summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/IPA
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/IPA')
-rw-r--r--contrib/llvm/lib/Analysis/IPA/CMakeLists.txt6
-rw-r--r--contrib/llvm/lib/Analysis/IPA/CallGraph.cpp323
-rw-r--r--contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp609
-rw-r--r--contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp103
-rw-r--r--contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp579
-rw-r--r--contrib/llvm/lib/Analysis/IPA/Makefile15
6 files changed, 1635 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt b/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt
new file mode 100644
index 0000000..007ad22
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/CMakeLists.txt
@@ -0,0 +1,6 @@
+add_llvm_library(LLVMipa
+ CallGraph.cpp
+ CallGraphSCCPass.cpp
+ FindUsedTypes.cpp
+ GlobalsModRef.cpp
+ )
diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp
new file mode 100644
index 0000000..2bde56d7
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp
@@ -0,0 +1,323 @@
+//===- CallGraph.cpp - Build a Module's call graph ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CallGraph class and provides the BasicCallGraph
+// default implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Module.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+namespace {
+
+//===----------------------------------------------------------------------===//
+// BasicCallGraph class definition
+//
+class BasicCallGraph : public ModulePass, public CallGraph {
+ // Root is root of the call graph, or the external node if a 'main' function
+ // couldn't be found.
+ //
+ CallGraphNode *Root;
+
+ // ExternalCallingNode - This node has edges to all external functions and
+ // those internal functions that have their address taken.
+ CallGraphNode *ExternalCallingNode;
+
+ // CallsExternalNode - This node has edges to it from all functions making
+ // indirect calls or calling an external function.
+ CallGraphNode *CallsExternalNode;
+
+public:
+ static char ID; // Class identification, replacement for typeinfo
+ BasicCallGraph() : ModulePass(&ID), Root(0),
+ ExternalCallingNode(0), CallsExternalNode(0) {}
+
+ // runOnModule - Compute the call graph for the specified module.
+ virtual bool runOnModule(Module &M) {
+ CallGraph::initialize(M);
+
+ ExternalCallingNode = getOrInsertFunction(0);
+ CallsExternalNode = new CallGraphNode(0);
+ Root = 0;
+
+ // Add every function to the call graph.
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ addToCallGraph(I);
+
+ // If we didn't find a main function, use the external call graph node
+ if (Root == 0) Root = ExternalCallingNode;
+
+ return false;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ virtual void print(raw_ostream &OS, const Module *) const {
+ OS << "CallGraph Root is: ";
+ if (Function *F = getRoot()->getFunction())
+ OS << F->getName() << "\n";
+ else {
+ OS << "<<null function: 0x" << getRoot() << ">>\n";
+ }
+
+ CallGraph::print(OS, 0);
+ }
+
+ virtual void releaseMemory() {
+ destroy();
+ }
+
+ /// getAdjustedAnalysisPointer - This method is used when a pass implements
+ /// an analysis interface through multiple inheritance. If needed, it should
+ /// override this to adjust the this pointer as needed for the specified pass
+ /// info.
+ virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
+ if (PI->isPassID(&CallGraph::ID))
+ return (CallGraph*)this;
+ return this;
+ }
+
+ CallGraphNode* getExternalCallingNode() const { return ExternalCallingNode; }
+ CallGraphNode* getCallsExternalNode() const { return CallsExternalNode; }
+
+ // getRoot - Return the root of the call graph, which is either main, or if
+ // main cannot be found, the external node.
+ //
+ CallGraphNode *getRoot() { return Root; }
+ const CallGraphNode *getRoot() const { return Root; }
+
+private:
+ //===---------------------------------------------------------------------
+ // Implementation of CallGraph construction
+ //
+
+ // addToCallGraph - Add a function to the call graph, and link the node to all
+ // of the functions that it calls.
+ //
+ void addToCallGraph(Function *F) {
+ CallGraphNode *Node = getOrInsertFunction(F);
+
+ // If this function has external linkage, anything could call it.
+ if (!F->hasLocalLinkage()) {
+ ExternalCallingNode->addCalledFunction(CallSite(), Node);
+
+ // Found the entry point?
+ if (F->getName() == "main") {
+ if (Root) // Found multiple external mains? Don't pick one.
+ Root = ExternalCallingNode;
+ else
+ Root = Node; // Found a main, keep track of it!
+ }
+ }
+
+ // Loop over all of the users of the function, looking for non-call uses.
+ for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; ++I)
+ if ((!isa<CallInst>(I) && !isa<InvokeInst>(I))
+ || !CallSite(cast<Instruction>(I)).isCallee(I)) {
+ // Not a call, or being used as a parameter rather than as the callee.
+ ExternalCallingNode->addCalledFunction(CallSite(), Node);
+ break;
+ }
+
+ // If this function is not defined in this translation unit, it could call
+ // anything.
+ if (F->isDeclaration() && !F->isIntrinsic())
+ Node->addCalledFunction(CallSite(), CallsExternalNode);
+
+ // Look for calls by this function.
+ for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
+ II != IE; ++II) {
+ CallSite CS = CallSite::get(II);
+ if (CS.getInstruction() && !isa<DbgInfoIntrinsic>(II)) {
+ const Function *Callee = CS.getCalledFunction();
+ if (Callee)
+ Node->addCalledFunction(CS, getOrInsertFunction(Callee));
+ else
+ Node->addCalledFunction(CS, CallsExternalNode);
+ }
+ }
+ }
+
+ //
+ // destroy - Release memory for the call graph
+ virtual void destroy() {
+ /// CallsExternalNode is not in the function map, delete it explicitly.
+ if (CallsExternalNode) {
+ CallsExternalNode->allReferencesDropped();
+ delete CallsExternalNode;
+ CallsExternalNode = 0;
+ }
+ CallGraph::destroy();
+ }
+};
+
+} //End anonymous namespace
+
+static RegisterAnalysisGroup<CallGraph> X("Call Graph");
+static RegisterPass<BasicCallGraph>
+Y("basiccg", "Basic CallGraph Construction", false, true);
+static RegisterAnalysisGroup<CallGraph, true> Z(Y);
+
+char CallGraph::ID = 0;
+char BasicCallGraph::ID = 0;
+
+void CallGraph::initialize(Module &M) {
+ Mod = &M;
+}
+
+void CallGraph::destroy() {
+ if (FunctionMap.empty()) return;
+
+ // Reset all node's use counts to zero before deleting them to prevent an
+ // assertion from firing.
+#ifndef NDEBUG
+ for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
+ I != E; ++I)
+ I->second->allReferencesDropped();
+#endif
+
+ for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
+ I != E; ++I)
+ delete I->second;
+ FunctionMap.clear();
+}
+
+void CallGraph::print(raw_ostream &OS, Module*) const {
+ for (CallGraph::const_iterator I = begin(), E = end(); I != E; ++I)
+ I->second->print(OS);
+}
+void CallGraph::dump() const {
+ print(dbgs(), 0);
+}
+
+//===----------------------------------------------------------------------===//
+// Implementations of public modification methods
+//
+
+// removeFunctionFromModule - Unlink the function from this module, returning
+// it. Because this removes the function from the module, the call graph node
+// is destroyed. This is only valid if the function does not call any other
+// functions (ie, there are no edges in it's CGN). The easiest way to do this
+// is to dropAllReferences before calling this.
