diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/GlobalsModRef.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/GlobalsModRef.cpp | 972 |
1 files changed, 972 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp new file mode 100644 index 0000000..1babb82 --- /dev/null +++ b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp @@ -0,0 +1,972 @@ +//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This simple pass provides alias and mod/ref information for global values +// that do not have their address taken, and keeps track of whether functions +// read or write memory (are "pure"). For this simple (but very common) case, +// we can provide pretty accurate and useful information. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +using namespace llvm; + +#define DEBUG_TYPE "globalsmodref-aa" + +STATISTIC(NumNonAddrTakenGlobalVars, + "Number of global vars without address taken"); +STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); +STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); +STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); +STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); + +// An option to enable unsafe alias results from the GlobalsModRef analysis. +// When enabled, GlobalsModRef will provide no-alias results which in extremely +// rare cases may not be conservatively correct. In particular, in the face of +// transforms which cause assymetry between how effective GetUnderlyingObject +// is for two pointers, it may produce incorrect results. +// +// These unsafe results have been returned by GMR for many years without +// causing significant issues in the wild and so we provide a mechanism to +// re-enable them for users of LLVM that have a particular performance +// sensitivity and no known issues. The option also makes it easy to evaluate +// the performance impact of these results. +static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( + "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); + +/// The mod/ref information collected for a particular function. +/// +/// We collect information about mod/ref behavior of a function here, both in +/// general and as pertains to specific globals. We only have this detailed +/// information when we know *something* useful about the behavior. If we +/// saturate to fully general mod/ref, we remove the info for the function. +class GlobalsAAResult::FunctionInfo { + typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; + + /// Build a wrapper struct that has 8-byte alignment. All heap allocations + /// should provide this much alignment at least, but this makes it clear we + /// specifically rely on this amount of alignment. + struct LLVM_ALIGNAS(8) AlignedMap { + AlignedMap() {} + AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} + GlobalInfoMapType Map; + }; + + /// Pointer traits for our aligned map. + struct AlignedMapPointerTraits { + static inline void *getAsVoidPointer(AlignedMap *P) { return P; } + static inline AlignedMap *getFromVoidPointer(void *P) { + return (AlignedMap *)P; + } + enum { NumLowBitsAvailable = 3 }; + static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable), + "AlignedMap insufficiently aligned to have enough low bits."); + }; + + /// The bit that flags that this function may read any global. This is + /// chosen to mix together with ModRefInfo bits. + enum { MayReadAnyGlobal = 4 }; + + /// Checks to document the invariants of the bit packing here. + static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, + "ModRef and the MayReadAnyGlobal flag bits overlap."); + static_assert(((MayReadAnyGlobal | MRI_ModRef) >> + AlignedMapPointerTraits::NumLowBitsAvailable) == 0, + "Insufficient low bits to store our flag and ModRef info."); + +public: + FunctionInfo() : Info() {} + ~FunctionInfo() { + delete Info.getPointer(); + } + // Spell out the copy ond move constructors and assignment operators to get + // deep copy semantics and correct move semantics in the face of the + // pointer-int pair. + FunctionInfo(const FunctionInfo &Arg) + : Info(nullptr, Arg.Info.getInt()) { + if (const auto *ArgPtr = Arg.Info.getPointer()) + Info.setPointer(new AlignedMap(*ArgPtr)); + } + FunctionInfo(FunctionInfo &&Arg) + : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { + Arg.Info.setPointerAndInt(nullptr, 0); + } + FunctionInfo &operator=(const FunctionInfo &RHS) { + delete Info.getPointer(); + Info.setPointerAndInt(nullptr, RHS.Info.getInt()); + if (const auto *RHSPtr = RHS.Info.getPointer()) + Info.setPointer(new AlignedMap(*RHSPtr)); + return *this; + } + FunctionInfo &operator=(FunctionInfo &&RHS) { + delete Info.getPointer(); + Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); + RHS.Info.setPointerAndInt(nullptr, 0); + return *this; + } + + /// Returns the \c ModRefInfo info for this function. + ModRefInfo getModRefInfo() const { + return ModRefInfo(Info.getInt() & MRI_ModRef); + } + + /// Adds new \c ModRefInfo for this function to its state. + void addModRefInfo(ModRefInfo NewMRI) { + Info.setInt(Info.getInt() | NewMRI); + } + + /// Returns whether this function may read any global variable, and we don't + /// know which global. + bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } + + /// Sets this function as potentially reading from any global. + void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } + + /// Returns the \c ModRefInfo info for this function w.r.t. a particular + /// global, which may be more precise than the general information above. + ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { + ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; + if (AlignedMap *P = Info.getPointer()) { + auto I = P->Map.find(&GV); + if (I != P->Map.end()) + GlobalMRI = ModRefInfo(GlobalMRI | I->second); + } + return GlobalMRI; + } + + /// Add mod/ref info from another function into ours, saturating towards + /// MRI_ModRef. + void addFunctionInfo(const FunctionInfo &FI) { + addModRefInfo(FI.getModRefInfo()); + + if (FI.mayReadAnyGlobal()) + setMayReadAnyGlobal(); + + if (AlignedMap *P = FI.Info.getPointer()) + for (const auto &G : P->Map) + addModRefInfoForGlobal(*G.first, G.second); + } + + void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { + AlignedMap *P = Info.getPointer(); + if (!P) { + P = new AlignedMap(); + Info.setPointer(P); + } + auto &GlobalMRI = P->Map[&GV]; + GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); + } + + /// Clear a global's ModRef info. Should be used when a global is being + /// deleted. + void eraseModRefInfoForGlobal(const GlobalValue &GV) { + if (AlignedMap *P = Info.getPointer()) + P->Map.erase(&GV); + } + +private: + /// All of the information is encoded into a single pointer, with a three bit + /// integer in the low three bits. The high bit provides a flag for when this + /// function may read any global. The low two bits are the ModRefInfo. And + /// the pointer, when non-null, points to a map from GlobalValue to + /// ModRefInfo specific to that GlobalValue. + PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; +}; + +void GlobalsAAResult::DeletionCallbackHandle::deleted() { + Value *V = getValPtr(); + if (auto *F = dyn_cast<Function>(V)) + GAR->FunctionInfos.erase(F); + + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (GAR->NonAddressTakenGlobals.erase(GV)) { + // This global might be an indirect global. If so, remove it and + // remove any AllocRelatedValues for it. + if (GAR->IndirectGlobals.erase(GV)) { + // Remove any entries in AllocsForIndirectGlobals for this global. + for (auto I = GAR->AllocsForIndirectGlobals.begin(), + E = GAR->AllocsForIndirectGlobals.end(); + I != E; ++I) + if (I->second == GV) + GAR->AllocsForIndirectGlobals.erase(I); + } + + // Scan the function info we have collected and remove this global + // from all of them. + for (auto &FIPair : GAR->FunctionInfos) + FIPair.second.eraseModRefInfoForGlobal(*GV); + } + } + + // If this is an allocation related to an indirect global, remove it. + GAR->AllocsForIndirectGlobals.erase(V); + + // And clear out the handle. + setValPtr(nullptr); + GAR->Handles.erase(I); + // This object is now destroyed! +} + +FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { + FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; + + if (FunctionInfo *FI = getFunctionInfo(F)) { + if (FI->getModRefInfo() == MRI_NoModRef) + Min = FMRB_DoesNotAccessMemory; + else if ((FI->getModRefInfo() & MRI_Mod) == 0) + Min = FMRB_OnlyReadsMemory; + } + + return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); +} + +FunctionModRefBehavior +GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { + FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; + + if (const Function *F = CS.getCalledFunction()) + if (FunctionInfo *FI = getFunctionInfo(F)) { + if (FI->getModRefInfo() == MRI_NoModRef) + Min = FMRB_DoesNotAccessMemory; + else if ((FI->getModRefInfo() & MRI_Mod) == 0) + Min = FMRB_OnlyReadsMemory; + } + + return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); +} + +/// Returns the function info for the function, or null if we don't have +/// anything useful to say about it. +GlobalsAAResult::FunctionInfo * +GlobalsAAResult::getFunctionInfo(const Function *F) { + auto I = FunctionInfos.find(F); + if (I != FunctionInfos.end()) + return &I->second; + return nullptr; +} + +/// AnalyzeGlobals - Scan through the users of all of the internal +/// GlobalValue's in the program. If none of them have their "address taken" +/// (really, their address passed to something nontrivial), record this fact, +/// and record the functions that they are used directly in. +void GlobalsAAResult::AnalyzeGlobals(Module &M) { + SmallPtrSet<Function *, 64> TrackedFunctions; + for (Function &F : M) + if (F.hasLocalLinkage()) + if (!AnalyzeUsesOfPointer(&F)) { + // Remember that we are tracking this global. + NonAddressTakenGlobals.insert(&F); + TrackedFunctions.insert(&F); + Handles.emplace_front(*this, &F); + Handles.front().I = Handles.begin(); + ++NumNonAddrTakenFunctions; + } + + SmallPtrSet<Function *, 64> Readers, Writers; + for (GlobalVariable &GV : M.globals()) + if (GV.hasLocalLinkage()) { + if (!AnalyzeUsesOfPointer(&GV, &Readers, + GV.isConstant() ? nullptr : &Writers)) { + // Remember that we are tracking this global, and the mod/ref fns + NonAddressTakenGlobals.insert(&GV); + Handles.emplace_front(*this, &GV); + Handles.front().I = Handles.begin(); + + for (Function *Reader : Readers) { + if (TrackedFunctions.insert(Reader).second) { + Handles.emplace_front(*this, Reader); + Handles.front().I = Handles.begin(); + } + FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); + } + + if (!GV.isConstant()) // No need to keep track of writers to constants + for (Function *Writer : Writers) { + if (TrackedFunctions.insert(Writer).second) { + Handles.emplace_front(*this, Writer); + Handles.front().I = Handles.begin(); + } + FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); + } + ++NumNonAddrTakenGlobalVars; + + // If this global holds a pointer type, see if it is an indirect global. + if (GV.getType()->getElementType()->isPointerTy() && + AnalyzeIndirectGlobalMemory(&GV)) + ++NumIndirectGlobalVars; + } + Readers.clear(); + Writers.clear(); + } +} + +/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. +/// If this is used by anything complex (i.e., the address escapes), return +/// true. Also, while we are at it, keep track of those functions that read and +/// write to the value. +/// +/// If OkayStoreDest is non-null, stores into this global are allowed. +bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, + SmallPtrSetImpl<Function *> *Readers, + SmallPtrSetImpl<Function *> *Writers, + GlobalValue *OkayStoreDest) { + if (!V->getType()->isPointerTy()) + return true; + + for (Use &U : V->uses()) { + User *I = U.getUser(); + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + if (Readers) + Readers->insert(LI->getParent()->getParent()); + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (V == SI->getOperand(1)) { + if (Writers) + Writers->insert(SI->getParent()->getParent()); + } else if (SI->getOperand(1) != OkayStoreDest) { + return true; // Storing the pointer + } + } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { + if (AnalyzeUsesOfPointer(I, Readers, Writers)) + return true; + } else if (Operator::getOpcode(I) == Instruction::BitCast) { + if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) + return true; + } else if (auto CS = CallSite(I)) { + // Make sure that this is just the function being called, not that it is + // passing into the function. + if (CS.isDataOperand(&U)) { + // Detect calls to free. + if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { + if (Writers) + Writers->insert(CS->getParent()->getParent()); + } else { + return true; // Argument of an unknown call. + } + } + } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { + if (!isa<ConstantPointerNull>(ICI->getOperand(1))) + return true; // Allow comparison against null. + } else { + return true; + } + } + + return