedCall); + + if (DevirtualizedCall) + DEBUG(dbgs() << " CGSCCPASSMGR: Stopped iteration after " << Iteration + << " times, due to -max-cg-scc-iterations\n"); + + if (Iteration > MaxSCCIterations) + MaxSCCIterations = Iteration; + + } + Changed |= doFinalization(CG); + return Changed; +} + + +/// Initialize CG +bool CGPassManager::doInitialization(CallGraph &CG) { + bool Changed = false; + for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) { + if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) { + assert(PM->getPassManagerType() == PMT_FunctionPassManager && + "Invalid CGPassManager member"); + Changed |= ((FPPassManager*)PM)->doInitialization(CG.getModule()); + } else { + Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doInitialization(CG); + } + } + return Changed; +} + +/// Finalize CG +bool CGPassManager::doFinalization(CallGraph &CG) { + bool Changed = false; + for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) { + if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) { + assert(PM->getPassManagerType() == PMT_FunctionPassManager && + "Invalid CGPassManager member"); + Changed |= ((FPPassManager*)PM)->doFinalization(CG.getModule()); + } else { + Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doFinalization(CG); + } + } + return Changed; +} + +//===----------------------------------------------------------------------===// +// CallGraphSCC Implementation +//===----------------------------------------------------------------------===// + +/// ReplaceNode - This informs the SCC and the pass manager that the specified +/// Old node has been deleted, and New is to be used in its place. +void CallGraphSCC::ReplaceNode(CallGraphNode *Old, CallGraphNode *New) { + assert(Old != New && "Should not replace node with self"); + for (unsigned i = 0; ; ++i) { + assert(i != Nodes.size() && "Node not in SCC"); + if (Nodes[i] != Old) continue; + Nodes[i] = New; + break; + } + + // Update the active scc_iterator so that it doesn't contain dangling + // pointers to the old CallGraphNode. + scc_iterator<CallGraph*> *CGI = (scc_iterator<CallGraph*>*)Context; + CGI->ReplaceNode(Old, New); +} + + +//===----------------------------------------------------------------------===// +// CallGraphSCCPass Implementation +//===----------------------------------------------------------------------===// + +/// Assign pass manager to manage this pass. +void CallGraphSCCPass::assignPassManager(PMStack &PMS, + PassManagerType PreferredType) { + // Find CGPassManager + while (!PMS.empty() && + PMS.top()->getPassManagerType() > PMT_CallGraphPassManager) + PMS.pop(); + + assert(!PMS.empty() && "Unable to handle Call Graph Pass"); + CGPassManager *CGP; + + if (PMS.top()->getPassManagerType() == PMT_CallGraphPassManager) + CGP = (CGPassManager*)PMS.top(); + else { + // Create new Call Graph SCC Pass Manager if it does not exist. + assert(!PMS.empty() && "Unable to create Call Graph Pass Manager"); + PMDataManager *PMD = PMS.top(); + + // [1] Create new Call Graph Pass Manager + CGP = new CGPassManager(PMD->getDepth() + 1); + + // [2] Set up new manager's top level manager + PMTopLevelManager *TPM = PMD->getTopLevelManager(); + TPM->addIndirectPassManager(CGP); + + // [3] Assign manager to manage this new manager. This may create + // and push new managers into PMS + Pass *P = CGP; + TPM->schedulePass(P); + + // [4] Push new manager into PMS + PMS.push(CGP); + } + + CGP->add(this); +} + +/// getAnalysisUsage - For this class, we declare that we require and preserve +/// the call graph. If the derived class implements this method, it should +/// always explicitly call the implementation here. +void CallGraphSCCPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<CallGraph>(); + AU.addPreserved<CallGraph>(); +} + + +//===----------------------------------------------------------------------===// +// PrintCallGraphPass Implementation +//===----------------------------------------------------------------------===// + +namespace { + /// PrintCallGraphPass - Print a Module corresponding to a call graph. + /// + class PrintCallGraphPass : public CallGraphSCCPass { + std::string Banner; + raw_ostream &Out; // raw_ostream to print on. + + public: + static char ID; + PrintCallGraphPass() : CallGraphSCCPass(&ID), Out(dbgs()) {} + PrintCallGraphPass(const std::string &B, raw_ostream &o) + : CallGraphSCCPass(&ID), Banner(B), Out(o) {} + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + + bool runOnSCC(CallGraphSCC &SCC) { + Out << Banner; + for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) + (*I)->getFunction()->print(Out); + return false; + } + }; + +} // end anonymous namespace. + +char PrintCallGraphPass::ID = 0; + +Pass *CallGraphSCCPass::createPrinterPass(raw_ostream &O, + const std::string &Banner) const { + return new PrintCallGraphPass(Banner, O); +} + diff --git a/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp b/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp new file mode 100644 index 0000000..c4fb0b9 --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp @@ -0,0 +1,103 @@ +//===- FindUsedTypes.cpp - Find all Types used by a module ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass is used to seek out all of the types in use by the program. Note +// that this analysis explicitly does not include types only used by the symbol +// table. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/FindUsedTypes.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +char FindUsedTypes::ID = 0; +static RegisterPass<FindUsedTypes> +X("print-used-types", "Find Used Types", false, true); + +// IncorporateType - Incorporate one type and all of its subtypes into the +// collection of used types. +// +void FindUsedTypes::IncorporateType(const Type *Ty) { + // If ty doesn't already exist in the used types map, add it now, otherwise + // return. + if (!UsedTypes.insert(Ty).second) return; // Already contain Ty. + + // Make sure to add any types this type references now. + // + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + IncorporateType(*I); +} + +void FindUsedTypes::IncorporateValue(const Value *V) { + IncorporateType(V->getType()); + + // If this is a constant, it could be using other types... + if (const Constant *C = dyn_cast<Constant>(V)) { + if (!isa<GlobalValue>(C)) + for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } +} + + +// run - This incorporates all types used by the specified module +// +bool FindUsedTypes::runOnModule(Module &m) { + UsedTypes.clear(); // reset if run multiple times... + + // Loop over global variables, incorporating their types + for (Module::const_global_iterator I = m.global_begin(), E = m.global_end(); + I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + for (Module::iterator MI = m.begin(), ME = m.end(); MI != ME; ++MI) { + IncorporateType(MI->getType()); + const Function &F = *MI; + + // Loop over all of the instructions in the function, adding their return + // type as well as the types of their operands. + // + for (const_inst_iterator II = inst_begin(F), IE = inst_end(F); + II != IE; ++II) { + const Instruction &I = *II; + + IncorporateType(I.getType()); // Incorporate the type of the instruction + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); // Insert inst operand types as well + } + } + + return false; +} + +// Print the types found in the module. If the optional Module parameter is +// passed in, then the types are printed symbolically if possible, using the +// symbol table from the module. +// +void FindUsedTypes::print(raw_ostream &OS, const Module *M) const { + OS << "Types in use by this module:\n"; + for (std::set<const Type *>::const_iterator I = UsedTypes.begin(), + E = UsedTypes.end(); I != E; ++I) { + OS << " "; + WriteTypeSymbolic(OS, *I, M); + OS << '\n'; + } +} diff --git a/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp new file mode 100644 index 0000000..b14afa3 --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp @@ -0,0 +1,579 @@ +//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This simple pass provides alias and mod/ref information for global values +// that do not have their address taken, and keeps track of whether functions +// read or write memory (are "pure"). For this simple (but very common) case, +// we can provide pretty accurate and useful information. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "globalsmodref-aa" +#include "llvm/Analysis/Passes.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Instructions.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SCCIterator.h" +#include <set> +using namespace llvm; + +STATISTIC(NumNonAddrTakenGlobalVars, + "Number of global vars without address taken"); +STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); +STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); +STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); +STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); + +namespace { + /// FunctionRecord - One instance of this structure is stored for every + /// function in the program. Later, the entries for these functions are + /// removed if the function is found to call an external function (in which + /// case we know nothing about it. + struct FunctionRecord { + /// GlobalInfo - Maintain mod/ref info for all of the globals without + /// addresses taken that are read or written (transitively) by this + /// function. + std::map<GlobalValue*, unsigned> GlobalInfo; + + /// MayReadAnyGlobal - May read global variables, but it is not known which. + bool MayReadAnyGlobal; + + unsigned getInfoForGlobal(GlobalValue *GV) const { + unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0; + std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV); + if (I != GlobalInfo.end()) + Effect |= I->second; + return Effect; + } + + /// FunctionEffect - Capture whether or not this function reads or writes to + /// ANY memory. If not, we can do