summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/GlobalsModRef.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/GlobalsModRef.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/GlobalsModRef.cpp972
1 files changed, 972 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp
new file mode 100644
index 0000000..1babb82
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp
@@ -0,0 +1,972 @@
+//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This simple pass provides alias and mod/ref information for global values
+// that do not have their address taken, and keeps track of whether functions
+// read or write memory (are "pure"). For this simple (but very common) case,
+// we can provide pretty accurate and useful information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "globalsmodref-aa"
+
+STATISTIC(NumNonAddrTakenGlobalVars,
+ "Number of global vars without address taken");
+STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
+STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
+STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
+STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
+
+// An option to enable unsafe alias results from the GlobalsModRef analysis.
+// When enabled, GlobalsModRef will provide no-alias results which in extremely
+// rare cases may not be conservatively correct. In particular, in the face of
+// transforms which cause assymetry between how effective GetUnderlyingObject
+// is for two pointers, it may produce incorrect results.
+//
+// These unsafe results have been returned by GMR for many years without
+// causing significant issues in the wild and so we provide a mechanism to
+// re-enable them for users of LLVM that have a particular performance
+// sensitivity and no known issues. The option also makes it easy to evaluate
+// the performance impact of these results.
+static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
+ "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
+
+/// The mod/ref information collected for a particular function.
+///
+/// We collect information about mod/ref behavior of a function here, both in
+/// general and as pertains to specific globals. We only have this detailed
+/// information when we know *something* useful about the behavior. If we
+/// saturate to fully general mod/ref, we remove the info for the function.
+class GlobalsAAResult::FunctionInfo {
+ typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
+
+ /// Build a wrapper struct that has 8-byte alignment. All heap allocations
+ /// should provide this much alignment at least, but this makes it clear we
+ /// specifically rely on this amount of alignment.
+ struct LLVM_ALIGNAS(8) AlignedMap {
+ AlignedMap() {}
+ AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
+ GlobalInfoMapType Map;
+ };
+
+ /// Pointer traits for our aligned map.
+ struct AlignedMapPointerTraits {
+ static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
+ static inline AlignedMap *getFromVoidPointer(void *P) {
+ return (AlignedMap *)P;
+ }
+ enum { NumLowBitsAvailable = 3 };
+ static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
+ "AlignedMap insufficiently aligned to have enough low bits.");
+ };
+
+ /// The bit that flags that this function may read any global. This is
+ /// chosen to mix together with ModRefInfo bits.
+ enum { MayReadAnyGlobal = 4 };
+
+ /// Checks to document the invariants of the bit packing here.
+ static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
+ "ModRef and the MayReadAnyGlobal flag bits overlap.");
+ static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
+ AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
+ "Insufficient low bits to store our flag and ModRef info.");
+
+public:
+ FunctionInfo() : Info() {}
+ ~FunctionInfo() {
+ delete Info.getPointer();
+ }
+ // Spell out the copy ond move constructors and assignment operators to get
+ // deep copy semantics and correct move semantics in the face of the
+ // pointer-int pair.
+ FunctionInfo(const FunctionInfo &Arg)
+ : Info(nullptr, Arg.Info.getInt()) {
+ if (const auto *ArgPtr = Arg.Info.getPointer())
+ Info.setPointer(new AlignedMap(*ArgPtr));
+ }
+ FunctionInfo(FunctionInfo &&Arg)
+ : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
+ Arg.Info.setPointerAndInt(nullptr, 0);
+ }
+ FunctionInfo &operator=(const FunctionInfo &RHS) {
+ delete Info.getPointer();
+ Info.setPointerAndInt(nullptr, RHS.Info.getInt());
+ if (const auto *RHSPtr = RHS.Info.getPointer())
+ Info.setPointer(new AlignedMap(*RHSPtr));
+ return *this;
+ }
+ FunctionInfo &operator=(FunctionInfo &&RHS) {
+ delete Info.getPointer();
+ Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
+ RHS.Info.setPointerAndInt(nullptr, 0);
+ return *this;
+ }
+
+ /// Returns the \c ModRefInfo info for this function.