false; +} + +/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable +/// which holds a pointer type. See if the global always points to non-aliased +/// heap memory: that is, all initializers of the globals are allocations, and +/// those allocations have no use other than initialization of the global. +/// Further, all loads out of GV must directly use the memory, not store the +/// pointer somewhere. If this is true, we consider the memory pointed to by +/// GV to be owned by GV and can disambiguate other pointers from it. +bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { + // Keep track of values related to the allocation of the memory, f.e. the + // value produced by the malloc call and any casts. + std::vector<Value *> AllocRelatedValues; + + // If the initializer is a valid pointer, bail. + if (Constant *C = GV->getInitializer()) + if (!C->isNullValue()) + return false; + + // Walk the user list of the global. If we find anything other than a direct + // load or store, bail out. + for (User *U : GV->users()) { + if (LoadInst *LI = dyn_cast<LoadInst>(U)) { + // The pointer loaded from the global can only be used in simple ways: + // we allow addressing of it and loading storing to it. We do *not* allow + // storing the loaded pointer somewhere else or passing to a function. + if (AnalyzeUsesOfPointer(LI)) + return false; // Loaded pointer escapes. + // TODO: Could try some IP mod/ref of the loaded pointer. + } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { + // Storing the global itself. + if (SI->getOperand(0) == GV) + return false; + + // If storing the null pointer, ignore it. + if (isa<ConstantPointerNull>(SI->getOperand(0))) + continue; + + // Check the value being stored. + Value *Ptr = GetUnderlyingObject(SI->getOperand(0), + GV->getParent()->getDataLayout()); + + if (!isAllocLikeFn(Ptr, &TLI)) + return false; // Too hard to analyze. + + // Analyze all uses of the allocation. If any of them are used in a + // non-simple way (e.g. stored to another global) bail out. + if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, + GV)) + return false; // Loaded pointer escapes. + + // Remember that this allocation is related to the indirect global. + AllocRelatedValues.push_back(Ptr); + } else { + // Something complex, bail out. + return false; + } + } + + // Okay, this is an indirect global. Remember all of the allocations for + // this global in AllocsForIndirectGlobals. + while (!AllocRelatedValues.empty()) { + AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; + Handles.emplace_front(*this, AllocRelatedValues.back()); + Handles.front().I = Handles.begin(); + AllocRelatedValues.pop_back(); + } + IndirectGlobals.insert(GV); + Handles.emplace_front(*this, GV); + Handles.front().I = Handles.begin(); + return true; +} + +void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { + // We do a bottom-up SCC traversal of the call graph. In other words, we + // visit all callees before callers (leaf-first). + unsigned SCCID = 0; + for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { + const std::vector<CallGraphNode *> &SCC = *I; + assert(!SCC.empty() && "SCC with no functions?"); + + for (auto *CGN : SCC) + if (Function *F = CGN->getFunction()) + FunctionToSCCMap[F] = SCCID; + ++SCCID; + } +} + +/// AnalyzeCallGraph - At this point, we know the functions where globals are +/// immediately stored to and read from. Propagate this information up the call +/// graph to all callers and compute the mod/ref info for all memory for each +/// function. +void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { + // We do a bottom-up SCC traversal of the call graph. In other words, we + // visit all callees before callers (leaf-first). + for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { + const std::vector<CallGraphNode *> &SCC = *I; + assert(!SCC.empty() && "SCC with no functions?"); + + if (!SCC[0]->getFunction() || SCC[0]->getFunction()->mayBeOverridden()) { + // Calls externally or is weak - can't say anything useful. Remove any existing + // function records (may have been created when scanning globals). + for (auto *Node : SCC) + FunctionInfos.erase(Node->getFunction()); + continue; + } + + FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()]; + bool KnowNothing = false; + + // Collect the mod/ref properties due to called functions. We only compute + // one mod-ref