+//
+Function *CallGraph::removeFunctionFromModule(CallGraphNode *CGN) {
+ assert(CGN->empty() && "Cannot remove function from call "
+ "graph if it references other functions!");
+ Function *F = CGN->getFunction(); // Get the function for the call graph node
+ delete CGN; // Delete the call graph node for this func
+ FunctionMap.erase(F); // Remove the call graph node from the map
+
+ Mod->getFunctionList().remove(F);
+ return F;
+}
+
+// getOrInsertFunction - This method is identical to calling operator[], but
+// it will insert a new CallGraphNode for the specified function if one does
+// not already exist.
+CallGraphNode *CallGraph::getOrInsertFunction(const Function *F) {
+ CallGraphNode *&CGN = FunctionMap[F];
+ if (CGN) return CGN;
+
+ assert((!F || F->getParent() == Mod) && "Function not in current module!");
+ return CGN = new CallGraphNode(const_cast<Function*>(F));
+}
+
+void CallGraphNode::print(raw_ostream &OS) const {
+ if (Function *F = getFunction())
+ OS << "Call graph node for function: '" << F->getName() << "'";
+ else
+ OS << "Call graph node <<null function>>";
+
+ OS << "<<" << this << ">> #uses=" << getNumReferences() << '\n';
+
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ OS << " CS<" << I->first << "> calls ";
+ if (Function *FI = I->second->getFunction())
+ OS << "function '" << FI->getName() <<"'\n";
+ else
+ OS << "external node\n";
+ }
+ OS << '\n';
+}
+
+void CallGraphNode::dump() const { print(dbgs()); }
+
+/// removeCallEdgeFor - This method removes the edge in the node for the
+/// specified call site. Note that this method takes linear time, so it
+/// should be used sparingly.
+void CallGraphNode::removeCallEdgeFor(CallSite CS) {
+ for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
+ assert(I != CalledFunctions.end() && "Cannot find callsite to remove!");
+ if (I->first == CS.getInstruction()) {
+ I->second->DropRef();
+ *I = CalledFunctions.back();
+ CalledFunctions.pop_back();
+ return;
+ }
+ }
+}
+
+
+// removeAnyCallEdgeTo - This method removes any call edges from this node to
+// the specified callee function. This takes more time to execute than
+// removeCallEdgeTo, so it should not be used unless necessary.
+void CallGraphNode::removeAnyCallEdgeTo(CallGraphNode *Callee) {
+ for (unsigned i = 0, e = CalledFunctions.size(); i != e; ++i)
+ if (CalledFunctions[i].second == Callee) {
+ Callee->DropRef();
+ CalledFunctions[i] = CalledFunctions.back();
+ CalledFunctions.pop_back();
+ --i; --e;
+ }
+}
+
+/// removeOneAbstractEdgeTo - Remove one edge associated with a null callsite
+/// from this node to the specified callee function.
+void CallGraphNode::removeOneAbstractEdgeTo(CallGraphNode *Callee) {
+ for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
+ assert(I != CalledFunctions.end() && "Cannot find callee to remove!");
+ CallRecord &CR = *I;
+ if (CR.second == Callee && CR.first == 0) {
+ Callee->DropRef();
+ *I = CalledFunctions.back();
+ CalledFunctions.pop_back();
+ return;
+ }
+ }
+}
+
+/// replaceCallEdge - This method replaces the edge in the node for the
+/// specified call site with a new one. Note that this method takes linear
+/// time, so it should be used sparingly.
+void CallGraphNode::replaceCallEdge(CallSite CS,
+ CallSite NewCS, CallGraphNode *NewNode){
+ for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
+ assert(I != CalledFunctions.end() && "Cannot find callsite to remove!");
+ if (I->first == CS.getInstruction()) {
+ I->second->DropRef();
+ I->first = NewCS.getInstruction();
+ I->second = NewNode;
+ NewNode->AddRef();
+ return;
+ }
+ }
+}
+
+// Enuse that users of CallGraph.h also link with this file
+DEFINING_FILE_FOR(CallGraph)
diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp
new file mode 100644
index 0000000..0c01ee5
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -0,0 +1,609 @@
+//===- CallGraphSCCPass.cpp - Pass that operates BU on call graph ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CallGraphSCCPass class, which is used for passes
+// which are implemented as bottom-up traversals on the call graph. Because
+// there may be cycles in the call graph, passes of this type operate on the
+// call-graph in SCC order: that is, they process function bottom-up, except for
+// recursive functions, which they process all at once.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "cgscc-passmgr"
+#include "llvm/CallGraphSCCPass.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Function.h"
+#include "llvm/PassManagers.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+static cl::opt<unsigned>
+MaxIterations("max-cg-scc-iterations", cl::ReallyHidden, cl::init(4));
+
+STATISTIC(MaxSCCIterations, "Maximum CGSCCPassMgr iterations on one SCC");
+
+//===----------------------------------------------------------------------===//
+// CGPassManager
+//
+/// CGPassManager manages FPPassManagers and CallGraphSCCPasses.
+
+namespace {
+
+class CGPassManager : public ModulePass, public PMDataManager {
+public:
+ static char ID;
+ explicit CGPassManager(int Depth)
+ : ModulePass(&ID), PMDataManager(Depth) { }
+
+ /// run - Execute all of the passes scheduled for execution. Keep track of
+ /// whether any of the passes modifies the module, and if so, return true.
+ bool runOnModule(Module &M);
+
+ bool doInitialization(CallGraph &CG);
+ bool doFinalization(CallGraph &CG);
+
+ /// Pass Manager itself does not invalidate any analysis info.
+ void getAnalysisUsage(AnalysisUsage &Info) const {
+ // CGPassManager walks SCC and it needs CallGraph.
+ Info.addRequired<CallGraph>();
+ Info.setPreservesAll();
+ }
+
+ virtual const char *getPassName() const {
+ return "CallGraph Pass Manager";
+ }
+
+ virtual PMDataManager *getAsPMDataManager() { return this; }
+ virtual Pass *getAsPass() { return this; }
+
+ // Print passes managed by this manager
+ void dumpPassStructure(unsigned Offset) {
+ errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n";
+ for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
+ Pass *P = getContainedPass(Index);
+ P->dumpPassStructure(Offset + 1);
+ dumpLastUses(P, Offset+1);
+ }
+ }
+
+ Pass *getContainedPass(unsigned N) {
+ assert(N < PassVector.size() && "Pass number out of range!");
+ return static_cast<Pass *>(PassVector[N]);
+ }
+
+ virtual PassManagerType getPassManagerType() const {
+ return PMT_CallGraphPassManager;
+ }
+
+private:
+ bool RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG,
+ bool &DevirtualizedCall);
+
+ bool RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC,
+ CallGraph &CG, bool &CallGraphUpToDate,
+ bool &DevirtualizedCall);
+ bool RefreshCallGraph(CallGraphSCC &CurSCC, CallGraph &CG,
+ bool IsCheckingMode);
+};
+
+} // end anonymous namespace.