+ ModRefInfo getModRefInfo() const {
+ return ModRefInfo(Info.getInt() & MRI_ModRef);
+ }
+
+ /// Adds new \c ModRefInfo for this function to its state.
+ void addModRefInfo(ModRefInfo NewMRI) {
+ Info.setInt(Info.getInt() | NewMRI);
+ }
+
+ /// Returns whether this function may read any global variable, and we don't
+ /// know which global.
+ bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
+
+ /// Sets this function as potentially reading from any global.
+ void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
+
+ /// Returns the \c ModRefInfo info for this function w.r.t. a particular
+ /// global, which may be more precise than the general information above.
+ ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
+ ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
+ if (AlignedMap *P = Info.getPointer()) {
+ auto I = P->Map.find(&GV);
+ if (I != P->Map.end())
+ GlobalMRI = ModRefInfo(GlobalMRI | I->second);
+ }
+ return GlobalMRI;
+ }
+
+ /// Add mod/ref info from another function into ours, saturating towards
+ /// MRI_ModRef.
+ void addFunctionInfo(const FunctionInfo &FI) {
+ addModRefInfo(FI.getModRefInfo());
+
+ if (FI.mayReadAnyGlobal())
+ setMayReadAnyGlobal();
+
+ if (AlignedMap *P = FI.Info.getPointer())
+ for (const auto &G : P->Map)
+ addModRefInfoForGlobal(*G.first, G.second);
+ }
+
+ void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
+ AlignedMap *P = Info.getPointer();
+ if (!P) {
+ P = new AlignedMap();
+ Info.setPointer(P);
+ }
+ auto &GlobalMRI = P->Map[&GV];
+ GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
+ }
+
+ /// Clear a global's ModRef info. Should be used when a global is being
+ /// deleted.
+ void eraseModRefInfoForGlobal(const GlobalValue &GV) {
+ if (AlignedMap *P = Info.getPointer())
+ P->Map.erase(&GV);
+ }
+
+private:
+ /// All of the information is encoded into a single pointer, with a three bit
+ /// integer in the low three bits. The high bit provides a flag for when this
+ /// function may read any global. The low two bits are the ModRefInfo. And
+ /// the pointer, when non-null, points to a map from GlobalValue to
+ /// ModRefInfo specific to that GlobalValue.
+ PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
+};
+
+void GlobalsAAResult::DeletionCallbackHandle::deleted() {
+ Value *V = getValPtr();
+ if (auto *F = dyn_cast<Function>(V))
+ GAR->FunctionInfos.erase(F);
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ if (GAR->NonAddressTakenGlobals.erase(GV)) {
+ // This global might be an indirect global. If so, remove it and
+ // remove any AllocRelatedValues for it.
+ if (GAR->IndirectGlobals.erase(GV)) {
+ // Remove any entries in AllocsForIndirectGlobals for this global.
+ for (auto I = GAR->AllocsForIndirectGlobals.begin(),
+ E = GAR->AllocsForIndirectGlobals.end();
+ I != E; ++I)
+ if (I->second == GV)
+ GAR->AllocsForIndirectGlobals.erase(I);
+ }
+
+ // Scan the function info we have collected and remove this global
+ // from all of them.
+ for (auto &FIPair : GAR->FunctionInfos)
+ FIPair.second.eraseModRefInfoForGlobal(*GV);
+ }
+ }
+
+ // If this is an allocation related to an indirect global, remove it.
+ GAR->AllocsForIndirectGlobals.erase(V);
+
+ // And clear out the handle.
+ setValPtr(nullptr);
+ GAR->Handles.erase(I);
+ // This object is now destroyed!
+}
+
+FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
+ FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
+
+ if (FunctionInfo *FI = getFunctionInfo(F)) {
+ if (FI->getModRefInfo() == MRI_NoModRef)
+ Min = FMRB_DoesNotAccessMemory;
+ else if ((FI->getModRefInfo() & MRI_Mod) == 0)
+ Min = FMRB_OnlyReadsMemory;
+ }
+
+ return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
+}
+
+FunctionModRefBehavior
+GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
+ FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
+
+ if (const Function *F = CS.getCalledFunction())
+ if (FunctionInfo *FI = getFunctionInfo(F)) {
+ if (FI->getModRefInfo() == MRI_NoModRef)
+ Min = FMRB_DoesNotAccessMemory;
+ else if ((FI->getModRefInfo() & MRI_Mod) == 0)
+ Min = FMRB_OnlyReadsMemory;
+ }
+
+ return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
+}
+
+/// Returns the function info for the function, or null if we don't have
+/// anything useful to say about it.