set. + for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { + Function *F = SCC[i]->getFunction(); + if (!F) { + KnowNothing = true; + break; + } + + if (F->isDeclaration()) { + // Try to get mod/ref behaviour from function attributes. + if (F->doesNotAccessMemory()) { + // Can't do better than that! + } else if (F->onlyReadsMemory()) { + FI.addModRefInfo(MRI_Ref); + if (!F->isIntrinsic()) + // This function might call back into the module and read a global - + // consider every global as possibly being read by this function. + FI.setMayReadAnyGlobal(); + } else { + FI.addModRefInfo(MRI_ModRef); + // Can't say anything useful unless it's an intrinsic - they don't + // read or write global variables of the kind considered here. + KnowNothing = !F->isIntrinsic(); + } + continue; + } + + for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); + CI != E && !KnowNothing; ++CI) + if (Function *Callee = CI->second->getFunction()) { + if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { + // Propagate function effect up. + FI.addFunctionInfo(*CalleeFI); + } else { + // Can't say anything about it. However, if it is inside our SCC, + // then nothing needs to be done. + CallGraphNode *CalleeNode = CG[Callee]; + if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) + KnowNothing = true; + } + } else { + KnowNothing = true; + } + } + + // If we can't say anything useful about this SCC, remove all SCC functions + // from the FunctionInfos map. + if (KnowNothing) { + for (auto *Node : SCC) + FunctionInfos.erase(Node->getFunction()); + continue; + } + + // Scan the function bodies for explicit loads or stores. + for (auto *Node : SCC) { + if (FI.getModRefInfo() == MRI_ModRef) + break; // The mod/ref lattice saturates here. + for (Instruction &I : instructions(Node->getFunction())) { + if (FI.getModRefInfo() == MRI_ModRef) + break; // The mod/ref lattice saturates here. + + // We handle calls specially because the graph-relevant aspects are + // handled above. + if (auto CS = CallSite(&I)) { + if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { + // FIXME: It is completely unclear why this is necessary and not + // handled by the above graph code. + FI.addModRefInfo(MRI_ModRef); + } else if (Function *Callee = CS.getCalledFunction()) { + // The callgraph doesn't include intrinsic calls. + if (Callee->isIntrinsic()) { + FunctionModRefBehavior Behaviour = + AAResultBase::getModRefBehavior(Callee); + FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); + } + } + continue; + } + + // All non-call instructions we use the primary predicates for whether + // thay read or write memory. + if (I.mayReadFromMemory()) + FI.addModRefInfo(MRI_Ref); + if (I.mayWriteToMemory()) + FI.addModRefInfo(MRI_Mod); + } + } + + if ((FI.getModRefInfo() & MRI_Mod) == 0) + ++NumReadMemFunctions; + if (FI.getModRefInfo() == MRI_NoModRef) + ++NumNoMemFunctions; + + // Finally, now that we know the full effect on this SCC, clone the + // information to each function in the SCC. + // FI is a reference into FunctionInfos, so copy it now so that it doesn't + // get invalidated if DenseMap decides to re-hash. + FunctionInfo CachedFI = FI; + for (unsigned i = 1, e = SCC.size(); i != e; ++i) + FunctionInfos[SCC[i]->getFunction()] = CachedFI; + } +} + +// GV is a non-escaping global. V is a pointer address that has been loaded from. +// If we can prove that V must escape, we can conclude that a load from V cannot +// alias GV. +static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, + const Value *V, + int &Depth, + const DataLayout &DL) { + SmallPtrSet<const Value *, 8> Visited; + SmallVector<const Value *, 8> Inputs; + Visited.insert(V); + Inputs.push_back(V); + do { + const Value *Input = Inputs.pop_back_val(); + + if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || + isa<InvokeInst>(Input)) + // Arguments to functions or returns from functions are inherently + // escaping, so we can immediately classify those as not aliasing any + // non-addr-taken globals. + // + // (Transitive) loads from a global are also safe - if this aliased + // another global, its address would escape, so no alias. + continue; + + // Recurse through a limited number of selects, loads and PHIs. This is an + // arbitrary depth of 4, lower numbers could be used to fix compile time + // issues if needed, but this is