summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp609
1 files changed, 0 insertions, 609 deletions
diff --git a/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp
deleted file mode 100644
index 28fb49c..0000000
--- a/contrib/llvm/lib/Analysis/IPA/GlobalsModRef.cpp
+++ /dev/null
@@ -1,609 +0,0 @@
-//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This simple pass provides alias and mod/ref information for global values
-// that do not have their address taken, and keeps track of whether functions
-// read or write memory (are "pure"). For this simple (but very common) case,
-// we can provide pretty accurate and useful information.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/Passes.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include <set>
-using namespace llvm;
-
-#define DEBUG_TYPE "globalsmodref-aa"
-
-STATISTIC(NumNonAddrTakenGlobalVars,
- "Number of global vars without address taken");
-STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
-STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
-STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
-STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
-
-namespace {
-/// FunctionRecord - One instance of this structure is stored for every
-/// function in the program. Later, the entries for these functions are
-/// removed if the function is found to call an external function (in which
-/// case we know nothing about it.
-struct FunctionRecord {
- /// GlobalInfo - Maintain mod/ref info for all of the globals without
- /// addresses taken that are read or written (transitively) by this
- /// function.
- std::map<const GlobalValue *, unsigned> GlobalInfo;
-
- /// MayReadAnyGlobal - May read global variables, but it is not known which.
- bool MayReadAnyGlobal;
-
- unsigned getInfoForGlobal(const GlobalValue *GV) const {
- unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
- std::map<const GlobalValue *, unsigned>::const_iterator I =
- GlobalInfo.find(GV);
- if (I != GlobalInfo.end())
- Effect |= I->second;
- return Effect;
- }
-
- /// FunctionEffect - Capture whether or not this function reads or writes to
- /// ANY memory. If not, we can do a lot of aggressive analysis on it.
- unsigned FunctionEffect;
-
- FunctionRecord() : MayReadAnyGlobal(false), FunctionEffect(0) {}
-};
-
-/// GlobalsModRef - The actual analysis pass.
-class GlobalsModRef : public ModulePass, public AliasAnalysis {
- /// NonAddressTakenGlobals - The globals that do not have their addresses
- /// taken.
- std::set<const GlobalValue *> NonAddressTakenGlobals;
-
- /// IndirectGlobals - The memory pointed to by this global is known to be
- /// 'owned' by the global.
- std::set<const GlobalValue *> IndirectGlobals;
-
- /// AllocsForIndirectGlobals - If an instruction allocates memory for an
- /// indirect global, this map indicates which one.
- std::map<const Value *, const GlobalValue *> AllocsForIndirectGlobals;
-
- /// FunctionInfo - For each function, keep track of what globals are
- /// modified or read.
- std::map<const Function *, FunctionRecord> FunctionInfo;
-
-public:
- static char ID;
- GlobalsModRef() : ModulePass(ID) {
- initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- InitializeAliasAnalysis(this, &M.getDataLayout());
-
- // Find non-addr taken globals.
- AnalyzeGlobals(M);
-
- // Propagate on CG.
- AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
- return false;
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AliasAnalysis::getAnalysisUsage(AU);
- AU.addRequired<CallGraphWrapperPass>();
- AU.setPreservesAll(); // Does not transform code
- }
-
- //------------------------------------------------
- // Implement the AliasAnalysis API
- //
- AliasResult alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) override;
- ModRefResult getModRefInfo(ImmutableCallSite CS,
- const MemoryLocation &Loc) override;
- ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) override {
- return AliasAnalysis::getModRefInfo(CS1, CS2);
- }
-
- /// getModRefBehavior - Return the behavior of the specified function if
- /// called from the specified call site. The call site may be null in which
- /// case the most generic behavior of this function should be returned.