+GlobalsAAResult::FunctionInfo *
+GlobalsAAResult::getFunctionInfo(const Function *F) {
+ auto I = FunctionInfos.find(F);
+ if (I != FunctionInfos.end())
+ return &I->second;
+ return nullptr;
+}
+
+/// AnalyzeGlobals - Scan through the users of all of the internal
+/// GlobalValue's in the program. If none of them have their "address taken"
+/// (really, their address passed to something nontrivial), record this fact,
+/// and record the functions that they are used directly in.
+void GlobalsAAResult::AnalyzeGlobals(Module &M) {
+ SmallPtrSet<Function *, 64> TrackedFunctions;
+ for (Function &F : M)
+ if (F.hasLocalLinkage())
+ if (!AnalyzeUsesOfPointer(&F)) {
+ // Remember that we are tracking this global.
+ NonAddressTakenGlobals.insert(&F);
+ TrackedFunctions.insert(&F);
+ Handles.emplace_front(*this, &F);
+ Handles.front().I = Handles.begin();
+ ++NumNonAddrTakenFunctions;
+ }
+
+ SmallPtrSet<Function *, 64> Readers, Writers;
+ for (GlobalVariable &GV : M.globals())
+ if (GV.hasLocalLinkage()) {
+ if (!AnalyzeUsesOfPointer(&GV, &Readers,
+ GV.isConstant() ? nullptr : &Writers)) {
+ // Remember that we are tracking this global, and the mod/ref fns
+ NonAddressTakenGlobals.insert(&GV);
+ Handles.emplace_front(*this, &GV);
+ Handles.front().I = Handles.begin();
+
+ for (Function *Reader : Readers) {
+ if (TrackedFunctions.insert(Reader).second) {
+ Handles.emplace_front(*this, Reader);
+ Handles.front().I = Handles.begin();
+ }
+ FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
+ }
+
+ if (!GV.isConstant()) // No need to keep track of writers to constants
+ for (Function *Writer : Writers) {
+ if (TrackedFunctions.insert(Writer).second) {
+ Handles.emplace_front(*this, Writer);
+ Handles.front().I = Handles.begin();
+ }
+ FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
+ }
+ ++NumNonAddrTakenGlobalVars;
+
+ // If this global holds a pointer type, see if it is an indirect global.
+ if (GV.getType()->getElementType()->isPointerTy() &&
+ AnalyzeIndirectGlobalMemory(&GV))
+ ++NumIndirectGlobalVars;
+ }
+ Readers.clear();
+ Writers.clear();
+ }
+}
+
+/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
+/// If this is used by anything complex (i.e., the address escapes), return
+/// true. Also, while we are at it, keep track of those functions that read and
+/// write to the value.
+///
+/// If OkayStoreDest is non-null, stores into this global are allowed.
+bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
+ SmallPtrSetImpl<Function *> *Readers,
+ SmallPtrSetImpl<Function *> *Writers,
+ GlobalValue *OkayStoreDest) {
+ if (!V->getType()->isPointerTy())
+ return true;
+
+ for (Use &U : V->uses()) {
+ User *I = U.getUser();
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (Readers)
+ Readers->insert(LI->getParent()->getParent());
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (V == SI->getOperand(1)) {
+ if (Writers)
+ Writers->insert(SI->getParent()->getParent());
+ } else if (SI->getOperand(1) != OkayStoreDest) {
+ return true; // Storing the pointer
+ }
+ } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
+ if (AnalyzeUsesOfPointer(I, Readers, Writers))
+ return true;
+ } else if (Operator::getOpcode(I) == Instruction::BitCast) {
+ if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
+ return true;
+ } else if (auto CS = CallSite(I)) {
+ // Make sure that this is just the function being called, not that it is
+ // passing into the function.
