diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/IPA/InlineCost.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/IPA/InlineCost.cpp | 1437 |
1 files changed, 0 insertions, 1437 deletions
diff --git a/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp b/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp deleted file mode 100644 index c0d2e37..0000000 --- a/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp +++ /dev/null @@ -1,1437 +0,0 @@ -//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements inline cost analysis. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/InlineCost.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Operator.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" - -using namespace llvm; - -#define DEBUG_TYPE "inline-cost" - -STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); - -namespace { - -class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { - typedef InstVisitor<CallAnalyzer, bool> Base; - friend class InstVisitor<CallAnalyzer, bool>; - - /// The TargetTransformInfo available for this compilation. - const TargetTransformInfo &TTI; - - /// The cache of @llvm.assume intrinsics. - AssumptionCacheTracker *ACT; - - // The called function. - Function &F; - - // The candidate callsite being analyzed. Please do not use this to do - // analysis in the caller function; we want the inline cost query to be - // easily cacheable. Instead, use the cover function paramHasAttr. - CallSite CandidateCS; - - int Threshold; - int Cost; - - bool IsCallerRecursive; - bool IsRecursiveCall; - bool ExposesReturnsTwice; - bool HasDynamicAlloca; - bool ContainsNoDuplicateCall; - bool HasReturn; - bool HasIndirectBr; - bool HasFrameEscape; - - /// Number of bytes allocated statically by the callee. - uint64_t AllocatedSize; - unsigned NumInstructions, NumVectorInstructions; - int FiftyPercentVectorBonus, TenPercentVectorBonus; - int VectorBonus; - - // While we walk the potentially-inlined instructions, we build up and - // maintain a mapping of simplified values specific to this callsite. The - // idea is to propagate any special information we have about arguments to - // this call through the inlinable section of the function, and account for - // likely simplifications post-inlining. The most important aspect we track - // is CFG altering simplifications -- when we prove a basic block dead, that - // can cause dramatic shifts in the cost of inlining a function. - DenseMap<Value *, Constant *> SimplifiedValues; - - // Keep track of the values which map back (through function arguments) to - // allocas on the caller stack which could be simplified through SROA. - DenseMap<Value *, Value *> SROAArgValues; - - // The mapping of caller Alloca values to their accumulated cost savings. If - // we have to disable SROA for one of the allocas, this tells us how much - // cost must be added. - DenseMap<Value *, int> SROAArgCosts; - - // Keep track of values which map to a pointer base and constant offset. - DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; - - // Custom simplification helper routines. - bool isAllocaDerivedArg(Value *V); - bool lookupSROAArgAndCost(Value *V, Value *&Arg, - DenseMap<Value *, int>::iterator &CostIt); - void disableSROA(DenseMap<Value *, int>::iterator CostIt); - void disableSROA(Value *V); - void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, - int InstructionCost); - bool isGEPOffsetConstant(GetElementPtrInst &GEP); - bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); - bool simplifyCallSite(Function *F, CallSite CS); - ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); - - /// Return true if the given argument to the function being considered for - /// inlining has the given attribute set either at the call site or the - /// function declaration. Primarily used to inspect call site specific - /// attributes since these can be more precise than the ones on the callee - /// itself. - bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); - - /// Return true if the given value is known non null within the callee if - /// inlined through this particular callsite. - bool isKnownNonNullInCallee(Value *V); - - // Custom analysis routines. - bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues); - - // Disable several entry points to the visitor so we don't accidentally use - // them by declaring but not defining them here. - void visit(Module *); void visit(Module &); - void visit(Function *); void visit(Function &); - void visit(BasicBlock *); void visit(BasicBlock &); - - // Provide base case for our instruction visit. - bool visitInstruction(Instruction &I); - - // Our visit overrides. - bool visitAlloca(AllocaInst &I); - bool visitPHI(PHINode &I); - bool visitGetElementPtr(GetElementPtrInst &I); - bool visitBitCast(BitCastInst &I); - bool visitPtrToInt(PtrToIntInst &I); - bool visitIntToPtr(IntToPtrInst &I); - bool visitCastInst(CastInst &I); - bool visitUnaryInstruction(UnaryInstruction &I); - bool visitCmpInst(CmpInst &I); - bool visitSub(BinaryOperator &I); - bool visitBinaryOperator(BinaryOperator &I); - bool visitLoad(LoadInst &I); - bool visitStore(StoreInst &I); - bool visitExtractValue(ExtractValueInst &I); - bool visitInsertValue(InsertValueInst &I); - bool visitCallSite(CallSite CS); - bool visitReturnInst(ReturnInst &RI); - bool visitBranchInst(BranchInst &BI); - bool visitSwitchInst(SwitchInst &SI); - bool visitIndirectBrInst(IndirectBrInst &IBI); - bool visitResumeInst(ResumeInst &RI); - bool visitUnreachableInst(UnreachableInst &I); - -public: - CallAnalyzer(const TargetTransformInfo &TTI, AssumptionCacheTracker *ACT, - Function &Callee, int Threshold, CallSite CSArg) - : TTI(TTI), ACT(ACT), F(Callee), CandidateCS(CSArg), Threshold(Threshold), - Cost(0), IsCallerRecursive(false), IsRecursiveCall(false), - ExposesReturnsTwice(false), HasDynamicAlloca(false), - ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), - HasFrameEscape(false), AllocatedSize(0), NumInstructions(0), - NumVectorInstructions(0), FiftyPercentVectorBonus(0), - TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0), - NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0), - NumConstantPtrDiffs(0), NumInstructionsSimplified(0), - SROACostSavings(0), SROACostSavingsLost(0) {} - - bool analyzeCall(CallSite