- ModRefBehavior getModRefBehavior(const Function *F) override {
- ModRefBehavior Min = UnknownModRefBehavior;
-
- if (FunctionRecord *FR = getFunctionInfo(F)) {
- if (FR->FunctionEffect == 0)
- Min = DoesNotAccessMemory;
- else if ((FR->FunctionEffect & Mod) == 0)
- Min = OnlyReadsMemory;
- }
-
- return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
- }
-
- /// getModRefBehavior - Return the behavior of the specified function if
- /// called from the specified call site. The call site may be null in which
- /// case the most generic behavior of this function should be returned.
- ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
- ModRefBehavior Min = UnknownModRefBehavior;
-
- if (const Function *F = CS.getCalledFunction())
- if (FunctionRecord *FR = getFunctionInfo(F)) {
- if (FR->FunctionEffect == 0)
- Min = DoesNotAccessMemory;
- else if ((FR->FunctionEffect & Mod) == 0)
- Min = OnlyReadsMemory;
- }
-
- return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
- }
-
- void deleteValue(Value *V) override;
- void addEscapingUse(Use &U) override;
-
- /// getAdjustedAnalysisPointer - This method is used when a pass implements
- /// an analysis interface through multiple inheritance. If needed, it
- /// should override this to adjust the this pointer as needed for the
- /// specified pass info.
- void *getAdjustedAnalysisPointer(AnalysisID PI) override {
- if (PI == &AliasAnalysis::ID)
- return (AliasAnalysis *)this;
- return this;
- }
-
-private:
- /// getFunctionInfo - Return the function info for the function, or null if
- /// we don't have anything useful to say about it.
- FunctionRecord *getFunctionInfo(const Function *F) {
- std::map<const Function *, FunctionRecord>::iterator I =
- FunctionInfo.find(F);
- if (I != FunctionInfo.end())
- return &I->second;
- return nullptr;
- }
-
- void AnalyzeGlobals(Module &M);
- void AnalyzeCallGraph(CallGraph &CG, Module &M);
- bool AnalyzeUsesOfPointer(Value *V, std::vector<Function *> &Readers,
- std::vector<Function *> &Writers,
- GlobalValue *OkayStoreDest = nullptr);
- bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
-};
-}
-
-char GlobalsModRef::ID = 0;
-INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
- "Simple mod/ref analysis for globals", false, true,
- false)
-INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
-INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
- "Simple mod/ref analysis for globals", false, true,
- false)
-
-Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
-
-/// AnalyzeGlobals - Scan through the users of all of the internal
-/// GlobalValue's in the program. If none of them have their "address taken"
-/// (really, their address passed to something nontrivial), record this fact,
-/// and record the functions that they are used directly in.
-void GlobalsModRef::AnalyzeGlobals(Module &M) {
- std::vector<Function *> Readers, Writers;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (I->hasLocalLinkage()) {
- if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
- // Remember that we are tracking this global.
- NonAddressTakenGlobals.insert(I);
- ++NumNonAddrTakenFunctions;
- }
- Readers.clear();
- Writers.clear();
- }
-
- for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
- ++I)
- if (I->hasLocalLinkage()) {
- if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
- // Remember that we are tracking this global, and the mod/ref fns
- NonAddressTakenGlobals.insert(I);
-
- for (unsigned i = 0, e = Readers.size(); i != e; ++i)
- FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
-
- if (!I->isConstant()) // No need to keep track of writers to constants
- for (unsigned i = 0, e = Writers.size(); i != e; ++i)
- FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
- ++NumNonAddrTakenGlobalVars;
-
- // If this global holds a pointer type, see if it is an indirect global.
- if (I->getType()->getElementType()->isPointerTy() &&
- AnalyzeIndirectGlobalMemory(I))
- ++NumIndirectGlobalVars;
- }
- Readers.clear();
- Writers.clear();
- }
-}
-
-/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
-/// If this is used by anything complex (i.e., the address escapes), return
-/// true. Also, while we are at it, keep track of those functions that read and
-/// write to the value.
-///
-/// If OkayStoreDest is non-null, stores into this global are allowed.
-bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
- std::vector<Function *> &Readers,
- std::vector<Function *> &Writers,
- GlobalValue *OkayStoreDest) {
- if (!V->getType()->isPointerTy())
- return true;
-
- for (Use &U : V->uses()) {
- User *I = U.getUser();
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Readers.push_back(LI->getParent()->getParent());
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (V == SI->getOperand(1)) {
- Writers.push_back(SI->getParent()->getParent());
- } else if (SI->getOperand(1) != OkayStoreDest) {
- return true; // Storing the pointer
- }
- } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
- if (AnalyzeUsesOfPointer(I, Readers, Writers))
- return true;
- } else if (Operator::getOpcode(I) == Instruction::BitCast) {
- if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
- return true;
- } else if (auto CS = CallSite(I)) {
- // Make sure that this is just the function being called, not that it is
- // passing into the function.
- if (!CS.isCallee(&U)) {
- // Detect calls to free.
- if (isFreeCall(I, TLI))
- Writers.push_back(CS->getParent()->getParent());
- else
- return true; // Argument of an unknown call.
- }
- } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
- if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
- return true; // Allow comparison against null.
- } else {
- return true;
- }
- }
-
- return false;
-}
-
-/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
-/// which holds a pointer type. See if the global always points to non-aliased
-/// heap memory: that is, all initializers of the globals are allocations, and
-/// those allocations have no use other than initialization of the global.
-/// Further, all loads out of GV must directly use the memory, not store the
-/// pointer somewhere. If this is true, we consider the memory pointed to by
-/// GV to be owned by GV and can disambiguate other pointers from it.
-bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
- // Keep track of values related to the allocation of the memory, f.e. the
- // value produced by the malloc call and any casts.
- std::vector<Value *> AllocRelatedValues;
-
- // Walk the user list of the global. If we find anything other than a direct
- // load or store, bail out.
- for (User *U : GV->users()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- // The pointer loaded from the global can only be used in simple ways:
- // we allow addressing of it and loading storing to it. We do *not* allow
- // storing the loaded pointer somewhere else or passing to a function.
- std::vector<Function *> ReadersWriters;
- if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
- return false; // Loaded pointer escapes.
- // TODO: Could try some IP mod/ref of the loaded pointer.
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // Storing the global itself.
- if (SI->getOperand(0) == GV)
- return false;
-
- // If storing the null pointer, ignore it.
- if (isa<ConstantPointerNull>(SI->getOperand(0)))
- continue;
-
- // Check the value being stored.
- Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
- GV->getParent()->getDataLayout());
-
- if (!isAllocLikeFn(Ptr, TLI))
- return false; // Too hard to analyze.
-
- // Analyze all uses of the allocation. If any of them are used in a
- // non-simple way (e.g. stored to another global) bail out.
- std::vector<Function *> ReadersWriters;
- if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
- return false; // Loaded pointer escapes.
-
- // Remember that this allocation is related to the indirect global.
- AllocRelatedValues.push_back(Ptr);
- } else {
- // Something complex, bail out.
- return false;
- }
- }
-
- // Okay, this is an indirect global. Remember all of the allocations for
- // this global in AllocsForIndirectGlobals.
- while (!AllocRelatedValues.empty()) {
- AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
- AllocRelatedValues.pop_back();
- }
- IndirectGlobals.insert(GV);
- return true;
-}
-
-/// AnalyzeCallGraph - At this point, we know the functions where globals are
-/// immediately stored to and read from. Propagate this information up the call
-/// graph to all callers and compute the mod/ref info for all memory for each
-/// function.
-void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
- // We do a bottom-up SCC traversal of the call graph. In other words, we
- // visit all callees before callers (leaf-first).
- for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- const std::vector<CallGraphNode *> &SCC = *I;
- assert(!SCC.empty() && "SCC with no functions?");
-
- if (!SCC[0]->getFunction()) {
- // Calls externally - can't say anything useful. Remove any existing
- // function records (may have been created when scanning globals).