+ if (CS.isDataOperand(&U)) {
+ // Detect calls to free.
+ if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
+ if (Writers)
+ Writers->insert(CS->getParent()->getParent());
+ } else {
+ return true; // Argument of an unknown call.
+ }
+ }
+ } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
+ if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
+ return true; // Allow comparison against null.
+ } else {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
+/// which holds a pointer type. See if the global always points to non-aliased
+/// heap memory: that is, all initializers of the globals are allocations, and
+/// those allocations have no use other than initialization of the global.
+/// Further, all loads out of GV must directly use the memory, not store the
+/// pointer somewhere. If this is true, we consider the memory pointed to by
+/// GV to be owned by GV and can disambiguate other pointers from it.
+bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
+ // Keep track of values related to the allocation of the memory, f.e. the
+ // value produced by the malloc call and any casts.
+ std::vector<Value *> AllocRelatedValues;
+
+ // If the initializer is a valid pointer, bail.
+ if (Constant *C = GV->getInitializer())
+ if (!C->isNullValue())
+ return false;
+
+ // Walk the user list of the global. If we find anything other than a direct
+ // load or store, bail out.
+ for (User *U : GV->users()) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ // The pointer loaded from the global can only be used in simple ways:
+ // we allow addressing of it and loading storing to it. We do *not* allow
+ // storing the loaded pointer somewhere else or passing to a function.
+ if (AnalyzeUsesOfPointer(LI))
+ return false; // Loaded pointer escapes.
+ // TODO: Could try some IP mod/ref of the loaded pointer.
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ // Storing the global itself.
+ if (SI->getOperand(0) == GV)
+ return false;
+
+ // If storing the null pointer, ignore it.
+ if (isa<ConstantPointerNull>(SI->getOperand(0)))
+ continue;
+
+ // Check the value being stored.
+ Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
+ GV->getParent()->getDataLayout());
+
+ if (!isAllocLikeFn(Ptr, &TLI))
+ return false; // Too hard to analyze.
+
+ // Analyze all uses of the allocation. If any of them are used in a
+ // non-simple way (e.g. stored to another global) bail out.
+ if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
+ GV))
+ return false; // Loaded pointer escapes.
+
+ // Remember that this allocation is related to the indirect global.
+ AllocRelatedValues.push_back(Ptr);
+ } else {
+ // Something complex, bail out.
+ return false;
+ }
+ }
+
+ // Okay, this is an indirect global. Remember all of the allocations for
+ // this global in AllocsForIndirectGlobals.
+ while (!AllocRelatedValues.empty()) {
+ AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
+ Handles.emplace_front(*this, AllocRelatedValues.back());
+ Handles.front().I = Handles.begin();
+ AllocRelatedValues.pop_back();
+ }
+ IndirectGlobals.insert(GV);
+ Handles.emplace_front(*this, GV);
+ Handles.front().I = Handles.begin();
+ return true;
+}
+
+void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
+ // We do a bottom-up SCC traversal of the call graph. In other words, we
+ // visit all callees before callers (leaf-first).
+ unsigned SCCID = 0;
+ for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
+ const std::vector<CallGraphNode *> &SCC = *I;
+ assert(!SCC.empty() && "SCC with no functions?");
+
+ for (auto *CGN : SCC)
+ if (Function *F = CGN->getFunction())
+ FunctionToSCCMap[F] = SCCID;
+ ++SCCID;
+ }
+}
+
+/// AnalyzeCallGraph - At this point, we know the functions where globals are
+/// immediately stored to and read from. Propagate this information up the call
+/// graph to all callers and compute the mod/ref info for all memory for each
+/// function.
+void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
+ // We do a bottom-up SCC traversal of the call graph. In other words, we
+ // visit all callees before callers (leaf-first).
+ for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
+ const std::vector<CallGraphNode *> &SCC = *I;
+ assert(!SCC.empty() && "SCC with no functions?");
+
+ if (!SCC[0]->getFunction() || SCC[0]->getFunction()->mayBeOverridden()) {
+ // Calls externally or is weak - can't say anything useful. Remove any existing
+ // function records (may have been created when scanning globals).