CS); - - int getThreshold() { return Threshold; } - int getCost() { return Cost; } - - // Keep a bunch of stats about the cost savings found so we can print them - // out when debugging. - unsigned NumConstantArgs; - unsigned NumConstantOffsetPtrArgs; - unsigned NumAllocaArgs; - unsigned NumConstantPtrCmps; - unsigned NumConstantPtrDiffs; - unsigned NumInstructionsSimplified; - unsigned SROACostSavings; - unsigned SROACostSavingsLost; - - void dump(); -}; - -} // namespace - -/// \brief Test whether the given value is an Alloca-derived function argument. -bool CallAnalyzer::isAllocaDerivedArg(Value *V) { - return SROAArgValues.count(V); -} - -/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. -/// Returns false if V does not map to a SROA-candidate. -bool CallAnalyzer::lookupSROAArgAndCost( - Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { - if (SROAArgValues.empty() || SROAArgCosts.empty()) - return false; - - DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); - if (ArgIt == SROAArgValues.end()) - return false; - - Arg = ArgIt->second; - CostIt = SROAArgCosts.find(Arg); - return CostIt != SROAArgCosts.end(); -} - -/// \brief Disable SROA for the candidate marked by this cost iterator. -/// -/// This marks the candidate as no longer viable for SROA, and adds the cost -/// savings associated with it back into the inline cost measurement. -void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { - // If we're no longer able to perform SROA we need to undo its cost savings - // and prevent subsequent analysis. - Cost += CostIt->second; - SROACostSavings -= CostIt->second; - SROACostSavingsLost += CostIt->second; - SROAArgCosts.erase(CostIt); -} - -/// \brief If 'V' maps to a SROA candidate, disable SROA for it. -void CallAnalyzer::disableSROA(Value *V) { - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(V, SROAArg, CostIt)) - disableSROA(CostIt); -} - -/// \brief Accumulate the given cost for a particular SROA candidate. -void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, - int InstructionCost) { - CostIt->second += InstructionCost; - SROACostSavings += InstructionCost; -} - -/// \brief Check whether a GEP's indices are all constant. -/// -/// Respects any simplified values known during the analysis of this callsite. -bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { - for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) - if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) - return false; - - return true; -} - -/// \brief Accumulate a constant GEP offset into an APInt if possible. -/// -/// Returns false if unable to compute the offset for any reason. Respects any -/// simplified values known during the analysis of this callsite. -bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned IntPtrWidth = DL.getPointerSizeInBits(); - assert(IntPtrWidth == Offset.getBitWidth()); - - for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); - GTI != GTE; ++GTI) { - ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); - if (!OpC) - if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) - OpC = dyn_cast<ConstantInt>(SimpleOp); - if (!OpC) - return false; - if (OpC->isZero()) continue; - - // Handle a struct index, which adds its field offset to the pointer. - if (StructType *STy = dyn_cast<StructType>(*GTI)) { - unsigned ElementIdx = OpC->getZExtValue(); - const StructLayout *SL = DL.getStructLayout(STy); - Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); - continue; - } - - APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); - Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; - } - return true; -} - -bool CallAnalyzer::visitAlloca(AllocaInst &I) { - // Check whether inlining will turn a dynamic alloca into a static - // alloca, and handle that case. - if (I.isArrayAllocation()) { - if (Constant *Size = SimplifiedValues.lookup(I.getArraySize())) { - ConstantInt *AllocSize = dyn_cast<ConstantInt>(Size); - assert(AllocSize && "Allocation size not a constant int?"); - Type *Ty = I.getAllocatedType(); - AllocatedSize += Ty->getPrimitiveSizeInBits() * AllocSize->getZExtValue(); - return Base::visitAlloca(I); - } - } - - // Accumulate the allocated size. - if (I.isStaticAlloca()) { - const DataLayout &DL = F.getParent()->getDataLayout(); - Type *Ty = I.getAllocatedType(); - AllocatedSize += DL.getTypeAllocSize(Ty); - } - - // We will happily inline static alloca instructions. - if (I.isStaticAlloca()) - return Base::visitAlloca(I); - - // FIXME: This is overly conservative. Dynamic allocas are inefficient for - // a variety of reasons, and so we would like to not inline them into - // functions which don't currently have a dynamic alloca. This simply - // disables inlining altogether in the presence of a dynamic alloca. - HasDynamicAlloca = true; - return false; -} - -bool CallAnalyzer::visitPHI(PHINode &I) { - // FIXME: We should potentially be tracking values through phi nodes, - // especially when they collapse to a single value due to deleted CFG edges - // during inlining. - - // FIXME: We need to propagate SROA *disabling* through phi nodes, even - // though we don't want to propagate it's bonuses. The idea is to disable - // SROA if it *might* be used in an inappropriate manner. - - // Phi nodes are always zero-cost. - return true; -} - -bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), - SROAArg, CostIt); - - // Try to fold GEPs of constant-offset call site argument pointers. This - // requires target data and inbounds GEPs. - if (I.isInBounds()) { - // Check if we have a base + offset for the pointer. - Value *Ptr = I.getPointerOperand(); - std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); - if (BaseAndOffset.first) { - // Check if the offset of this GEP is constant, and if so accumulate it - // into Offset. - if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { - // Non-constant GEPs aren't folded, and disable SROA. - if (SROACandidate) - disableSROA(CostIt); - return false; - } - - // Add the result as a new mapping to Base + Offset. - ConstantOffsetPtrs[&I] = BaseAndOffset; - - // Also handle SROA candidates here, we already know that the GEP is - // all-constant indexed. - if (SROACandidate) - SROAArgValues[&I] = SROAArg; - - return true; - } - } - - if (isGEPOffsetConstant(I)) { - if (SROACandidate) - SROAArgValues[&I] = SROAArg; - - // Constant GEPs are modeled as free. - return true; - } - - // Variable GEPs will require math and will disable SROA. - if (SROACandidate) - disableSROA(CostIt); - return false; -} - -bool CallAnalyzer::visitBitCast(BitCastInst &I) { - // Propagate constants through bitcasts. - Constant *COp = dyn_cast<Constant>(I.getOperand(0)); - if (!COp) - COp = SimplifiedValues.lookup(I.getOperand(0)); - if (COp) - if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { - SimplifiedValues[&I] = C; - return true; - } - - // Track base/offsets through casts - std::pair<Value *, APInt> BaseAndOffset - = ConstantOffsetPtrs.lookup(I.getOperand(0)); - // Casts don't change the offset, just wrap it up. - if (BaseAndOffset.first) - ConstantOffsetPtrs[&I] = BaseAndOffset; - - // Also look for SROA candidates here. - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) - SROAArgValues[&I] = SROAArg; - - // Bitcasts are always zero cost. - return true; -} - -bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { - // Propagate constants through ptrtoint. - Constant *COp = dyn_cast<Constant>(I.getOperand(0)); - if (!COp) - COp = SimplifiedValues.lookup(I.getOperand(0)); - if (COp) - if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { - SimplifiedValues[&I] = C; - return true; - } - - // Track base/offset pairs when converted to a plain integer provided the - // integer is large enough to represent the pointer. - unsigned IntegerSize = I.getType()->getScalarSizeInBits(); - const DataLayout &DL = F.getParent()->getDataLayout(); - if (IntegerSize >= DL.getPointerSizeInBits()) { - std::pair<Value *, APInt> BaseAndOffset - = ConstantOffsetPtrs.lookup(I.getOperand(0)); - if (BaseAndOffset.first) - ConstantOffsetPtrs[&I] = BaseAndOffset; - } - - // This is really weird. Technically, ptrtoint will disable SROA. However, - // unless that ptrtoint is *used* somewhere in the live basic blocks after - // inlining, it will be nuked, and SROA should proceed. All of the uses which - // would block SROA would also block SROA if applied directly to a pointer, - // and so we can just add the integer in here. The only places where SROA is - // preserved either cannot fire on an integer, or won't in-and-of themselves - // disable SROA (ext) w/o some later use that we would see and disable. - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) - SROAArgValues[&I] = SROAArg; - - return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); -} - -bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { - // Propagate constants through ptrtoint. - Constant *COp = dyn_cast<Constant>(I.getOperand(0)); - if (!COp) - COp = SimplifiedValues.lookup(I.getOperand(0)); - if (COp) - if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { - SimplifiedValues[&I] = C; - return true; - } - - // Track base/offset pairs when round-tripped through a pointer without - // modifications provided the integer is not too large. - Value *Op = I.getOperand(0); - unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); - const DataLayout &DL = F.getParent()->getDataLayout(); - if (IntegerSize <= DL.getPointerSizeInBits()) { - std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); - if (BaseAndOffset.first) - ConstantOffsetPtrs[&I] = BaseAndOffset; - } - - // "Propagate" SROA here in the same manner as we do for ptrtoint above. - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) - SROAArgValues[&I] = SROAArg; - - return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); -} - -bool CallAnalyzer::visitCastInst(CastInst &I) { - // Propagate constants through ptrtoint. - Constant *COp = dyn_cast<Constant>(I.getOperand(0)); - if (!COp) - COp = SimplifiedValues.lookup(I.getOperand(0)); - if (COp) - if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { - SimplifiedValues[&I] = C; - return true; - } - - // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. - disableSROA(I.getOperand(0)); - - return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); -} - -bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { - Value *Operand = I.getOperand(0); - Constant *COp = dyn_cast<Constant>(Operand); - if (!COp) - COp = SimplifiedValues.lookup(Operand); - if (COp) { - const DataLayout &DL = F.getParent()->getDataLayout(); - if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), - COp, DL)) { - SimplifiedValues[&I] = C; - return true; - } - } - - // Disable any SROA on the argument to arbitrary unary operators. - disableSROA(Operand); - - return false; -} - -bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { - unsigned ArgNo = A->getArgNo(); - return CandidateCS.paramHasAttr(ArgNo+1, Attr); -} - -bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { - // Does the *call site* have the NonNull attribute set on an argument? We - // use the attribute on the call site to memoize any analysis done in the - // caller. This will also trip if the callee function has a non-null - // parameter attribute, but that's a less interesting case because hopefully - // the callee would already have been simplified based on that. - if (Argument *A = dyn_cast<Argument>(V)) - if (paramHasAttr(A, Attribute::NonNull)) - return true; - - // Is this an alloca in the caller? This is distinct from the attribute case - // above because attributes aren't updated within the inliner itself and we - // always want to catch the alloca derived case. - if (isAllocaDerivedArg(V)) - // We can actually predict the result of comparisons between an - // alloca-derived value and null. Note that this fires regardless of - // SROA firing. - return true; - - return false; -} - -bool CallAnalyzer::visitCmpInst(CmpInst &I) { - Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - // First try to handle simplified comparisons. - if (!isa<Constant>(LHS)) - if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) - LHS = SimpleLHS; - if (!isa<Constant>(RHS)) - if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) - RHS = SimpleRHS; - if (Constant *CLHS = dyn_cast<Constant>(LHS)) { - if (Constant *CRHS = dyn_cast<Constant>(RHS)) - if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { - SimplifiedValues[&I] = C; - return true; - } - } - - if (I.getOpcode() == Instruction::FCmp) - return false; - - // Otherwise look for a comparison between constant