+
+char CGPassManager::ID = 0;
+
+
+bool CGPassManager::RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC,
+ CallGraph &CG, bool &CallGraphUpToDate,
+ bool &DevirtualizedCall) {
+ bool Changed = false;
+ PMDataManager *PM = P->getAsPMDataManager();
+
+ if (PM == 0) {
+ CallGraphSCCPass *CGSP = (CallGraphSCCPass*)P;
+ if (!CallGraphUpToDate) {
+ DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false);
+ CallGraphUpToDate = true;
+ }
+
+ {
+ TimeRegion PassTimer(getPassTimer(CGSP));
+ Changed = CGSP->runOnSCC(CurSCC);
+ }
+
+ // After the CGSCCPass is done, when assertions are enabled, use
+ // RefreshCallGraph to verify that the callgraph was correctly updated.
+#ifndef NDEBUG
+ if (Changed)
+ RefreshCallGraph(CurSCC, CG, true);
+#endif
+
+ return Changed;
+ }
+
+
+ assert(PM->getPassManagerType() == PMT_FunctionPassManager &&
+ "Invalid CGPassManager member");
+ FPPassManager *FPP = (FPPassManager*)P;
+
+ // Run pass P on all functions in the current SCC.
+ for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end();
+ I != E; ++I) {
+ if (Function *F = (*I)->getFunction()) {
+ dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName());
+ TimeRegion PassTimer(getPassTimer(FPP));
+ Changed |= FPP->runOnFunction(*F);
+ }
+ }
+
+ // The function pass(es) modified the IR, they may have clobbered the
+ // callgraph.
+ if (Changed && CallGraphUpToDate) {
+ DEBUG(dbgs() << "CGSCCPASSMGR: Pass Dirtied SCC: "
+ << P->getPassName() << '\n');
+ CallGraphUpToDate = false;
+ }
+ return Changed;
+}
+
+
+/// RefreshCallGraph - Scan the functions in the specified CFG and resync the
+/// callgraph with the call sites found in it. This is used after
+/// FunctionPasses have potentially munged the callgraph, and can be used after
+/// CallGraphSCC passes to verify that they correctly updated the callgraph.
+///
+/// This function returns true if it devirtualized an existing function call,
+/// meaning it turned an indirect call into a direct call. This happens when
+/// a function pass like GVN optimizes away stuff feeding the indirect call.
+/// This never happens in checking mode.
+///
+bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
+ CallGraph &CG, bool CheckingMode) {
+ DenseMap<Value*, CallGraphNode*> CallSites;
+
+ DEBUG(dbgs() << "CGSCCPASSMGR: Refreshing SCC with " << CurSCC.size()
+ << " nodes:\n";
+ for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end();
+ I != E; ++I)
+ (*I)->dump();
+ );
+
+ bool MadeChange = false;
+ bool DevirtualizedCall = false;
+
+ // Scan all functions in the SCC.
+ unsigned FunctionNo = 0;
+ for (CallGraphSCC::iterator SCCIdx = CurSCC.begin(), E = CurSCC.end();
+ SCCIdx != E; ++SCCIdx, ++FunctionNo) {
+ CallGraphNode *CGN = *SCCIdx;
+ Function *F = CGN->getFunction();
+ if (F == 0 || F->isDeclaration()) continue;
+
+ // Walk the function body looking for call sites. Sync up the call sites in
+ // CGN with those actually in the function.
+
+ // Keep track of the number of direct and indirect calls that were
+ // invalidated and removed.
+ unsigned NumDirectRemoved = 0, NumIndirectRemoved = 0;
+
+ // Get the set of call sites currently in the function.
+ for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) {
+ // If this call site is null, then the function pass deleted the call
+ // entirely and the WeakVH nulled it out.
+ if (I->first == 0 ||
+ // If we've already seen this call site, then the FunctionPass RAUW'd
+ // one call with another, which resulted in two "uses" in the edge
+ // list of the same call.
+ CallSites.count(I->first) ||
+
+ // If the call edge is not from a call or invoke, then the function
+ // pass RAUW'd a call with another value. This can happen when
+ // constant folding happens of well known functions etc.
+ CallSite::get(I->first).getInstruction() == 0) {
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // If this was an indirect call site, count it.
+ if (I->second->getFunction() == 0)
+ ++NumIndirectRemoved;
+ else
+ ++NumDirectRemoved;
+
+ // Just remove the edge from the set of callees, keep track of whether
+ // I points to the last element of the vector.
+ bool WasLast = I + 1 == E;
+ CGN->removeCallEdge(I);
+
+ // If I pointed to the last element of the vector, we have to bail out:
+ // iterator checking rejects comparisons of the resultant pointer with
+ // end.
+ if (WasLast)
+ break;
+ E = CGN->end();
+ continue;
+ }
+
+ assert(!CallSites.count(I->first) &&
+ "Call site occurs in node multiple times");
+ CallSites.insert(std::make_pair(I->first, I->second));
+ ++I;
+ }
+
+ // Loop over all of the instructions in the function, getting the callsites.
+ // Keep track of the number of direct/indirect calls added.
+ unsigned NumDirectAdded = 0, NumIndirectAdded = 0;
+
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ CallSite CS = CallSite::get(I);
+ if (!CS.getInstruction() || isa<DbgInfoIntrinsic>(I)) continue;
+
+ // If this call site already existed in the callgraph, just verify it
+ // matches up to expectations and remove it from CallSites.
+ DenseMap<Value*, CallGraphNode*>::iterator ExistingIt =
+ CallSites.find(CS.getInstruction());
+ if (ExistingIt != CallSites.end()) {
+ CallGraphNode *ExistingNode = ExistingIt->second;
+
+ // Remove from CallSites since we have now seen it.
+ CallSites.erase(ExistingIt);
+
+ // Verify that the callee is right.
+ if (ExistingNode->getFunction() == CS.getCalledFunction())
+ continue;
+
+ // If we are in checking mode, we are not allowed to actually mutate
+ // the callgraph. If this is a case where we can infer that the
+ // callgraph is less precise than it could be (e.g. an indirect call
+ // site could be turned direct), don't reject it in checking mode, and
+ // don't tweak it to be more precise.
+ if (CheckingMode && CS.getCalledFunction() &&
+ ExistingNode->getFunction() == 0)
+ continue;
+
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // If not, we either went from a direct call to indirect, indirect to
+ // direct, or direct to different direct.