+ for (auto *Node : SCC)
+ FunctionInfos.erase(Node->getFunction());
+ continue;
+ }
+
+ FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
+ bool KnowNothing = false;
+
+ // Collect the mod/ref properties due to called functions. We only compute
+ // one mod-ref set.
+ for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
+ Function *F = SCC[i]->getFunction();
+ if (!F) {
+ KnowNothing = true;
+ break;
+ }
+
+ if (F->isDeclaration()) {
+ // Try to get mod/ref behaviour from function attributes.
+ if (F->doesNotAccessMemory()) {
+ // Can't do better than that!
+ } else if (F->onlyReadsMemory()) {
+ FI.addModRefInfo(MRI_Ref);
+ if (!F->isIntrinsic())
+ // This function might call back into the module and read a global -
+ // consider every global as possibly being read by this function.
+ FI.setMayReadAnyGlobal();
+ } else {
+ FI.addModRefInfo(MRI_ModRef);
+ // Can't say anything useful unless it's an intrinsic - they don't
+ // read or write global variables of the kind considered here.
+ KnowNothing = !F->isIntrinsic();
+ }
+ continue;
+ }
+
+ for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
+ CI != E && !KnowNothing; ++CI)
+ if (Function *Callee = CI->second->getFunction()) {
+ if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
+ // Propagate function effect up.
+ FI.addFunctionInfo(*CalleeFI);
+ } else {
+ // Can't say anything about it. However, if it is inside our SCC,
+ // then nothing needs to be done.
+ CallGraphNode *CalleeNode = CG[Callee];
+ if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
+ KnowNothing = true;
+ }
+ } else {
+ KnowNothing = true;
+ }
+ }
+
+ // If we can't say anything useful about this SCC, remove all SCC functions
+ // from the FunctionInfos map.
+ if (KnowNothing) {
+ for (auto *Node : SCC)
+ FunctionInfos.erase(Node->getFunction());
+ continue;
+ }
+
+ // Scan the function bodies for explicit loads or stores.
+ for (auto *Node : SCC) {
+ if (FI.getModRefInfo() == MRI_ModRef)
+ break; // The mod/ref lattice saturates here.
+ for (Instruction &I : instructions(Node->getFunction())) {
+ if (FI.getModRefInfo() == MRI_ModRef)
+ break; // The mod/ref lattice saturates here.
+
+ // We handle calls specially because the graph-relevant aspects are
+ // handled above.
+ if (auto CS = CallSite(&I)) {
+ if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
+ // FIXME: It is completely unclear why this is necessary and not
+ // handled by the above graph code.
+ FI.addModRefInfo(MRI_ModRef);
+ } else if (Function *Callee = CS.getCalledFunction()) {
+ // The callgraph doesn't include intrinsic calls.
+ if (Callee->isIntrinsic()) {
+ FunctionModRefBehavior Behaviour =
+ AAResultBase::getModRefBehavior(Callee);
+ FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
+ }
+ }
+ continue;
+ }
+
+ // All non-call instructions we use the primary predicates for whether
+ // thay read or write memory.
+ if (I.mayReadFromMemory())
+ FI.addModRefInfo(MRI_Ref);
+ if (I.mayWriteToMemory())
+ FI.addModRefInfo(MRI_Mod);
+ }
+ }
+
+ if ((FI.getModRefInfo() & MRI_Mod) == 0)
+ ++NumReadMemFunctions;
+ if (FI.getModRefInfo() == MRI_NoModRef)
+ ++NumNoMemFunctions;
+
+ // Finally, now that we know the full effect on this SCC, clone the
+ // information to each function in the SCC.
+ // FI is a reference into FunctionInfos, so copy it now so that it doesn't
+ // get invalidated if DenseMap decides to re-hash.
+ FunctionInfo CachedFI = FI;
+ for (unsigned i = 1, e = SCC.size(); i != e; ++i)
+ FunctionInfos[SCC[i]->getFunction()] = CachedFI;
+ }
+}
+
+// GV is a non-escaping global. V is a pointer address that has been loaded from.
+// If we can prove that V must escape, we can conclude that a load from V cannot
+// alias GV.