offset pointers with - // a common base. - Value *LHSBase, *RHSBase; - APInt LHSOffset, RHSOffset; - std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); - if (LHSBase) { - std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); - if (RHSBase && LHSBase == RHSBase) { - // We have common bases, fold the icmp to a constant based on the - // offsets. - Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); - Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); - if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { - SimplifiedValues[&I] = C; - ++NumConstantPtrCmps; - return true; - } - } - } - - // If the comparison is an equality comparison with null, we can simplify it - // if we know the value (argument) can't be null - if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && - isKnownNonNullInCallee(I.getOperand(0))) { - bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; - SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) - : ConstantInt::getFalse(I.getType()); - return true; - } - // Finally check for SROA candidates in comparisons. - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { - if (isa<ConstantPointerNull>(I.getOperand(1))) { - accumulateSROACost(CostIt, InlineConstants::InstrCost); - return true; - } - - disableSROA(CostIt); - } - - return false; -} - -bool CallAnalyzer::visitSub(BinaryOperator &I) { - // Try to handle a special case: we can fold computing the difference of two - // constant-related pointers. - Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - Value *LHSBase, *RHSBase; - APInt LHSOffset, RHSOffset; - std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); - if (LHSBase) { - std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); - if (RHSBase && LHSBase == RHSBase) { - // We have common bases, fold the subtract to a constant based on the - // offsets. - Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); - Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); - if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { - SimplifiedValues[&I] = C; - ++NumConstantPtrDiffs; - return true; - } - } - } - - // Otherwise, fall back to the generic logic for simplifying and handling - // instructions. - return Base::visitSub(I); -} - -bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { - Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - const DataLayout &DL = F.getParent()->getDataLayout(); - if (!isa<Constant>(LHS)) - if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) - LHS = SimpleLHS; - if (!isa<Constant>(RHS)) - if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) - RHS = SimpleRHS; - Value *SimpleV = nullptr; - if (auto FI = dyn_cast<FPMathOperator>(&I)) - SimpleV = - SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); - else - SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); - - if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { - SimplifiedValues[&I] = C; - return true; - } - - // Disable any SROA on arguments to arbitrary, unsimplified binary operators. - disableSROA(LHS); - disableSROA(RHS); - - return false; -} - -bool CallAnalyzer::visitLoad(LoadInst &I) { - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { - if (I.isSimple()) { - accumulateSROACost(CostIt, InlineConstants::InstrCost); - return true; - } - - disableSROA(CostIt); - } - - return false; -} - -bool CallAnalyzer::visitStore(StoreInst &I) { - Value *SROAArg; - DenseMap<Value *, int>::iterator CostIt; - if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { - if (I.isSimple()) { - accumulateSROACost(CostIt, InlineConstants::InstrCost); - return true; - } - - disableSROA(CostIt); - } - - return false; -} - -bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { - // Constant folding for extract value is trivial. - Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); - if (!C) - C = SimplifiedValues.lookup(I.getAggregateOperand()); - if (C) { - SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); - return true; - } - - // SROA can look through these but give them a cost. - return false; -} - -bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { - // Constant folding for insert value is trivial. - Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); - if (!AggC) - AggC = SimplifiedValues.lookup(I.getAggregateOperand()); - Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); - if (!InsertedC) - InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); - if (AggC && InsertedC) { - SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, - I.getIndices()); - return true; - } - - // SROA can look through these but give them a cost. - return false; -} - -/// \brief Try to simplify a call site. -/// -/// Takes a concrete function and callsite and tries to actually simplify it by -/// analyzing the arguments and call itself with instsimplify. Returns true if -/// it has simplified the callsite to some other entity (a constant), making it -/// free. -bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { - // FIXME: Using the instsimplify logic directly for this is inefficient - // because we have to continually rebuild the argument list even when no - // simplifications can be performed. Until that is fixed with remapping - // inside of instsimplify, directly constant fold calls here. - if (!canConstantFoldCallTo(F)) - return false; - - // Try to re-map the arguments to constants. - SmallVector<Constant *, 4> ConstantArgs; - ConstantArgs.reserve(CS.arg_size()); - for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); - I != E; ++I) { - Constant *C = dyn_cast<Constant>(*I); - if (!C) - C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); - if (!C) - return false; // This argument doesn't map to a constant. - - ConstantArgs.push_back(C); - } - if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { - SimplifiedValues[CS.getInstruction()] = C; - return true; - } - - return false; -} - -bool CallAnalyzer::visitCallSite(CallSite CS) { - if (CS.hasFnAttr(Attribute::ReturnsTwice) && - !F.hasFnAttribute(Attribute::ReturnsTwice)) { - // This aborts the entire analysis. - ExposesReturnsTwice = true; - return false; - } - if (CS.isCall() && - cast<CallInst>(CS.getInstruction())->cannotDuplicate()) - ContainsNoDuplicateCall = true; - - if (Function *F = CS.getCalledFunction()) { - // When we have a concrete function, first