- for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- FunctionInfo.erase(SCC[i]->getFunction());
- continue;
- }
-
- FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
-
- bool KnowNothing = false;
- unsigned FunctionEffect = 0;
-
- // Collect the mod/ref properties due to called functions. We only compute
- // one mod-ref set.
- for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
- Function *F = SCC[i]->getFunction();
- if (!F) {
- KnowNothing = true;
- break;
- }
-
- if (F->isDeclaration()) {
- // Try to get mod/ref behaviour from function attributes.
- if (F->doesNotAccessMemory()) {
- // Can't do better than that!
- } else if (F->onlyReadsMemory()) {
- FunctionEffect |= Ref;
- if (!F->isIntrinsic())
- // This function might call back into the module and read a global -
- // consider every global as possibly being read by this function.
- FR.MayReadAnyGlobal = true;
- } else {
- FunctionEffect |= ModRef;
- // Can't say anything useful unless it's an intrinsic - they don't
- // read or write global variables of the kind considered here.
- KnowNothing = !F->isIntrinsic();
- }
- continue;
- }
-
- for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
- CI != E && !KnowNothing; ++CI)
- if (Function *Callee = CI->second->getFunction()) {
- if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
- // Propagate function effect up.
- FunctionEffect |= CalleeFR->FunctionEffect;
-
- // Incorporate callee's effects on globals into our info.
- for (const auto &G : CalleeFR->GlobalInfo)
- FR.GlobalInfo[G.first] |= G.second;
- FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
- } else {
- // Can't say anything about it. However, if it is inside our SCC,
- // then nothing needs to be done.
- CallGraphNode *CalleeNode = CG[Callee];
- if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
- KnowNothing = true;
- }
- } else {
- KnowNothing = true;
- }
- }
-
- // If we can't say anything useful about this SCC, remove all SCC functions
- // from the FunctionInfo map.
- if (KnowNothing) {
- for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- FunctionInfo.erase(SCC[i]->getFunction());
- continue;
- }
-
- // Scan the function bodies for explicit loads or stores.
- for (auto *Node : SCC) {
- if (FunctionEffect == ModRef)
- break; // The mod/ref lattice saturates here.
- for (Instruction &I : inst_range(Node->getFunction())) {
- if (FunctionEffect == ModRef)
- break; // The mod/ref lattice saturates here.
-
- // We handle calls specially because the graph-relevant aspects are
- // handled above.
- if (auto CS = CallSite(&I)) {
- if (isAllocationFn(&I, TLI) || isFreeCall(&I, TLI)) {
- // FIXME: It is completely unclear why this is necessary and not
- // handled by the above graph code.
- FunctionEffect |= ModRef;
- } else if (Function *Callee = CS.getCalledFunction()) {
- // The callgraph doesn't include intrinsic calls.
- if (Callee->isIntrinsic()) {
- ModRefBehavior Behaviour =
- AliasAnalysis::getModRefBehavior(Callee);
- FunctionEffect |= (Behaviour & ModRef);
- }
- }
- continue;
- }
-
- // All non-call instructions we use the primary predicates for whether
- // thay read or write memory.
- if (I.mayReadFromMemory())
- FunctionEffect |= Ref;
- if (I.mayWriteToMemory())
- FunctionEffect |= Mod;
- }
- }
-
- if ((FunctionEffect & Mod) == 0)
- ++NumReadMemFunctions;
- if (FunctionEffect == 0)
- ++NumNoMemFunctions;
- FR.FunctionEffect = FunctionEffect;
-
- // Finally, now that we know the full effect on this SCC, clone the
- // information to each function in the SCC.
- for (unsigned i = 1, e = SCC.size(); i != e; ++i)
- FunctionInfo[SCC[i]->getFunction()] = FR;
- }
-}
-
-/// alias - If one of the pointers is to a global that we are tracking, and the
-/// other is some random pointer, we know there cannot be an alias, because the
-/// address of the global isn't taken.
-AliasResult GlobalsModRef::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- // Get the base object these pointers point to.