+static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
+ const Value *V,
+ int &Depth,
+ const DataLayout &DL) {
+ SmallPtrSet<const Value *, 8> Visited;
+ SmallVector<const Value *, 8> Inputs;
+ Visited.insert(V);
+ Inputs.push_back(V);
+ do {
+ const Value *Input = Inputs.pop_back_val();
+
+ if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
+ isa<InvokeInst>(Input))
+ // Arguments to functions or returns from functions are inherently
+ // escaping, so we can immediately classify those as not aliasing any
+ // non-addr-taken globals.
+ //
+ // (Transitive) loads from a global are also safe - if this aliased
+ // another global, its address would escape, so no alias.
+ continue;
+
+ // Recurse through a limited number of selects, loads and PHIs. This is an
+ // arbitrary depth of 4, lower numbers could be used to fix compile time
+ // issues if needed, but this is generally expected to be only be important
+ // for small depths.
+ if (++Depth > 4)
+ return false;
+
+ if (auto *LI = dyn_cast<LoadInst>(Input)) {
+ Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
+ continue;
+ }
+ if (auto *SI = dyn_cast<SelectInst>(Input)) {
+ const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
+ const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
+ if (Visited.insert(LHS).second)
+ Inputs.push_back(LHS);
+ if (Visited.insert(RHS).second)
+ Inputs.push_back(RHS);
+ continue;
+ }
+ if (auto *PN = dyn_cast<PHINode>(Input)) {
+ for (const Value *Op : PN->incoming_values()) {
+ Op = GetUnderlyingObject(Op, DL);
+ if (Visited.insert(Op).second)
+ Inputs.push_back(Op);
+ }
+ continue;
+ }
+
+ return false;
+ } while (!Inputs.empty());
+
+ // All inputs were known to be no-alias.
+ return true;
+}
+
+// There are particular cases where we can conclude no-alias between
+// a non-addr-taken global and some other underlying object. Specifically,
+// a non-addr-taken global is known to not be escaped from any function. It is
+// also incorrect for a transformation to introduce an escape of a global in
+// a way that is observable when it was not there previously. One function
+// being transformed to introduce an escape which could possibly be observed
+// (via loading from a global or the return value for example) within another
+// function is never safe. If the observation is made through non-atomic
+// operations on different threads, it is a data-race and UB. If the
+// observation is well defined, by being observed the transformation would have
+// changed program behavior by introducing the observed escape, making it an
+// invalid transform.
+//
+// This property does require that transformations which *temporarily* escape
+// a global that was not previously escaped, prior to restoring it, cannot rely
+// on the results of GMR::alias. This seems a reasonable restriction, although
+// currently there is no way to enforce it. There is also no realistic
+// optimization pass that would make this mistake. The closest example is
+// a transformation pass which does reg2mem of SSA values but stores them into
+// global variables temporarily before restoring the global variable's value.
+// This could be useful to expose "benign" races for example. However, it seems
+// reasonable to require that a pass which introduces escapes of global
+// variables in this way to either not trust AA results while the escape is
+// active, or to be forced to operate as a module pass that cannot co-exist
+// with an alias analysis such as GMR.
+bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
+ const Value *V) {
+ // In order to know that the underlying object cannot alias the
+ // non-addr-taken global, we must know that it would have to be an escape.
+ // Thus if the underlying object is a function argument, a load from
+ // a global, or the return of a function, it cannot alias. We can also
+ // recurse through PHI nodes and select nodes provided all of their inputs
+ // resolve to one of these known-escaping roots.
+ SmallPtrSet<const Value *, 8> Visited;
+ SmallVector<const Value *, 8> Inputs;
+ Visited.insert(V);
+ Inputs.push_back(V);
+ int Depth = 0;
+ do {
+ const Value *Input = Inputs.pop_back_val();
+
+ if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
+ // If one input is the very global we're querying against, then we can't
+ // conclude no-alias.
+ if (InputGV == GV)
+ return false;
+
+ // Distinct GlobalVariables never alias, unless overriden or zero-sized.
+ // FIXME: The condition can be refined, but be conservative for now.