+ CallGraphNode *CalleeNode;
+ if (Function *Callee = CS.getCalledFunction()) {
+ CalleeNode = CG.getOrInsertFunction(Callee);
+ // Keep track of whether we turned an indirect call into a direct
+ // one.
+ if (ExistingNode->getFunction() == 0) {
+ DevirtualizedCall = true;
+ DEBUG(dbgs() << " CGSCCPASSMGR: Devirtualized call to '"
+ << Callee->getName() << "'\n");
+ }
+ } else {
+ CalleeNode = CG.getCallsExternalNode();
+ }
+
+ // Update the edge target in CGN.
+ CGN->replaceCallEdge(CS, CS, CalleeNode);
+ MadeChange = true;
+ continue;
+ }
+
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // If the call site didn't exist in the CGN yet, add it.
+ CallGraphNode *CalleeNode;
+ if (Function *Callee = CS.getCalledFunction()) {
+ CalleeNode = CG.getOrInsertFunction(Callee);
+ ++NumDirectAdded;
+ } else {
+ CalleeNode = CG.getCallsExternalNode();
+ ++NumIndirectAdded;
+ }
+
+ CGN->addCalledFunction(CS, CalleeNode);
+ MadeChange = true;
+ }
+
+ // We scanned the old callgraph node, removing invalidated call sites and
+ // then added back newly found call sites. One thing that can happen is
+ // that an old indirect call site was deleted and replaced with a new direct
+ // call. In this case, we have devirtualized a call, and CGSCCPM would like
+ // to iteratively optimize the new code. Unfortunately, we don't really
+ // have a great way to detect when this happens. As an approximation, we
+ // just look at whether the number of indirect calls is reduced and the
+ // number of direct calls is increased. There are tons of ways to fool this
+ // (e.g. DCE'ing an indirect call and duplicating an unrelated block with a
+ // direct call) but this is close enough.
+ if (NumIndirectRemoved > NumIndirectAdded &&
+ NumDirectRemoved < NumDirectAdded)
+ DevirtualizedCall = true;
+
+ // After scanning this function, if we still have entries in callsites, then
+ // they are dangling pointers. WeakVH should save us for this, so abort if
+ // this happens.
+ assert(CallSites.empty() && "Dangling pointers found in call sites map");
+
+ // Periodically do an explicit clear to remove tombstones when processing
+ // large scc's.
+ if ((FunctionNo & 15) == 15)
+ CallSites.clear();
+ }
+
+ DEBUG(if (MadeChange) {
+ dbgs() << "CGSCCPASSMGR: Refreshed SCC is now:\n";
+ for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end();
+ I != E; ++I)
+ (*I)->dump();
+ if (DevirtualizedCall)
+ dbgs() << "CGSCCPASSMGR: Refresh devirtualized a call!\n";
+
+ } else {
+ dbgs() << "CGSCCPASSMGR: SCC Refresh didn't change call graph.\n";
+ }
+ );
+
+ return DevirtualizedCall;
+}
+
+/// RunAllPassesOnSCC - Execute the body of the entire pass manager on the
+/// specified SCC. This keeps track of whether a function pass devirtualizes
+/// any calls and returns it in DevirtualizedCall.
+bool CGPassManager::RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG,
+ bool &DevirtualizedCall) {
+ bool Changed = false;
+
+ // CallGraphUpToDate - Keep track of whether the callgraph is known to be
+ // up-to-date or not. The CGSSC pass manager runs two types of passes:
+ // CallGraphSCC Passes and other random function passes. Because other
+ // random function passes are not CallGraph aware, they may clobber the
+ // call graph by introducing new calls or deleting other ones. This flag
+ // is set to false when we run a function pass so that we know to clean up
+ // the callgraph when we need to run a CGSCCPass again.
+ bool CallGraphUpToDate = true;
+
+ // Run all passes on current SCC.
+ for (unsigned PassNo = 0, e = getNumContainedPasses();
+ PassNo != e; ++PassNo) {
+ Pass *P = getContainedPass(PassNo);
+
+ // If we're in -debug-pass=Executions mode, construct the SCC node list,
+ // otherwise avoid constructing this string as it is expensive.
+ if (isPassDebuggingExecutionsOrMore()) {
+ std::string Functions;
+ #ifndef NDEBUG
+ raw_string_ostream OS(Functions);
+ for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end();
+ I != E; ++I) {
+ if (I != CurSCC.begin()) OS << ", ";
+ (*I)->print(OS);
+ }
+ OS.flush();
+ #endif
+ dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, Functions);
+ }
+ dumpRequiredSet(P);
+
+ initializeAnalysisImpl(P);
+
+ // Actually run this pass on the current SCC.
+ Changed |= RunPassOnSCC(P, CurSCC, CG,
+ CallGraphUpToDate, DevirtualizedCall);
+
+ if (Changed)
+ dumpPassInfo(P, MODIFICATION_MSG, ON_CG_MSG, "");
+ dumpPreservedSet(P);
+
+ verifyPreservedAnalysis(P);
+ removeNotPreservedAnalysis(P);
+ recordAvailableAnalysis(P);
+ removeDeadPasses(P, "", ON_CG_MSG);
+ }
+
+ // If the callgraph was left out of date (because the last pass run was a
+ // functionpass), refresh it before we move on to the next SCC.
+ if (!CallGraphUpToDate)
+ DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false);
+ return Changed;
+}
+
+/// run - Execute all of the passes scheduled for execution. Keep track of
+/// whether any of the passes modifies the module, and if so, return true.
+bool CGPassManager::runOnModule(Module &M) {
+ CallGraph &CG = getAnalysis<CallGraph>();
+ bool Changed = doInitialization(CG);
+
+ // Walk the callgraph in bottom-up SCC order.
+ scc_iterator<CallGraph*> CGI = scc_begin(&CG);
+
+ CallGraphSCC CurSCC(&CGI);
+ while (!CGI.isAtEnd()) {
+ // Copy the current SCC and increment past it so that the pass can hack
+ // on the SCC if it wants to without invalidating our iterator.
+ std::vector<CallGraphNode*> &NodeVec = *CGI;
+ CurSCC.initialize(&NodeVec[0], &NodeVec[0]+NodeVec.size());
+ ++CGI;
+
+ // At the top level, we run all the passes in this pass manager on the
+ // functions in this SCC. However, we support iterative compilation in the
+ // case where a function pass devirtualizes a call to a function. For
+ // example, it is very common for a function pass (often GVN or instcombine)
+ // to eliminate the addressing that feeds into a call. With that improved
+ // information, we would like the call to be an inline candidate, infer
+ // mod-ref information etc.
+ //
+ // Because of this, we allow iteration up to a specified iteration count.
+ // This only happens in the case of a devirtualized call, so we only burn
+ // compile time in the case that we're making progress. We also have a hard
+ // iteration count limit in case there is crazy code.