try to simplify it directly. - if (simplifyCallSite(F, CS)) - return true; - - // Next check if it is an intrinsic we know about. - // FIXME: Lift this into part of the InstVisitor. - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { - switch (II->getIntrinsicID()) { - default: - return Base::visitCallSite(CS); - - case Intrinsic::memset: - case Intrinsic::memcpy: - case Intrinsic::memmove: - // SROA can usually chew through these intrinsics, but they aren't free. - return false; - case Intrinsic::localescape: - HasFrameEscape = true; - return false; - } - } - - if (F == CS.getInstruction()->getParent()->getParent()) { - // This flag will fully abort the analysis, so don't bother with anything - // else. - IsRecursiveCall = true; - return false; - } - - if (TTI.isLoweredToCall(F)) { - // We account for the average 1 instruction per call argument setup - // here. - Cost += CS.arg_size() * InlineConstants::InstrCost; - - // Everything other than inline ASM will also have a significant cost - // merely from making the call. - if (!isa<InlineAsm>(CS.getCalledValue())) - Cost += InlineConstants::CallPenalty; - } - - return Base::visitCallSite(CS); - } - - // Otherwise we're in a very special case -- an indirect function call. See - // if we can be particularly clever about this. - Value *Callee = CS.getCalledValue(); - - // First, pay the price of the argument setup. We account for the average - // 1 instruction per call argument setup here. - Cost += CS.arg_size() * InlineConstants::InstrCost; - - // Next, check if this happens to be an indirect function call to a known - // function in this inline context. If not, we've done all we can. - Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); - if (!F) - return Base::visitCallSite(CS); - - // If we have a constant that we are calling as a function, we can peer - // through it and see the function target. This happens not infrequently - // during devirtualization and so we want to give it a hefty bonus for - // inlining, but cap that bonus in the event that inlining wouldn't pan - // out. Pretend to inline the function, with a custom threshold. - CallAnalyzer CA(TTI, ACT, *F, InlineConstants::IndirectCallThreshold, CS); - if (CA.analyzeCall(CS)) { - // We were able to inline the indirect call! Subtract the cost from the - // bonus we want to apply, but don't go below zero. - Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); - } - - return Base::visitCallSite(CS); -} - -bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { - // At least one return instruction will be free after inlining. - bool Free = !HasReturn; - HasReturn = true; - return Free; -} - -bool CallAnalyzer::visitBranchInst(BranchInst &BI) { - // We model unconditional branches as essentially free -- they really - // shouldn't exist at all, but handling them makes the behavior of the - // inliner more regular and predictable. Interestingly, conditional branches - // which will fold away are also free. - return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || - dyn_cast_or_null<ConstantInt>( - SimplifiedValues.lookup(BI.getCondition())); -} - -bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { - // We model unconditional switches as free, see the comments on handling - // branches. - if (isa<ConstantInt>(SI.getCondition())) - return true; - if (Value *V = SimplifiedValues.lookup(SI.getCondition())) - if (isa<ConstantInt>(V)) - return true; - - // Otherwise, we need to accumulate a cost proportional to the number of - // distinct successor blocks. This fan-out in the CFG cannot be represented - // for free even if we can represent the core switch as a jumptable that - // takes a single instruction. - // - // NB: We convert large switches which are just used to initialize large phi - // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent - // inlining those. It will prevent inlining in cases where the optimization - // does not (yet) fire. - SmallPtrSet<BasicBlock *, 8> SuccessorBlocks; - SuccessorBlocks.insert(SI.getDefaultDest()); - for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I) - SuccessorBlocks.insert(I.getCaseSuccessor()); - // Add cost corresponding to the number of distinct destinations. The first - // we model as free because of fallthrough. - Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost; - return false; -} - -bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { - // We never want to inline functions that contain an indirectbr. This is - // incorrect because all the blockaddress's (in static global initializers - // for example) would be referring to the original function, and this - // indirect jump would jump from the inlined copy of the function into the - // original function which is extremely undefined behavior. - // FIXME: This logic isn't really right; we can safely inline functions with - // indirectbr's as long as no other function or global references the - // blockaddress of a block within the current function. - HasIndirectBr = true; - return false; -} - -bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { - // FIXME: It's not clear that a single instruction is an accurate model for - // the inline cost of a resume instruction. - return false; -} - -bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { - // FIXME: It might be reasonably to discount the cost of instructions leading - // to unreachable as they have the lowest possible impact on both runtime and - // code size. - return true; // No actual code is needed for unreachable. -} - -bool CallAnalyzer::visitInstruction(Instruction &I) { - // Some instructions are free. All of the free intrinsics can also be - // handled by SROA, etc. - if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) - return true; - - // We found something we don't understand or can't handle. Mark any SROA-able - // values in the operand list as no longer viable. - for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) - disableSROA(*OI); - - return false; -} - - -/// \brief Analyze a basic block for its contribution to the inline cost. -/// -/// This method walks the analyzer over every instruction in the given basic -/// block and accounts for their cost during inlining at this callsite. It -/// aborts early if the threshold has been exceeded or an impossible to inline -/// construct has been detected. It returns false if inlining is no longer -/// viable, and true if inlining remains viable. -bool CallAnalyzer::analyzeBlock(BasicBlock *BB, - SmallPtrSetImpl<const Value *> &EphValues) { - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { - // FIXME: Currently, the number of instructions in a function regardless of - // our ability to simplify them during inline to constants or dead code, - // are actually used by the vector bonus heuristic. As long as that's true, - // we have to special case debug intrinsics here to prevent differences in - // inlining due to debug symbols. Eventually, the number of unsimplified - // instructions shouldn't factor into the cost computation, but until then, - // hack around it here. - if (isa<DbgInfoIntrinsic>(I)) - continue; - - // Skip ephemeral values. - if (EphValues.count(I)) - continue; - - ++NumInstructions; - if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) - ++NumVectorInstructions; - - // If the instruction is floating point, and the target says this operation is - // expensive or the function has the "use-soft-float" attribute, this may - // eventually become a library call. Treat the cost as such. - if (I->getType()->isFloatingPointTy()) { - bool hasSoftFloatAttr = false; - - // If the function has the "use-soft-float" attribute, mark it as expensive. - if (F.hasFnAttribute("use-soft-float")) { - Attribute Attr = F.getFnAttribute("use-soft-float"); - StringRef Val = Attr.getValueAsString(); - if (Val == "true") - hasSoftFloatAttr = true; - } - - if (TTI.getFPOpCost(I->getType()) == TargetTransformInfo::TCC_Expensive || - hasSoftFloatAttr) - Cost += InlineConstants::CallPenalty; - } - - // If the instruction simplified to a constant, there is no cost to this - // instruction. Visit the instructions using our InstVisitor to account for - // all of the per-instruction logic. The visit tree returns true if we - // consumed the instruction in any way, and false if the instruction's base - // cost should count against inlining. - if (Base::visit(I)) - ++NumInstructionsSimplified; - else - Cost += InlineConstants::InstrCost; - - // If the visit this instruction detected an uninlinable pattern, abort. - if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || - HasIndirectBr || HasFrameEscape) - return false; - - // If the caller is a recursive function then we don't want to inline - // functions which allocate a lot of stack space because it would increase - // the caller stack usage dramatically. - if (IsCallerRecursive && - AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) - return false; - - // Check if we've past the maximum possible threshold so we don't spin in - // huge basic blocks that will never inline. - if (Cost > Threshold) - return false; - } - - return true; -} - -/// \brief Compute the base pointer and cumulative constant offsets for V. -/// -/// This strips all constant offsets off of V, leaving it the base pointer, and -/// accumulates the total constant offset applied in the returned constant. It -/// returns 0 if V is not a pointer, and returns the constant '0' if there are -/// no constant offsets applied. -ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { - if (!V->getType()->isPointerTy()) - return nullptr; - - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned IntPtrWidth = DL.getPointerSizeInBits(); - APInt Offset = APInt::getNullValue(IntPtrWidth); - - // Even though we don't look through PHI nodes, we could be called on an - // instruction in an unreachable block, which may be on a cycle. - SmallPtrSet<Value *, 4> Visited; - Visited.insert(V); - do { - if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { - if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) - return nullptr; - V = GEP->getPointerOperand(); - } else if (Operator::getOpcode(V) == Instruction::BitCast) { - V = cast<Operator>(V)->getOperand(0); - } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { - if (GA->mayBeOverridden()) - break; - V = GA->getAliasee(); - } else { - break; - } - assert(V->getType()->isPointerTy() && "Unexpected operand type!"); - } while (Visited.insert(V).second); - - Type *IntPtrTy = DL.getIntPtrType(V->getContext()); - return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); -} - -/// \brief Analyze a call site for potential inlining. -/// -/// Returns true if inlining this call is viable, and false if it is not -/// viable. It computes the cost and adjusts the threshold based on numerous -/// factors and heuristics. If this method returns false but the computed cost -/// is below the computed threshold, then inlining was forcibly disabled by -/// some artifact of the routine. -bool CallAnalyzer::analyzeCall(CallSite CS) { - ++NumCallsAnalyzed; - - // Perform some tweaks to the cost and threshold based on the direct - // callsite information. - - // We want to more aggressively inline vector-dense kernels, so up the - // threshold, and we'll lower it if the % of vector instructions gets too - // low. Note that these bonuses are some what arbitrary and evolved over time - // by accident as much as because they are principled bonuses. - // - // FIXME: It would be nice to remove all such bonuses. At least it would be - // nice to base the bonus values on something more scientific. - assert(NumInstructions == 0); - assert(NumVectorInstructions == 0); - FiftyPercentVectorBonus = 3 * Threshold / 2; - TenPercentVectorBonus = 3 * Threshold / 4; - const DataLayout &DL = F.getParent()->getDataLayout(); - - // Track whether the post-inlining function would have more than one basic - // block. A single basic block is often intended for inlining. Balloon the - // threshold by 50% until we pass the single-BB phase. - bool SingleBB = true; - int SingleBBBonus = Threshold / 2; - - // Speculatively apply all possible bonuses to Threshold. If cost exceeds - // this Threshold any time, and cost cannot decrease, we can stop processing - // the rest of the function body. - Threshold += (SingleBBBonus + FiftyPercentVectorBonus); - - // Give out bonuses per argument, as the instructions setting them up will - // be gone after inlining. - for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { - if (CS.isByValArgument(I)) { - // We approximate the number of loads and stores needed