generally expected to be only be important + // for small depths. + if (++Depth > 4) + return false; + + if (auto *LI = dyn_cast<LoadInst>(Input)) { + Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); + continue; + } + if (auto *SI = dyn_cast<SelectInst>(Input)) { + const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); + const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); + if (Visited.insert(LHS).second) + Inputs.push_back(LHS); + if (Visited.insert(RHS).second) + Inputs.push_back(RHS); + continue; + } + if (auto *PN = dyn_cast<PHINode>(Input)) { + for (const Value *Op : PN->incoming_values()) { + Op = GetUnderlyingObject(Op, DL); + if (Visited.insert(Op).second) + Inputs.push_back(Op); + } + continue; + } + + return false; + } while (!Inputs.empty()); + + // All inputs were known to be no-alias. + return true; +} + +// There are particular cases where we can conclude no-alias between +// a non-addr-taken global and some other underlying object. Specifically, +// a non-addr-taken global is known to not be escaped from any function. It is +// also incorrect for a transformation to introduce an escape of a global in +// a way that is observable when it was not there previously. One function +// being transformed to introduce an escape which could possibly be observed +// (via loading from a global or the return value for example) within another +// function is never safe. If the observation is made through non-atomic +// operations on different threads, it is a data-race and UB. If the +// observation is well defined, by being observed the transformation would have +// changed program behavior by introducing the observed escape, making it an +// invalid transform. +// +// This property does require that transformations which *temporarily* escape +// a global that was not previously escaped, prior to restoring it, cannot rely +// on the results of GMR::alias. This seems a reasonable restriction, although +// currently there is no way to enforce it. There is also no realistic +// optimization pass that would make this mistake. The closest example is +// a transformation pass which does reg2mem of SSA values but stores them into +// global variables temporarily before restoring the global variable's value. +// This could be useful to expose "benign" races for example. However, it seems +// reasonable to require that a pass which introduces escapes of global +// variables in this way to either not trust AA results while the escape is +// active, or to be forced to operate as a module pass that cannot co-exist +// with an alias analysis such as GMR. +bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, + const Value *V) { + // In order to know that the underlying object cannot alias the + // non-addr-taken global, we must know that it would have to be an escape. + // Thus if the underlying object is a function argument, a load from + // a global, or the return of a function, it cannot alias. We can also + // recurse through PHI nodes and select nodes provided all of their inputs + // resolve to one of these known-escaping roots. + SmallPtrSet<const Value *, 8> Visited; + SmallVector<const Value *, 8> Inputs; + Visited.insert(V); + Inputs.push_back(V); + int Depth = 0; + do { + const Value *Input = Inputs.pop_back_val(); + + if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { + // If one input is the very global we're querying against, then we can't + // conclude no-alias. + if (InputGV == GV) + return false; + + // Distinct GlobalVariables never alias, unless overriden or zero-sized. + // FIXME: The condition can be refined, but be conservative for now. + auto *GVar = dyn_cast<GlobalVariable>(GV); + auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); + if (GVar && InputGVar && + !GVar->isDeclaration() && !InputGVar->isDeclaration() && + !