+ unsigned Iteration = 0;
+ bool DevirtualizedCall = false;
+ do {
+ DEBUG(if (Iteration)
+ dbgs() << " SCCPASSMGR: Re-visiting SCC, iteration #"
+ << Iteration << '\n');
+ DevirtualizedCall = false;
+ Changed |= RunAllPassesOnSCC(CurSCC, CG, DevirtualizedCall);
+ } while (Iteration++ < MaxIterations && DevirtualizedCall);
+
+ if (DevirtualizedCall)
+ DEBUG(dbgs() << " CGSCCPASSMGR: Stopped iteration after " << Iteration
+ << " times, due to -max-cg-scc-iterations\n");
+
+ if (Iteration > MaxSCCIterations)
+ MaxSCCIterations = Iteration;
+
+ }
+ Changed |= doFinalization(CG);
+ return Changed;
+}
+
+
+/// Initialize CG
+bool CGPassManager::doInitialization(CallGraph &CG) {
+ bool Changed = false;
+ for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) {
+ if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) {
+ assert(PM->getPassManagerType() == PMT_FunctionPassManager &&
+ "Invalid CGPassManager member");
+ Changed |= ((FPPassManager*)PM)->doInitialization(CG.getModule());
+ } else {
+ Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doInitialization(CG);
+ }
+ }
+ return Changed;
+}
+
+/// Finalize CG
+bool CGPassManager::doFinalization(CallGraph &CG) {
+ bool Changed = false;
+ for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) {
+ if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) {
+ assert(PM->getPassManagerType() == PMT_FunctionPassManager &&
+ "Invalid CGPassManager member");
+ Changed |= ((FPPassManager*)PM)->doFinalization(CG.getModule());
+ } else {
+ Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doFinalization(CG);
+ }
+ }
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// CallGraphSCC Implementation
+//===----------------------------------------------------------------------===//
+
+/// ReplaceNode - This informs the SCC and the pass manager that the specified
+/// Old node has been deleted, and New is to be used in its place.
+void CallGraphSCC::ReplaceNode(CallGraphNode *Old, CallGraphNode *New) {
+ assert(Old != New && "Should not replace node with self");
+ for (unsigned i = 0; ; ++i) {
+ assert(i != Nodes.size() && "Node not in SCC");
+ if (Nodes[i] != Old) continue;
+ Nodes[i] = New;
+ break;
+ }
+
+ // Update the active scc_iterator so that it doesn't contain dangling
+ // pointers to the old CallGraphNode.
+ scc_iterator<CallGraph*> *CGI = (scc_iterator<CallGraph*>*)Context;
+ CGI->ReplaceNode(Old, New);
+}
+
+
+//===----------------------------------------------------------------------===//
+// CallGraphSCCPass Implementation
+//===----------------------------------------------------------------------===//
+
+/// Assign pass manager to manage this pass.
+void CallGraphSCCPass::assignPassManager(PMStack &PMS,
+ PassManagerType PreferredType) {
+ // Find CGPassManager
+ while (!PMS.empty() &&
+ PMS.top()->getPassManagerType() > PMT_CallGraphPassManager)
+ PMS.pop();
+
+ assert(!PMS.empty() && "Unable to handle Call Graph Pass");
+ CGPassManager *CGP;
+
+ if (PMS.top()->getPassManagerType() == PMT_CallGraphPassManager)
+ CGP = (CGPassManager*)PMS.top();
+ else {
+ // Create new Call Graph SCC Pass Manager if it does not exist.
+ assert(!PMS.empty() && "Unable to create Call Graph Pass Manager");
+ PMDataManager *PMD = PMS.top();
+
+ // [1] Create new Call Graph Pass Manager
+ CGP = new CGPassManager(PMD->getDepth() + 1);
+
+ // [2] Set up new manager's top level manager
+ PMTopLevelManager *TPM = PMD->getTopLevelManager();
+ TPM->addIndirectPassManager(CGP);
+
+ // [3] Assign manager to manage this new manager. This may create
+ // and push new managers into PMS
+ Pass *P = CGP;
+ TPM->schedulePass(P);
+
+ // [4] Push new manager into PMS
+ PMS.push(CGP);
+ }
+
+ CGP->add(this);
+}
+
+/// getAnalysisUsage - For this class, we declare that we require and preserve
+/// the call graph. If the derived class implements this method, it should
+/// always explicitly call the implementation here.
+void CallGraphSCCPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<CallGraph>();
+ AU.addPreserved<CallGraph>();
+}
+
+
+//===----------------------------------------------------------------------===//
+// PrintCallGraphPass Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// PrintCallGraphPass - Print a Module corresponding to a call graph.
+ ///
+ class PrintCallGraphPass : public CallGraphSCCPass {
+ std::string Banner;
+ raw_ostream &Out; // raw_ostream to print on.
+
+ public:
+ static char ID;
+ PrintCallGraphPass() : CallGraphSCCPass(&ID), Out(dbgs()) {}
+ PrintCallGraphPass(const std::string &B, raw_ostream &o)
+ : CallGraphSCCPass(&ID), Banner(B), Out(o) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ bool runOnSCC(CallGraphSCC &SCC) {
+ Out << Banner;
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
+ (*I)->getFunction()->print(Out);
+ return false;
+ }
+ };
+
+} // end anonymous namespace.
+
+char PrintCallGraphPass::ID = 0;
+
+Pass *CallGraphSCCPass::createPrinterPass(raw_ostream &O,
+ const std::string &Banner) const {
+ return new PrintCallGraphPass(Banner, O);
+}
+
diff --git a/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp b/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp
new file mode 100644
index 0000000..c4fb0b9
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp
@@ -0,0 +1,103 @@
+//===- FindUsedTypes.cpp - Find all Types used by a module ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass is used to seek out all of the types in use by the program. Note
+// that this analysis explicitly does not include types only used by the symbol
+// table.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/FindUsedTypes.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+char FindUsedTypes::ID = 0;
+static RegisterPass<FindUsedTypes>
+X("print-used-types", "Find Used Types", false, true);
+
+// IncorporateType - Incorporate one type and all of its subtypes into the
+// collection of used types.
+//
+void FindUsedTypes::IncorporateType(const Type *Ty) {
+ // If ty doesn't already exist in the used types map, add it now, otherwise
+ // return.
+ if (!UsedTypes.insert(Ty).second) return; // Already contain Ty.
+
+ // Make sure to add any types this type references now.
+ //
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I)
+ IncorporateType(*I);
+}
+
+void FindUsedTypes::IncorporateValue(const Value *V) {
+ IncorporateType(V->getType());
+
+ // If this is a constant, it could be using other types...
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (!isa<GlobalValue>(C))
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI)
+ IncorporateValue(*OI);
+ }
+}
+
+
+// run - This incorporates all types used by the specified module
+//
+bool FindUsedTypes::runOnModule(Module &m) {
+ UsedTypes.clear(); // reset if run multiple times...