a lot of aggressive analysis on it. + unsigned FunctionEffect; + + FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {} + }; + + /// GlobalsModRef - The actual analysis pass. + class GlobalsModRef : public ModulePass, public AliasAnalysis { + /// NonAddressTakenGlobals - The globals that do not have their addresses + /// taken. + std::set<GlobalValue*> NonAddressTakenGlobals; + + /// IndirectGlobals - The memory pointed to by this global is known to be + /// 'owned' by the global. + std::set<GlobalValue*> IndirectGlobals; + + /// AllocsForIndirectGlobals - If an instruction allocates memory for an + /// indirect global, this map indicates which one. + std::map<Value*, GlobalValue*> AllocsForIndirectGlobals; + + /// FunctionInfo - For each function, keep track of what globals are + /// modified or read. + std::map<Function*, FunctionRecord> FunctionInfo; + + public: + static char ID; + GlobalsModRef() : ModulePass(&ID) {} + + bool runOnModule(Module &M) { + InitializeAliasAnalysis(this); // set up super class + AnalyzeGlobals(M); // find non-addr taken globals + AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG + return false; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AliasAnalysis::getAnalysisUsage(AU); + AU.addRequired<CallGraph>(); + AU.setPreservesAll(); // Does not transform code + } + + //------------------------------------------------ + // Implement the AliasAnalysis API + // + AliasResult alias(const Value *V1, unsigned V1Size, + const Value *V2, unsigned V2Size); + ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); + ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { + return AliasAnalysis::getModRefInfo(CS1,CS2); + } + + /// getModRefBehavior - Return the behavior of the specified function if + /// called from the specified call site. The call site may be null in which + /// case the most generic behavior of this function should be returned. + ModRefBehavior getModRefBehavior(Function *F, + std::vector<PointerAccessInfo> *Info) { + if (FunctionRecord *FR = getFunctionInfo(F)) { + if (FR->FunctionEffect == 0) + return DoesNotAccessMemory; + else if ((FR->FunctionEffect & Mod) == 0) + return OnlyReadsMemory; + } + return AliasAnalysis::getModRefBehavior(F, Info); + } + + /// getModRefBehavior - Return the behavior of the specified function if + /// called from the specified call site. The call site may be null in which + /// case the most generic behavior of this function should be returned. + ModRefBehavior getModRefBehavior(CallSite CS, + std::vector<PointerAccessInfo> *Info) { + Function* F = CS.getCalledFunction(); + if (!F) return AliasAnalysis::getModRefBehavior(CS, Info); + if (FunctionRecord *FR = getFunctionInfo(F)) { + if (FR->FunctionEffect == 0) + return DoesNotAccessMemory; + else if ((FR->FunctionEffect & Mod) == 0) + return OnlyReadsMemory; + } + return AliasAnalysis::getModRefBehavior(CS, Info); + } + + virtual void deleteValue(Value *V); + virtual void copyValue(Value *From, Value *To); + + /// getAdjustedAnalysisPointer - This method is used when a pass implements + /// an analysis interface through multiple inheritance. If needed, it + /// should override this to adjust the this pointer as needed for the + /// specified pass info. + virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { + if (PI->isPassID(&AliasAnalysis::ID)) + return (AliasAnalysis*)this; + return this; + } + + private: + /// getFunctionInfo - Return the function info for the function, or null if + /// we don't have anything useful to say about it. + FunctionRecord *getFunctionInfo(Function *F) { + std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F); + if (I != FunctionInfo.end()) + return &I->second; + return 0; + } + + void AnalyzeGlobals(Module &M); + void AnalyzeCallGraph(CallGraph &CG, Module &M); + bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers, + std::vector<Function*> &Writers, + GlobalValue *OkayStoreDest = 0); + bool AnalyzeIndirectGlobalMemory(GlobalValue *GV); + }; +} + +char GlobalsModRef::ID = 0; +static RegisterPass<GlobalsModRef> +X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true); +static RegisterAnalysisGroup<AliasAnalysis> Y(X); + +Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); } + +/// AnalyzeGlobals - Scan through the users of all of the internal +/// GlobalValue's in the program. If none of them have their "address taken" +/// (really, their address passed to something nontrivial), record this fact, +/// and record the functions that they are used directly in. +void GlobalsModRef::AnalyzeGlobals(Module &M) { + std::vector<Function*> Readers, Writers; + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + if (I->hasLocalLinkage()) { + if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { + // Remember that we are tracking this global. + NonAddressTakenGlobals.insert(I); + ++NumNonAddrTakenFunctions; + } + Readers.clear(); Writers.clear(); + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + if (I->hasLocalLinkage()) { + if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { + // Remember that we are tracking this global, and the mod/ref fns + NonAddressTakenGlobals.insert(I); + + for (unsigned i = 0, e = Readers.size(); i != e; ++i) + FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref; + + if (!I->isConstant()) // No need to keep track of writers to constants + for (unsigned i = 0, e = Writers.size(); i != e; ++i) + FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod; + ++NumNonAddrTakenGlobalVars; + + // If this global holds a pointer type, see if it is an indirect global. + if (I->getType()->getElementType()->isPointerTy() && + AnalyzeIndirectGlobalMemory(I)) + ++NumIndirectGlobalVars; + } + Readers.clear(); Writers.clear(); + } +} + +/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. +/// If this is used by anything complex (i.e., the address escapes), return +/// true. Also, while we are at it, keep track of those functions that read and +/// write to the value. +/// +/// If OkayStoreDest is non-null, stores into this global are allowed. +bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V, + std::vector<Function*> &Readers, + std::vector<Function*> &Writers, + GlobalValue *OkayStoreDest) { + if (!V->getType()->isPointerTy()) return true; + + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) + if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { + Readers.push_back(LI->getParent()->getParent()); + } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { + if (V == SI->getOperand(1)) { + Writers.push_back(SI->getParent()->getParent()); + } else if (SI->getOperand(1) != OkayStoreDest) { + return true; // Storing the pointer + } + } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { + if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true; + } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) { + if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest)) + return true; + } else if (isFreeCall(*UI)) { + Writers.push_back(cast<Instruction>(*UI)->getParent()->getParent()); + } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { + // Make sure that this is just the function being called, not that it is + // passing into the function. + for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) + if (CI->getOperand(i) == V) return true; + } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { + // Make sure that this is just the function being called, not that it is + // passing into the function. + for (unsigned i = 0, e = II->getNumOperands() - 3; i != e; ++i) + if (II->getOperand(i) == V) return true; + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { + if (CE->getOpcode() == Instruction::GetElementPtr || + CE->getOpcode() == Instruction::BitCast) { + if (AnalyzeUsesOfPointer(CE, Readers, Writers)) + return true; + } else { + return true; + } + } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) { + if (!isa<ConstantPointerNull>(ICI->getOperand(1))) + return true; // Allow comparison against null. + } else { + return true; + } + return false; +} + +/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable +/// which holds a pointer type. See if the global always points to non-aliased +/// heap memory: that is, all initializers of the globals are allocations, and +/// those allocations have no use other than initialization of the global. +/// Further, all loads out of GV must directly use the memory, not store the +/// pointer somewhere. If this is true, we consider the memory pointed to by +/// GV to be owned by GV and can disambiguate other pointers from it. +bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) { + // Keep track of values related to the allocation of the memory, f.e. the + // value produced by the malloc call and any casts. + std::vector<Value*> AllocRelatedValues; + + // Walk the user list of the global. If we find anything other than a direct + // load or store, bail out. + for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ + if (LoadInst *LI = dyn_cast<LoadInst>(*I)) { + // The pointer loaded from the global can only be used in simple ways: + // we allow addressing of it and loading storing to it. We do *not* allow + // storing the loaded pointer somewhere else or passing to a function. + std::vector<Function*> ReadersWriters; + if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters)) + return false; // Loaded pointer escapes. + // TODO: Could try some IP mod/ref of the loaded pointer. + } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) { + // Storing the global itself. + if (SI->getOperand(0) == GV) return false; + + // If storing the null pointer, ignore it. + if (isa<ConstantPointerNull>(SI->getOperand(0))) + continue; + + // Check the value being stored. + Value *Ptr = SI->getOperand(0)->getUnderlyingObject(); + + if (isMalloc(Ptr)) { + // Okay, easy case. + } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) { + Function *F = CI->getCalledFunction(); + if (!F || !F->isDeclaration()) return false; // Too hard to analyze. + if (F->getName() != "calloc") return false; // Not calloc. + } else { + return false; // Too hard to analyze. + } + + // Analyze all uses of the allocation. If any of them are used in a + // non-simple way (e.g. stored to another global) bail out. + std::vector<Function*> ReadersWriters; + if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV)) + return false; // Loaded pointer escapes. + + // Remember that this allocation is related to the indirect global. + AllocRelatedValues.push_back(Ptr); + } else { + // Something complex, bail out. + return false; + } + } + + // Okay, this is an indirect global. Remember all of the allocations for + // this global in AllocsForIndirectGlobals. + while (!AllocRelatedValues.empty()) { + AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; + AllocRelatedValues.pop_back(); + } + IndirectGlobals.insert(GV); + return true; +} + +/// AnalyzeCallGraph - At this point, we know the functions where globals are +/// immediately stored to and read from. Propagate this information up the call +/// graph to all callers and compute the mod/ref info for all memory for each +/// function. +void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) { + // We do a bottom-up SCC traversal of the call graph. In other words, we + // visit all callees before callers (leaf-first). + for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E; + ++I) { + std::vector<CallGraphNode *> &SCC = *I; + assert(!SCC.empty() && "SCC with no functions?"); + + if (!SCC[0]->getFunction()) { + // Calls externally - can't say anything useful. Remove any existing + // function records (may have been created when scanning globals). + for (unsigned i = 0, e = SCC.size(); i != e; ++i) + FunctionInfo.erase(SCC[i]->getFunction()); + continue; + } + + FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()]; + + bool KnowNothing = false; + unsigned FunctionEffect = 0; + + // Collect the mod/ref properties due to called functions. We only compute + // one mod-ref set. + for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { + Function *F = SCC[i]->getFunction(); + if (!F) { + KnowNothing = true; + break; + } + + if (F->isDeclaration()) { + // Try to get mod/ref behaviour from function attributes. + if (F->doesNotAccessMemory()) { + // Can't do better than that! + } else if (F->onlyReadsMemory()) { + FunctionEffect |= Ref; + if (!F->isIntrinsic()) + // This function might call back into the module and read a global - + // consider every global as possibly being read by this function. + FR.MayReadAnyGlobal = true; + } else { + FunctionEffect |= ModRef; + // Can't say anything useful unless it's an intrinsic - they don't + // read or write global variables of the kind considered here. + KnowNothing = !F->isIntrinsic(); + } + continue; + } + + for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); + CI != E && !KnowNothing; ++CI) + if (Function *Callee = CI->second->getFunction()) { + if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) { + // Propagate function effect up. + FunctionEffect |= CalleeFR->FunctionEffect; + + // Incorporate callee's effects on globals into our info. + for (std::map<GlobalValue*, unsigned>::iterator GI = + CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end(); + GI != E; ++GI) + FR.GlobalInfo[GI->first] |= GI->second; + FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal; + } else { + // Can't say anything about it. However, if it is inside our SCC, + // then nothing needs to be done. + CallGraphNode *CalleeNode = CG[Callee]; + if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) + KnowNothing = true; + } + } else { + KnowNothing = true; + } + } + + // If we can't say anything useful about this SCC, remove all SCC functions + // from the FunctionInfo map. + if (KnowNothing) { + for (unsigned i = 0, e = SCC.size(); i != e; ++i) + FunctionInfo.erase(SCC[i]->getFunction()); + continue; + } + + // Scan the function bodies for explicit loads or stores. + for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i) + for (inst_iterator II = inst_begin(SCC[i]->getFunction()), + E = inst_end(SCC[i]->getFunction()); + II != E && FunctionEffect != ModRef; ++II) + if (isa<LoadInst>(*II)) { + FunctionEffect |= Ref; + if (cast<LoadInst>(*II).isVolatile()) + // Volatile loads may have side-effects, so mark them as writing + // memory (for example, a flag inside the processor). + FunctionEffect |= Mod; + } else if (isa<StoreInst>(*II)) { + FunctionEffect |= Mod; + if (cast<StoreInst>(*II).isVolatile()) + // Treat volatile stores as reading memory somewhere. + FunctionEffect |= Ref; + } else if (isMalloc(&cast<Instruction>(*II)) || + isFreeCall(&cast<Instruction>(*II))) { + FunctionEffect |= ModRef; + } + + if ((FunctionEffect & Mod) == 0) + ++NumReadMemFunctions; + if (FunctionEffect == 0) + ++NumNoMemFunctions; + FR.FunctionEffect = FunctionEffect; + + // Finally, now