by dividing the - // size of the byval type by the target's pointer size. - PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); - unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); - unsigned PointerSize = DL.getPointerSizeInBits(); - // Ceiling division. - unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; - - // If it generates more than 8 stores it is likely to be expanded as an - // inline memcpy so we take that as an upper bound. Otherwise we assume - // one load and one store per word copied. - // FIXME: The maxStoresPerMemcpy setting from the target should be used - // here instead of a magic number of 8, but it's not available via - // DataLayout. - NumStores = std::min(NumStores, 8U); - - Cost -= 2 * NumStores * InlineConstants::InstrCost; - } else { - // For non-byval arguments subtract off one instruction per call - // argument. - Cost -= InlineConstants::InstrCost; - } - } - - // If there is only one call of the function, and it has internal linkage, - // the cost of inlining it drops dramatically. - bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && - &F == CS.getCalledFunction(); - if (OnlyOneCallAndLocalLinkage) - Cost += InlineConstants::LastCallToStaticBonus; - - // If the instruction after the call, or if the normal destination of the - // invoke is an unreachable instruction, the function is noreturn. As such, - // there is little point in inlining this unless there is literally zero - // cost. - Instruction *Instr = CS.getInstruction(); - if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { - if (isa<UnreachableInst>(II->getNormalDest()->begin())) - Threshold = 0; - } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) - Threshold = 0; - - // If this function uses the coldcc calling convention, prefer not to inline - // it. - if (F.getCallingConv() == CallingConv::Cold) - Cost += InlineConstants::ColdccPenalty; - - // Check if we're done. This can happen due to bonuses and penalties. - if (Cost > Threshold) - return false; - - if (F.empty()) - return true; - - Function *Caller = CS.getInstruction()->getParent()->getParent(); - // Check if the caller function is recursive itself. - for (User *U : Caller->users()) { - CallSite Site(U); - if (!Site) - continue; - Instruction *I = Site.getInstruction(); - if (I->getParent()->getParent() == Caller) { - IsCallerRecursive = true; - break; - } - } - - // Populate our simplified values by mapping from function arguments to call - // arguments with known important simplifications. - CallSite::arg_iterator CAI = CS.arg_begin(); - for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); - FAI != FAE; ++FAI, ++CAI) { - assert(CAI != CS.arg_end()); - if (Constant *C = dyn_cast<Constant>(CAI)) - SimplifiedValues[FAI] = C; - - Value *PtrArg = *CAI; - if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { - ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue()); - - // We can SROA any pointer arguments derived from alloca instructions. - if (isa<AllocaInst>(PtrArg)) { - SROAArgValues[FAI] = PtrArg; - SROAArgCosts[PtrArg] = 0; - } - } - } - NumConstantArgs = SimplifiedValues.size(); - NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); - NumAllocaArgs = SROAArgValues.size(); - - // FIXME: If a caller has multiple calls to a callee, we end up recomputing - // the ephemeral values multiple times (and they're completely determined by - // the callee, so this is purely duplicate work). - SmallPtrSet<const Value *, 32> EphValues; - CodeMetrics::collectEphemeralValues(&F, &ACT->getAssumptionCache(F), EphValues); - - // The worklist of live basic blocks in the callee *after* inlining. We avoid - // adding basic blocks of the callee which can be proven to be dead for this - // particular call site in order to get more accurate cost estimates. This - // requires a somewhat heavyweight iteration pattern: we need to walk the - // basic blocks in a breadth-first order as we insert live successors. To - // accomplish this, prioritizing for small iterations because we exit after - // crossing our threshold, we use a small-size optimized SetVector. - typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, - SmallPtrSet<BasicBlock *, 16> > BBSetVector; - BBSetVector BBWorklist; - BBWorklist.insert(&F.getEntryBlock()); - // Note that we *must not* cache the size, this loop grows the worklist. - for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { - // Bail out the moment we cross the threshold. This means we'll under-count - // the cost, but only when undercounting doesn't matter. - if (Cost > Threshold) - break; - - BasicBlock *BB = BBWorklist[Idx]; - if (BB->empty()) - continue; - - // Disallow inlining a blockaddress. A blockaddress only has defined - // behavior for an indirect branch in the same function, and we do not - // currently support inlining indirect branches. But, the inliner may not - // see an indirect branch that ends up being dead code at a particular call - // site. If the blockaddress escapes the function, e.g., via a global - // variable, inlining may lead to an invalid cross-function reference. - if (BB->hasAddressTaken()) - return false; - - // Analyze the cost of this block. If we blow through the threshold, this - // returns false, and we can bail on out. - if (!analyzeBlock(BB, EphValues)) { - if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || - HasIndirectBr || HasFrameEscape) - return false; - - // If the caller is a recursive function then we don't want to inline - // functions which allocate a lot of stack space because it would increase - // the caller stack usage dramatically. - if (IsCallerRecursive && - AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) - return false; - - break; - } - - TerminatorInst *TI = BB->getTerminator(); - - // Add in the live successors by first checking whether we have terminator - // that may be simplified based on the values simplified by this call. - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isConditional()) { - Value *Cond = BI->getCondition(); - if (ConstantInt *SimpleCond - = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { - BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); - continue; - } - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - Value *Cond = SI->getCondition(); - if (ConstantInt *SimpleCond - = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { - BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); - continue; - } - } - - // If we're unable to select a particular successor, just count all of - // them. - for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; - ++TIdx) - BBWorklist.insert(TI->getSuccessor(TIdx)); - - // If we had any successors at this point, than post-inlining is likely to - // have them as well. Note that we assume any basic blocks which existed - // due to branches or switches which folded above will also fold after - // inlining. - if (SingleBB && TI->getNumSuccessors() > 1) { - // Take off the bonus we applied to the threshold. - Threshold -= SingleBBBonus; - SingleBB = false; - } - } - - // If this is a noduplicate call, we can still inline as long as - // inlining this would cause the removal of the caller (so the instruction - // is not actually duplicated, just moved). - if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) - return false; - - // We applied the maximum possible vector bonus at the beginning. Now, - // subtract the excess bonus, if any, from the Threshold before - // comparing against Cost. - if (NumVectorInstructions <= NumInstructions / 10) - Threshold -= FiftyPercentVectorBonus; - else if (NumVectorInstructions <= NumInstructions / 2) - Threshold -= (FiftyPercentVectorBonus - TenPercentVectorBonus); - - return Cost < Threshold; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -/// \brief Dump stats about this call's analysis. -void CallAnalyzer::dump() { -#define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" - DEBUG_PRINT_STAT(NumConstantArgs); - DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); - DEBUG_PRINT_STAT(NumAllocaArgs); - DEBUG_PRINT_STAT(NumConstantPtrCmps); - DEBUG_PRINT_STAT(NumConstantPtrDiffs); - DEBUG_PRINT_STAT(NumInstructionsSimplified); - DEBUG_PRINT_STAT(NumInstructions); - DEBUG_PRINT_STAT(SROACostSavings); - DEBUG_PRINT_STAT(SROACostSavingsLost); - DEBUG_PRINT_STAT(ContainsNoDuplicateCall); - DEBUG_PRINT_STAT(Cost); - DEBUG_PRINT_STAT(Threshold); -#undef DEBUG_PRINT_STAT -} -#endif - -INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", - true, true) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", - true, true) - -char InlineCostAnalysis::ID = 0; - -InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {} - -InlineCostAnalysis::~InlineCostAnalysis() {} - -void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - CallGraphSCCPass::getAnalysisUsage(AU); -} - -bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { - TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); - ACT = &getAnalysis<AssumptionCacheTracker>(); - return false; -} - -InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { - return getInlineCost(CS, CS.getCalledFunction(), Threshold); -} - -/// \brief Test that two functions either have or have not the given attribute -/// at the same time. -template<typename AttrKind> -static bool attributeMatches(Function *F1, Function *F2, AttrKind Attr) { - return F1->getFnAttribute(Attr) == F2->getFnAttribute(Attr); -} - -/// \brief Test that there are no attribute conflicts between Caller and Callee -/// that prevent inlining. -static bool functionsHaveCompatibleAttributes(Function *Caller, - Function *Callee, - TargetTransformInfo &TTI) { - return TTI.hasCompatibleFunctionAttributes(Caller, Callee) && - attributeMatches(Caller, Callee, Attribute::SanitizeAddress) && - attributeMatches(Caller, Callee, Attribute::SanitizeMemory) && - attributeMatches(Caller, Callee, Attribute::SanitizeThread); -} - -InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, - int Threshold) { - // Cannot inline indirect calls. - if (!Callee) - return llvm::InlineCost::getNever(); - - // Calls to functions with always-inline attributes should be inlined - // whenever possible. - if (CS.hasFnAttr(Attribute::AlwaysInline)) { - if (isInlineViable(*Callee)) - return llvm::InlineCost::getAlways(); - return llvm::InlineCost::getNever(); - } - - // Never inline functions with conflicting attributes (unless callee has - // always-inline attribute). - if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee, - TTIWP->getTTI(*Callee))) - return llvm::InlineCost::getNever(); - - // Don't inline this call if the caller has the optnone attribute. - if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone)) - return llvm::InlineCost::getNever(); - - // Don't inline functions which can be redefined at link-time to mean - // something else. Don't inline functions marked noinline or call sites - // marked noinline. - if (Callee->mayBeOverridden() || - Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) - return llvm::InlineCost::getNever(); - - DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() - << "...\n"); - - CallAnalyzer CA(TTIWP->getTTI(*Callee), ACT, *Callee, Threshold, CS); - bool ShouldInline = CA.analyzeCall(CS); - - DEBUG(CA.dump()); - - // Check if there was a reason to force inlining or no inlining. - if (!ShouldInline && CA.getCost() < CA.getThreshold()) - return InlineCost::getNever(); - if (ShouldInline && CA.getCost() >= CA.getThreshold()) - return InlineCost::getAlways(); - - return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); -} - -bool InlineCostAnalysis::isInlineViable(Function &F) { - bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); - for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { - // Disallow inlining of functions which contain indirect branches or - // blockaddresses. - if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) - return false; - - for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; - ++II) { - CallSite CS(II); - if (!CS) - continue; - - // Disallow recursive calls. - if (&F == CS.getCalledFunction()) - return false; - - // Disallow calls which expose returns-twice to a function not previously - // attributed as such. - if (!ReturnsTwice && CS.isCall() && - cast<CallInst>(CS.getInstruction())->canReturnTwice()) - return false; - - // Disallow inlining functions that call @llvm.localescape. Doing this - // correctly would require major changes to the inliner. - if (CS.getCalledFunction() && - CS.getCalledFunction()->getIntrinsicID() == - llvm::Intrinsic::localescape) - return false; - } - } - - return true; -} |