+
+ // Loop over global variables, incorporating their types
+ for (Module::const_global_iterator I = m.global_begin(), E = m.global_end();
+ I != E; ++I) {
+ IncorporateType(I->getType());
+ if (I->hasInitializer())
+ IncorporateValue(I->getInitializer());
+ }
+
+ for (Module::iterator MI = m.begin(), ME = m.end(); MI != ME; ++MI) {
+ IncorporateType(MI->getType());
+ const Function &F = *MI;
+
+ // Loop over all of the instructions in the function, adding their return
+ // type as well as the types of their operands.
+ //
+ for (const_inst_iterator II = inst_begin(F), IE = inst_end(F);
+ II != IE; ++II) {
+ const Instruction &I = *II;
+
+ IncorporateType(I.getType()); // Incorporate the type of the instruction
+ for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
+ OI != OE; ++OI)
+ IncorporateValue(*OI); // Insert inst operand types as well
+ }
+ }
+
+ return false;
+}
+
+// Print the types found in the module. If the optional Module parameter is
+// passed in, then the types are printed symbolically if possible, using the
+// symbol table from the module.
+//
+void FindUsedTypes::print(raw_ostream &OS, const Module *M) const {
+ OS << "Types in use by this module:\n";
+ for (std::set<const Type *>::const_iterator I = UsedTypes.begin(),
+ E = UsedTypes.end(); I != E; ++I) {
+ OS << " ";
+ WriteTypeSymbolic(OS, *I, M);
+ OS << '\n';
+ }
+}
diff --git a/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp
new file mode 100644
index 0000000..b14afa3
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -0,0 +1,579 @@
+//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This simple pass provides alias and mod/ref information for global values
+// that do not have their address taken, and keeps track of whether functions
+// read or write memory (are "pure"). For this simple (but very common) case,
+// we can provide pretty accurate and useful information.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "globalsmodref-aa"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Instructions.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SCCIterator.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumNonAddrTakenGlobalVars,
+ "Number of global vars without address taken");
+STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
+STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
+STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
+STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
+
+namespace {
+ /// FunctionRecord - One instance of this structure is stored for every
+ /// function in the program. Later, the entries for these functions are
+ /// removed if the function is found to call an external function (in which
+ /// case we know nothing about it.
+ struct FunctionRecord {
+ /// GlobalInfo - Maintain mod/ref info for all of the globals without
+ /// addresses taken that are read or written (transitively) by this
+ /// function.
+ std::map<GlobalValue*, unsigned> GlobalInfo;
+
+ /// MayReadAnyGlobal - May read global variables, but it is not known which.
+ bool MayReadAnyGlobal;
+
+ unsigned getInfoForGlobal(GlobalValue *GV) const {
+ unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
+ std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
+ if (I != GlobalInfo.end())
+ Effect |= I->second;
+ return Effect;
+ }
+
+ /// FunctionEffect - Capture whether or not this function reads or writes to
+ /// ANY memory. If not, we can do a lot of aggressive analysis on it.
+ unsigned FunctionEffect;
+
+ FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
+ };
+
+ /// GlobalsModRef - The actual analysis pass.
+ class GlobalsModRef : public ModulePass, public AliasAnalysis {
+ /// NonAddressTakenGlobals - The globals that do not have their addresses
+ /// taken.
+ std::set<GlobalValue*> NonAddressTakenGlobals;
+
+ /// IndirectGlobals - The memory pointed to by this global is known to be
+ /// 'owned' by the global.
+ std::set<GlobalValue*> IndirectGlobals;
+
+ /// AllocsForIndirectGlobals - If an instruction allocates memory for an
+ /// indirect global, this map indicates which one.
+ std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
+
+ /// FunctionInfo - For each function, keep track of what globals are
+ /// modified or read.
+ std::map<Function*, FunctionRecord> FunctionInfo;
+
+ public:
+ static char ID;
+ GlobalsModRef() : ModulePass(&ID) {}
+
+ bool runOnModule(Module &M) {
+ InitializeAliasAnalysis(this); // set up super class
+ AnalyzeGlobals(M); // find non-addr taken globals
+ AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
+ return false;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AliasAnalysis::getAnalysisUsage(AU);
+ AU.addRequired<CallGraph>();
+ AU.setPreservesAll(); // Does not transform code
+ }
+
+ //------------------------------------------------
+ // Implement the AliasAnalysis API
+ //
+ AliasResult alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+ ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
+ ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
+ return AliasAnalysis::getModRefInfo(CS1,CS2);
+ }
+
+ /// getModRefBehavior - Return the behavior of the specified function if
+ /// called from the specified call site. The call site may be null in which
+ /// case the most generic behavior of this function should be returned.
+ ModRefBehavior getModRefBehavior(Function *F,
+ std::vector<PointerAccessInfo> *Info) {
+ if (FunctionRecord *FR = getFunctionInfo(F)) {
+ if (FR->FunctionEffect == 0)
+ return DoesNotAccessMemory;
+ else if ((FR->FunctionEffect & Mod) == 0)
+ return OnlyReadsMemory;
+ }
+ return AliasAnalysis::getModRefBehavior(F, Info);
+ }
+
+ /// getModRefBehavior - Return the behavior of the specified function if
+ /// called from the specified call site. The call site may be null in which
+ /// case the most generic behavior of this function should be returned.
+ ModRefBehavior getModRefBehavior(CallSite CS,
+ std::vector<PointerAccessInfo> *Info) {
+ Function* F = CS.getCalledFunction();
+ if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
+ if (FunctionRecord *FR = getFunctionInfo(F)) {
+ if (FR->FunctionEffect == 0)
+ return DoesNotAccessMemory;
+ else if ((FR->FunctionEffect & Mod) == 0)
+ return OnlyReadsMemory;
+ }
+ return AliasAnalysis::getModRefBehavior(CS, Info);
+ }
+
+ virtual void deleteValue(Value *V);
+ virtual void copyValue(Value *From, Value *To);
+
+ /// getAdjustedAnalysisPointer - This method is used when a pass implements
+ /// an analysis interface through multiple inheritance. If needed, it
+ /// should override this to adjust the this pointer as needed for the
+ /// specified pass info.
+ virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
+ if (PI->isPassID(&AliasAnalysis::ID))
+ return (AliasAnalysis*)this;
+ return this;
+ }
+
+ private:
+ /// getFunctionInfo - Return the function info for the function, or null if
+ /// we don't have anything useful to say about it.
+ FunctionRecord *getFunctionInfo(Function *F) {
+ std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
+ if (I != FunctionInfo.end())
+ return &I->second;
+ return 0;
+ }
+
+ void AnalyzeGlobals(Module &M);
+ void AnalyzeCallGraph(CallGraph &CG, Module &M);
+ bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
+ std::vector<Function*> &Writers,
+ GlobalValue *OkayStoreDest = 0);
+ bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
+ };
+}
+
+char GlobalsModRef::ID = 0;
+static RegisterPass<GlobalsModRef>
+X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
+static RegisterAnalysisGroup<AliasAnalysis> Y(X);
+
+Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
+
+/// AnalyzeGlobals - Scan through the users of all of the internal
+/// GlobalValue's in the program. If none of them have their "address taken"
+/// (really, their address passed to something nontrivial), record this fact,
+/// and record the functions that they are used directly in.