that we know the full effect on this SCC, clone the + // information to each function in the SCC. + for (unsigned i = 1, e = SCC.size(); i != e; ++i) + FunctionInfo[SCC[i]->getFunction()] = FR; + } +} + + + +/// alias - If one of the pointers is to a global that we are tracking, and the +/// other is some random pointer, we know there cannot be an alias, because the +/// address of the global isn't taken. +AliasAnalysis::AliasResult +GlobalsModRef::alias(const Value *V1, unsigned V1Size, + const Value *V2, unsigned V2Size) { + // Get the base object these pointers point to. + Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject()); + Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject()); + + // If either of the underlying values is a global, they may be non-addr-taken + // globals, which we can answer queries about. + GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); + GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); + if (GV1 || GV2) { + // If the global's address is taken, pretend we don't know it's a pointer to + // the global. + if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0; + if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0; + + // If the two pointers are derived from two different non-addr-taken + // globals, or if one is and the other isn't, we know these can't alias. + if ((GV1 || GV2) && GV1 != GV2) + return NoAlias; + + // Otherwise if they are both derived from the same addr-taken global, we + // can't know the two accesses don't overlap. + } + + // These pointers may be based on the memory owned by an indirect global. If + // so, we may be able to handle this. First check to see if the base pointer + // is a direct load from an indirect global. + GV1 = GV2 = 0; + if (LoadInst *LI = dyn_cast<LoadInst>(UV1)) + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) + if (IndirectGlobals.count(GV)) + GV1 = GV; + if (LoadInst *LI = dyn_cast<LoadInst>(UV2)) + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) + if (IndirectGlobals.count(GV)) + GV2 = GV; + + // These pointers may also be from an allocation for the indirect global. If + // so, also handle them. + if (AllocsForIndirectGlobals.count(UV1)) + GV1 = AllocsForIndirectGlobals[UV1]; + if (AllocsForIndirectGlobals.count(UV2)) + GV2 = AllocsForIndirectGlobals[UV2]; + + // Now that we know whether the two pointers are related to indirect globals, + // use this to disambiguate the pointers. If either pointer is based on an + // indirect global and if they are not both based on the same indirect global, + // they cannot alias. + if ((GV1 || GV2) && GV1 != GV2) + return NoAlias; + + return AliasAnalysis::alias(V1, V1Size, V2, V2Size); +} + +AliasAnalysis::ModRefResult +GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) { + unsigned Known = ModRef; + + // If we are asking for mod/ref info of a direct call with a pointer to a + // global we are tracking, return information if we have it. + if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject())) + if (GV->hasLocalLinkage()) + if (Function *F = CS.getCalledFunction()) + if (NonAddressTakenGlobals.count(GV)) + if (FunctionRecord *FR = getFunctionInfo(F)) + Known = FR->getInfoForGlobal(GV); + + if (Known == NoModRef) + return NoModRef; // No need to query other mod/ref analyses + return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size)); +} + + +//===----------------------------------------------------------------------===// +// Methods to update the analysis as a result of the client transformation. +// +void GlobalsModRef::deleteValue(Value *V) { + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (NonAddressTakenGlobals.erase(GV)) { + // This global might be an indirect global. If so, remove it and remove + // any AllocRelatedValues for it. + if (IndirectGlobals.erase(GV)) { + // Remove any entries in AllocsForIndirectGlobals for this global. + for (std::map<Value*, GlobalValue*>::iterator + I = AllocsForIndirectGlobals.begin(), + E = AllocsForIndirectGlobals.end(); I != E; ) { + if (I->second == GV) { + AllocsForIndirectGlobals.erase(I++); + } else { + ++I; + } + } + } + } + } + + // Otherwise, if this is an allocation related to an indirect global, remove + // it. + AllocsForIndirectGlobals.erase(V); + + AliasAnalysis::deleteValue(V); +} + +void GlobalsModRef::copyValue(Value *From, Value *To) { + AliasAnalysis::copyValue(From, To); +} diff --git a/contrib/llvm/lib/Analysis/IPA/Makefile b/contrib/llvm/lib/Analysis/IPA/Makefile new file mode 100644 index 0000000..b850c9f --- /dev/null +++ b/contrib/llvm/lib/Analysis/IPA/Makefile @@ -0,0 +1,15 @@ +##===- lib/Analysis/IPA/Makefile ---------------------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file is distributed under the University of Illinois Open Source +# License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## + +LEVEL = ../../.. +LIBRARYNAME = LLVMipa +BUILD_ARCHIVE = 1 + +include $(LEVEL)/Makefile.common + |