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) { + Type *GVType = GVar->getInitializer()->getType(); + Type *InputGVType = InputGVar->getInitializer()->getType(); + if (GVType->isSized() && InputGVType->isSized() && + (DL.getTypeAllocSize(GVType) > 0) && + (DL.getTypeAllocSize(InputGVType) > 0)) + continue; + } + + // Conservatively return false, even though we could be smarter + // (e.g. look through GlobalAliases). + return false; + } + + if (isa<Argument>(Input) || isa<CallInst>(Input) || + isa<InvokeInst>(Input)) { + // Arguments to functions or returns from functions are inherently + // escaping, so we can immediately classify those as not aliasing any + // non-addr-taken globals. + continue; + } + + // Recurse through a limited number of selects, loads and PHIs. This is an + // arbitrary depth of 4, lower numbers could be used to fix compile time + // issues if needed, but this is generally expected to be only be important + // for small depths. + if (++Depth > 4) + return false; + + if (auto *LI = dyn_cast<LoadInst>(Input)) { + // A pointer loaded from a global would have been captured, and we know + // that the global is non-escaping, so no alias. + const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); + if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) + // The load does not alias with GV. + continue; + // Otherwise, a load could come from anywhere, so bail. + return false; + } + if (auto *SI = dyn_cast<SelectInst>(Input)) { + const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); + const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); + if (Visited.insert(LHS).second) + Inputs.push_back(LHS); + if (Visited.insert(RHS).second) + Inputs.push_back(RHS); + continue; + } + if (auto *PN = dyn_cast<PHINode>(Input)) { + for (const Value *Op : PN->incoming_values()) { + Op = GetUnderlyingObject(Op, DL); + if (Visited.insert(Op).second) + Inputs.push_back(Op); + } + continue; + } + + // FIXME: It would be good to handle other obvious no-alias cases here, but + // it isn't clear how to do so reasonbly without building a small version + // of BasicAA into this code. We could recurse into AAResultBase::alias + // here but that seems likely to go poorly as we're inside the + // implementation of such a query. Until then, just conservatievly retun + // false. + return false; + } while (!Inputs.empty()); + + // If all the inputs to V were definitively no-alias, then V is no-alias. + return true; +} + +/// alias - If one of the pointers is to a global that we are tracking, and the +/// other is some random pointer, we know there cannot be an alias, because the +/// address of the global isn't taken. +AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) { + // Get the base object these pointers point to. + const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); + const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); + + // If either of the underlying values is a global, they may be non-addr-taken + // globals, which we can answer queries about. + const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); + const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); + if (GV1 || GV2) { + // If the global's address is taken, pretend we don't know it's a pointer to + // the global. + if (GV1 && !NonAddressTakenGlobals.count(GV1)) + GV1 = nullptr; + if (GV2 && !NonAddressTakenGlobals.count(GV2)) + GV2 = nullptr; + + // If the two pointers are derived from two different non-addr-taken + // globals we know these can't alias. + if (GV1 && GV2 && GV1 != GV2) + return NoAlias; + + // If one is and the other isn't, it isn't strictly safe but we can fake + // this result if necessary for performance. This does not appear to be + // a common problem in practice. + if (EnableUnsafeGlobalsModRefAliasResults) + if ((GV1 || GV2) && GV1 != GV2) + return NoAlias; + + // Check for a special case where a non-escaping global can be used to + // conclude no-alias. + if ((GV1 || GV2) && GV1 != GV2) { + const GlobalValue *GV = GV1 ? GV1 : GV2; + const Value *UV = GV1 ? UV2 : UV1; + if (isNonEscapingGlobalNoAlias(GV, UV)) + return NoAlias; + } + + // Otherwise if they are both derived from the same addr-taken global, we + // can't know the two accesses don't overlap. + } + + // These pointers may be based on the memory owned by an indirect global. If + // so, we may be able to handle this. First check to see if the base pointer + // is a direct load from an indirect global. + GV1 = GV2 = nullptr; + if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) + if (IndirectGlobals.count(GV)) + GV1 = GV; + if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) + if (IndirectGlobals.count(GV)) + GV2 = GV; + + // These pointers may also be from an allocation for the indirect global. If + // so, also handle them. + if (!GV1) + GV1 = AllocsForIndirectGlobals.lookup(UV1); + if (!GV2) + GV2 = AllocsForIndirectGlobals.lookup(UV2); + + // Now that we know whether the two pointers are related to indirect globals, + // use this to disambiguate the pointers. If the pointers are based on + // different indirect globals they cannot alias. + if (GV1 && GV2 && GV1 != GV2) + return NoAlias; + + // If one is based on an indirect global and the other isn't, it isn't + // strictly safe but we can fake this result if necessary for performance. + // This does not appear to be a common problem in practice. + if (EnableUnsafeGlobalsModRefAliasResults) + if ((GV1 || GV2) && GV1 != GV2) + return NoAlias; + + return AAResultBase::alias(LocA, LocB); +} + +ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, + const GlobalValue *GV) { + if (CS.doesNotAccessMemory()) + return MRI_NoModRef; + ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef; + + // Iterate through all the arguments to the called function. If any argument + // is based on GV, return the conservative result. + for (auto &A : CS.args()) { + SmallVector<Value*, 4> Objects; + GetUnderlyingObjects(A, Objects, DL); + + // All objects must be identified. + if (!std::all_of(Objects.begin(), Objects.end(), isIdentifiedObject)) + return ConservativeResult; + + if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end()) + return ConservativeResult; + } + + // We identified all objects in the argument list, and none of them were GV. + return MRI_NoModRef; +} + +ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, + const MemoryLocation &Loc) { + unsigned Known = MRI_ModRef; + + // If we are asking for mod/ref info of a direct call with a pointer to a + // global we are tracking, return information if we have it. + if (const GlobalValue *GV = + dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) + if (GV->hasLocalLinkage()) + if (const Function *F = CS.getCalledFunction()) + if (NonAddressTakenGlobals.count(GV)) + if (const FunctionInfo *FI = getFunctionInfo(F)) + Known = FI->getModRefInfoForGlobal(*GV) | + getModRefInfoForArgument(CS, GV); + + if (Known == MRI_NoModRef) + return MRI_NoModRef; // No need to query other mod/ref analyses + return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); +} + +GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, + const TargetLibraryInfo &TLI) + : AAResultBase(TLI), DL(DL) {} + +GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) + : AAResultBase(std::move(Arg)), DL(Arg.DL), + NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), + IndirectGlobals(std::move(Arg.IndirectGlobals)), + AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), + FunctionInfos(std::move(Arg.FunctionInfos)), + Handles(std::move(Arg.Handles)) { + // Update the parent for each DeletionCallbackHandle. + for (auto &H : Handles) { + assert(H.GAR == &Arg); + H.GAR = this; + } +} + +/*static*/ GlobalsAAResult +GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, + CallGraph &CG) { + GlobalsAAResult Result(M.getDataLayout(), TLI); + + // Discover which functions aren't recursive, to feed into AnalyzeGlobals. + Result.CollectSCCMembership(CG); + + // Find non-addr taken globals. + Result.AnalyzeGlobals(M); + + // Propagate on CG. + Result.AnalyzeCallGraph(CG, M); + + return Result; +} + +GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) { + return GlobalsAAResult::analyzeModule(M, + AM->getResult<TargetLibraryAnalysis>(M), + AM->getResult<CallGraphAnalysis>(M)); +} + +char GlobalsAA::PassID; + +char GlobalsAAWrapperPass::ID = 0; +INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", + "Globals Alias Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", + "Globals Alias Analysis", false, true) + +ModulePass *llvm::createGlobalsAAWrapperPass() { + return new GlobalsAAWrapperPass(); +} + +GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { + initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +bool GlobalsAAWrapperPass::runOnModule(Module &M) { + Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( + M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), + getAnalysis<CallGraphWrapperPass>().getCallGraph()))); + return false; +} + +bool GlobalsAAWrapperPass::doFinalization(Module &M) { + Result.reset(); + return false; +} + +void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<CallGraphWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); +} |