+void GlobalsModRef::AnalyzeGlobals(Module &M) {
+ std::vector<Function*> Readers, Writers;
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (I->hasLocalLinkage()) {
+ if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
+ // Remember that we are tracking this global.
+ NonAddressTakenGlobals.insert(I);
+ ++NumNonAddrTakenFunctions;
+ }
+ Readers.clear(); Writers.clear();
+ }
+
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (I->hasLocalLinkage()) {
+ if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
+ // Remember that we are tracking this global, and the mod/ref fns
+ NonAddressTakenGlobals.insert(I);
+
+ for (unsigned i = 0, e = Readers.size(); i != e; ++i)
+ FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
+
+ if (!I->isConstant()) // No need to keep track of writers to constants
+ for (unsigned i = 0, e = Writers.size(); i != e; ++i)
+ FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
+ ++NumNonAddrTakenGlobalVars;
+
+ // If this global holds a pointer type, see if it is an indirect global.
+ if (I->getType()->getElementType()->isPointerTy() &&
+ AnalyzeIndirectGlobalMemory(I))
+ ++NumIndirectGlobalVars;
+ }
+ Readers.clear(); Writers.clear();
+ }
+}
+
+/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
+/// If this is used by anything complex (i.e., the address escapes), return
+/// true. Also, while we are at it, keep track of those functions that read and
+/// write to the value.
+///
+/// If OkayStoreDest is non-null, stores into this global are allowed.
+bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
+ std::vector<Function*> &Readers,
+ std::vector<Function*> &Writers,
+ GlobalValue *OkayStoreDest) {
+ if (!V->getType()->isPointerTy()) return true;
+
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+ if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+ Readers.push_back(LI->getParent()->getParent());
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+ if (V == SI->getOperand(1)) {
+ Writers.push_back(SI->getParent()->getParent());
+ } else if (SI->getOperand(1) != OkayStoreDest) {
+ return true; // Storing the pointer
+ }
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
+ if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
+ } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
+ if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
+ return true;
+ } else if (isFreeCall(*UI)) {
+ Writers.push_back(cast<Instruction>(*UI)->getParent()->getParent());
+ } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+ // Make sure that this is just the function being called, not that it is
+ // passing into the function.
+ for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
+ if (CI->getOperand(i) == V) return true;
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+ // Make sure that this is just the function being called, not that it is
+ // passing into the function.
+ for (unsigned i = 0, e = II->getNumOperands() - 3; i != e; ++i)
+ if (II->getOperand(i) == V) return true;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
+ if (CE->getOpcode() == Instruction::GetElementPtr ||
+ CE->getOpcode() == Instruction::BitCast) {
+ if (AnalyzeUsesOfPointer(CE, Readers, Writers))
+ return true;
+ } else {
+ return true;
+ }
+ } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
+ if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
+ return true; // Allow comparison against null.
+ } else {
+ return true;
+ }
+ return false;
+}
+
+/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
+/// which holds a pointer type. See if the global always points to non-aliased
+/// heap memory: that is, all initializers of the globals are allocations, and
+/// those allocations have no use other than initialization of the global.
+/// Further, all loads out of GV must directly use the memory, not store the
+/// pointer somewhere. If this is true, we consider the memory pointed to by
+/// GV to be owned by GV and can disambiguate other pointers from it.
+bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
+ // Keep track of values related to the allocation of the memory, f.e. the
+ // value produced by the malloc call and any casts.
+ std::vector<Value*> AllocRelatedValues;
+
+ // Walk the user list of the global. If we find anything other than a direct
+ // load or store, bail out.
+ for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
+ if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
+ // The pointer loaded from the global can only be used in simple ways:
+ // we allow addressing of it and loading storing to it. We do *not* allow
+ // storing the loaded pointer somewhere else or passing to a function.
+ std::vector<Function*> ReadersWriters;
+ if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
+ return false; // Loaded pointer escapes.
+ // TODO: Could try some IP mod/ref of the loaded pointer.
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
+ // Storing the global itself.
+ if (SI->getOperand(0) == GV) return false;
+
+ // If storing the null pointer, ignore it.
+ if (isa<ConstantPointerNull>(SI->getOperand(0)))
+ continue;
+
+ // Check the value being stored.
+ Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
+
+ if (isMalloc(Ptr)) {
+ // Okay, easy case.
+ } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
+ Function *F = CI->getCalledFunction();
+ if (!F || !F->isDeclaration()) return false; // Too hard to analyze.
+ if (F->getName() != "calloc") return false; // Not calloc.
+ } else {
+ return false; // Too hard to analyze.
+ }
+
+ // Analyze all uses of the allocation. If any of them are used in a
+ // non-simple way (e.g. stored to another global) bail out.
+ std::vector<Function*> ReadersWriters;
+ if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
+ return false; // Loaded pointer escapes.
+
+ // Remember that this allocation is related to the indirect global.
+ AllocRelatedValues.push_back(Ptr);
+ } else {
+ // Something complex, bail out.
+ return false;
+ }
+ }
+
+ // Okay, this is an indirect global. Remember all of the allocations for
+ // this global in AllocsForIndirectGlobals.
+ while (!AllocRelatedValues.empty()) {
+ AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
+ AllocRelatedValues.pop_back();
+ }
+ IndirectGlobals.insert(GV);
+ return true;
+}
+
+/// AnalyzeCallGraph - At this point, we know the functions where globals are
+/// immediately stored to and read from. Propagate this information up the call
+/// graph to all callers and compute the mod/ref info for all memory for each
+/// function.
+void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
+ // We do a bottom-up SCC traversal of the call graph. In other words, we
+ // visit all callees before callers (leaf-first).
+ for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
+ ++I) {
+ std::vector<CallGraphNode *> &SCC = *I;
+ assert(!SCC.empty() && "SCC with no functions?");
+
+ if (!SCC[0]->getFunction()) {
+ // Calls externally - can't say anything useful. Remove any existing
+ // function records (may have been created when scanning globals).
+ for (unsigned i = 0, e = SCC.size(); i != e; ++i)
+ FunctionInfo.erase(SCC[i]->getFunction());
+ continue;
+ }
+
+ FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
+
+ bool KnowNothing = false;
+ unsigned FunctionEffect = 0;
+
+ // Collect the mod/ref properties due to called functions. We only compute
+ // one mod-ref set.
+ for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
+ Function *F = SCC[i]->getFunction();
+ if (!F) {
+ KnowNothing = true;
+ break;
+ }
+
+ if (F->isDeclaration()) {
+ // Try to get mod/ref behaviour from function attributes.
+ if (F->doesNotAccessMemory()) {
+ // Can't do better than that!