- const Value *UV1 = GetUnderlyingObject(LocA.Ptr, *DL);
- const Value *UV2 = GetUnderlyingObject(LocB.Ptr, *DL);
-
- // If either of the underlying values is a global, they may be non-addr-taken
- // globals, which we can answer queries about.
- const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
- const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
- if (GV1 || GV2) {
- // If the global's address is taken, pretend we don't know it's a pointer to
- // the global.
- if (GV1 && !NonAddressTakenGlobals.count(GV1))
- GV1 = nullptr;
- if (GV2 && !NonAddressTakenGlobals.count(GV2))
- GV2 = nullptr;
-
- // If the two pointers are derived from two different non-addr-taken
- // globals, or if one is and the other isn't, we know these can't alias.
- if ((GV1 || GV2) && GV1 != GV2)
- return NoAlias;
-
- // Otherwise if they are both derived from the same addr-taken global, we
- // can't know the two accesses don't overlap.
- }
-
- // These pointers may be based on the memory owned by an indirect global. If
- // so, we may be able to handle this. First check to see if the base pointer
- // is a direct load from an indirect global.
- GV1 = GV2 = nullptr;
- if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
- if (IndirectGlobals.count(GV))
- GV1 = GV;
- if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
- if (IndirectGlobals.count(GV))
- GV2 = GV;
-
- // These pointers may also be from an allocation for the indirect global. If
- // so, also handle them.
- if (AllocsForIndirectGlobals.count(UV1))
- GV1 = AllocsForIndirectGlobals[UV1];
- if (AllocsForIndirectGlobals.count(UV2))
- GV2 = AllocsForIndirectGlobals[UV2];
-
- // Now that we know whether the two pointers are related to indirect globals,
- // use this to disambiguate the pointers. If either pointer is based on an
- // indirect global and if they are not both based on the same indirect global,
- // they cannot alias.
- if ((GV1 || GV2) && GV1 != GV2)
- return NoAlias;
-
- return AliasAnalysis::alias(LocA, LocB);
-}
-
-AliasAnalysis::ModRefResult
-GlobalsModRef::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
- unsigned Known = ModRef;
-
- // If we are asking for mod/ref info of a direct call with a pointer to a
- // global we are tracking, return information if we have it.
- const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
- if (const GlobalValue *GV =
- dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
- if (GV->hasLocalLinkage())
- if (const Function *F = CS.getCalledFunction())
- if (NonAddressTakenGlobals.count(GV))
- if (const FunctionRecord *FR = getFunctionInfo(F))
- Known = FR->getInfoForGlobal(GV);
-
- if (Known == NoModRef)
- return NoModRef; // No need to query other mod/ref analyses
- return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
-}
-
-//===----------------------------------------------------------------------===//
-// Methods to update the analysis as a result of the client transformation.
-//
-void GlobalsModRef::deleteValue(Value *V) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (NonAddressTakenGlobals.erase(GV)) {
- // This global might be an indirect global. If so, remove it and remove
- // any AllocRelatedValues for it.
- if (IndirectGlobals.erase(GV)) {
- // Remove any entries in AllocsForIndirectGlobals for this global.
- for (std::map<const Value *, const GlobalValue *>::iterator
- I = AllocsForIndirectGlobals.begin(),
- E = AllocsForIndirectGlobals.end();
- I != E;) {
- if (I->second == GV) {
- AllocsForIndirectGlobals.erase(I++);
- } else {
- ++I;
- }
- }
- }
- }
- }
-
- // Otherwise, if this is an allocation related to an indirect global, remove
- // it.
- AllocsForIndirectGlobals.erase(V);
-
- AliasAnalysis::deleteValue(V);
-}
-
-void GlobalsModRef::addEscapingUse(Use &U) {
- // For the purposes of this analysis, it is conservatively correct to treat
- // a newly escaping value equivalently to a deleted one. We could perhaps
- // be more precise by processing the new use and attempting to update our
- // saved analysis results to accommodate it.
- deleteValue(U);
-
- AliasAnalysis::addEscapingUse(U);
-}
OpenPOWER on IntegriCloud