+ } else if (F->onlyReadsMemory()) {
+ FunctionEffect |= Ref;
+ if (!F->isIntrinsic())
+ // This function might call back into the module and read a global -
+ // consider every global as possibly being read by this function.
+ FR.MayReadAnyGlobal = true;
+ } else {
+ FunctionEffect |= ModRef;
+ // Can't say anything useful unless it's an intrinsic - they don't
+ // read or write global variables of the kind considered here.
+ KnowNothing = !F->isIntrinsic();
+ }
+ continue;
+ }
+
+ for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
+ CI != E && !KnowNothing; ++CI)
+ if (Function *Callee = CI->second->getFunction()) {
+ if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
+ // Propagate function effect up.
+ FunctionEffect |= CalleeFR->FunctionEffect;
+
+ // Incorporate callee's effects on globals into our info.
+ for (std::map<GlobalValue*, unsigned>::iterator GI =
+ CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
+ GI != E; ++GI)
+ FR.GlobalInfo[GI->first] |= GI->second;
+ FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
+ } else {
+ // Can't say anything about it. However, if it is inside our SCC,
+ // then nothing needs to be done.
+ CallGraphNode *CalleeNode = CG[Callee];
+ if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
+ KnowNothing = true;
+ }
+ } else {
+ KnowNothing = true;
+ }
+ }
+
+ // If we can't say anything useful about this SCC, remove all SCC functions
+ // from the FunctionInfo map.
+ if (KnowNothing) {
+ for (unsigned i = 0, e = SCC.size(); i != e; ++i)
+ FunctionInfo.erase(SCC[i]->getFunction());
+ continue;
+ }
+
+ // Scan the function bodies for explicit loads or stores.
+ for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
+ for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
+ E = inst_end(SCC[i]->getFunction());
+ II != E && FunctionEffect != ModRef; ++II)
+ if (isa<LoadInst>(*II)) {
+ FunctionEffect |= Ref;
+ if (cast<LoadInst>(*II).isVolatile())
+ // Volatile loads may have side-effects, so mark them as writing
+ // memory (for example, a flag inside the processor).
+ FunctionEffect |= Mod;
+ } else if (isa<StoreInst>(*II)) {
+ FunctionEffect |= Mod;
+ if (cast<StoreInst>(*II).isVolatile())
+ // Treat volatile stores as reading memory somewhere.
+ FunctionEffect |= Ref;
+ } else if (isMalloc(&cast<Instruction>(*II)) ||
+ isFreeCall(&cast<Instruction>(*II))) {
+ FunctionEffect |= ModRef;
+ }
+
+ if ((FunctionEffect & Mod) == 0)
+ ++NumReadMemFunctions;
+ if (FunctionEffect == 0)
+ ++NumNoMemFunctions;
+ FR.FunctionEffect = FunctionEffect;
+
+ // Finally, now that we know the full effect on this SCC, clone the
+ // information to each function in the SCC.
+ for (unsigned i = 1, e = SCC.size(); i != e; ++i)
+ FunctionInfo[SCC[i]->getFunction()] = FR;
+ }
+}
+
+
+
+/// alias - If one of the pointers is to a global that we are tracking, and the
+/// other is some random pointer, we know there cannot be an alias, because the
+/// address of the global isn't taken.
+AliasAnalysis::AliasResult
+GlobalsModRef::alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ // Get the base object these pointers point to.
+ Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
+ Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
+
+ // If either of the underlying values is a global, they may be non-addr-taken
+ // globals, which we can answer queries about.
+ GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
+ GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
+ if (GV1 || GV2) {
+ // If the global's address is taken, pretend we don't know it's a pointer to
+ // the global.
+ if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
+ if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
+
+ // If the two pointers are derived from two different non-addr-taken
+ // globals, or if one is and the other isn't, we know these can't alias.
+ if ((GV1 || GV2) && GV1 != GV2)
+ return NoAlias;
+
+ // Otherwise if they are both derived from the same addr-taken global, we
+ // can't know the two accesses don't overlap.
+ }
+
+ // These pointers may be based on the memory owned by an indirect global. If
+ // so, we may be able to handle this. First check to see if the base pointer
+ // is a direct load from an indirect global.
+ GV1 = GV2 = 0;
+ if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+ if (IndirectGlobals.count(GV))
+ GV1 = GV;
+ if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+ if (IndirectGlobals.count(GV))
+ GV2 = GV;
+
+ // These pointers may also be from an allocation for the indirect global. If
+ // so, also handle them.
+ if (AllocsForIndirectGlobals.count(UV1))
+ GV1 = AllocsForIndirectGlobals[UV1];
+ if (AllocsForIndirectGlobals.count(UV2))
+ GV2 = AllocsForIndirectGlobals[UV2];
+
+ // Now that we know whether the two pointers are related to indirect globals,
+ // use this to disambiguate the pointers. If either pointer is based on an
+ // indirect global and if they are not both based on the same indirect global,
+ // they cannot alias.
+ if ((GV1 || GV2) && GV1 != GV2)
+ return NoAlias;
+
+ return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
+}
+
+AliasAnalysis::ModRefResult
+GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
+ unsigned Known = ModRef;
+
+ // If we are asking for mod/ref info of a direct call with a pointer to a
+ // global we are tracking, return information if we have it.
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
+ if (GV->hasLocalLinkage())
+ if (Function *F = CS.getCalledFunction())
+ if (NonAddressTakenGlobals.count(GV))
+ if (FunctionRecord *FR = getFunctionInfo(F))
+ Known = FR->getInfoForGlobal(GV);
+
+ if (Known == NoModRef)
+ return NoModRef; // No need to query other mod/ref analyses
+ return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods to update the analysis as a result of the client transformation.
+//
+void GlobalsModRef::deleteValue(Value *V) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ if (NonAddressTakenGlobals.erase(GV)) {
+ // This global might be an indirect global. If so, remove it and remove
+ // any AllocRelatedValues for it.
+ if (IndirectGlobals.erase(GV)) {
+ // Remove any entries in AllocsForIndirectGlobals for this global.
+ for (std::map<Value*, GlobalValue*>::iterator
+ I = AllocsForIndirectGlobals.begin(),
+ E = AllocsForIndirectGlobals.end(); I != E; ) {
+ if (I->second == GV) {
+ AllocsForIndirectGlobals.erase(I++);
+ } else {
+ ++I;
+ }
+ }
+ }
+ }
+ }
+
+ // Otherwise, if this is an allocation related to an indirect global, remove
+ // it.
+ AllocsForIndirectGlobals.erase(V);
+
+ AliasAnalysis::deleteValue(V);
+}
+
+void GlobalsModRef::copyValue(Value *From, Value *To) {
+ AliasAnalysis::copyValue(From, To);
+}
diff --git a/contrib/llvm/lib/Analysis/IPA/Makefile b/contrib/llvm/lib/Analysis/IPA/Makefile
new file mode 100644
index 0000000..b850c9f
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/IPA/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Analysis/IPA/Makefile ---------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMipa
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
OpenPOWER on IntegriCloud