+ auto *GVar = dyn_cast<GlobalVariable>(GV);
+ auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
+ if (GVar && InputGVar &&
+ !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
+ !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) {
+ Type *GVType = GVar->getInitializer()->getType();
+ Type *InputGVType = InputGVar->getInitializer()->getType();
+ if (GVType->isSized() && InputGVType->isSized() &&
+ (DL.getTypeAllocSize(GVType) > 0) &&
+ (DL.getTypeAllocSize(InputGVType) > 0))
+ continue;
+ }
+
+ // Conservatively return false, even though we could be smarter
+ // (e.g. look through GlobalAliases).
+ return false;
+ }
+
+ if (isa<Argument>(Input) || isa<CallInst>(Input) ||
+ isa<InvokeInst>(Input)) {
+ // Arguments to functions or returns from functions are inherently
+ // escaping, so we can immediately classify those as not aliasing any
+ // non-addr-taken globals.
+ continue;
+ }
+
+ // Recurse through a limited number of selects, loads and PHIs. This is an
+ // arbitrary depth of 4, lower numbers could be used to fix compile time
+ // issues if needed, but this is generally expected to be only be important
+ // for small depths.
+ if (++Depth > 4)
+ return false;
+
+ if (auto *LI = dyn_cast<LoadInst>(Input)) {
+ // A pointer loaded from a global would have been captured, and we know
+ // that the global is non-escaping, so no alias.
+ const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
+ if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
+ // The load does not alias with GV.
+ continue;
+ // Otherwise, a load could come from anywhere, so bail.
+ return false;
+ }
+ if (auto *SI = dyn_cast<SelectInst>(Input)) {
+ const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
+ const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
+ if (Visited.insert(LHS).second)
+ Inputs.push_back(LHS);
+ if (Visited.insert(RHS).second)
+ Inputs.push_back(RHS);
+ continue;
+ }
+ if (auto *PN = dyn_cast<PHINode>(Input)) {
+ for (const Value *Op : PN->incoming_values()) {
+ Op = GetUnderlyingObject(Op, DL);
+ if (Visited.insert(Op).second)
+ Inputs.push_back(Op);
+ }
+ continue;
+ }
+
+ // FIXME: It would be good to handle other obvious no-alias cases here, but
+ // it isn't clear how to do so reasonbly without building a small version
+ // of BasicAA into this code. We could recurse into AAResultBase::alias
+ // here but that seems likely to go poorly as we're inside the
+ // implementation of such a query. Until then, just conservatievly retun
+ // false.
+ return false;
+ } while (!Inputs.empty());
+
+ // If all the inputs to V were definitively no-alias, then V is no-alias.
+ return true;
+}
+
+/// alias - If one of the pointers is to a global that we are tracking, and the
+/// other is some random pointer, we know there cannot be an alias, because the
+/// address of the global isn't taken.
+AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB) {
+ // Get the base object these pointers point to.
+ const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
+ const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
+
+ // If either of the underlying values is a global, they may be non-addr-taken
+ // globals, which we can answer queries about.
+ const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
+ const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
+ if (GV1 || GV2) {
+ // If the global's address is taken, pretend we don't know it's a pointer to
+ // the global.
+ if (GV1 && !NonAddressTakenGlobals.count(GV1))
+ GV1 = nullptr;
+ if (GV2 && !NonAddressTakenGlobals.count(GV2))
+ GV2 = nullptr;
+
+ // If the two pointers are derived from two different non-addr-taken
+ // globals we know these can't alias.
+ if (GV1 && GV2 && GV1 != GV2)
+ return NoAlias;
+
+ // If one is and the other isn't, it isn't strictly safe but we can fake
+ // this result if necessary for performance. This does not appear to be
+ // a common problem in practice.
+ if (EnableUnsafeGlobalsModRefAliasResults)
+ if ((GV1 || GV2) && GV1 != GV2)
+ return NoAlias;
+
+ // Check for a special case where a non-escaping global can be used to
+ // conclude no-alias.
+ if ((GV1 || GV2) && GV1 != GV2) {
+ const GlobalValue *GV = GV1 ? GV1 : GV2;
+ const Value *UV = GV1 ? UV2 : UV1;
+ if (isNonEscapingGlobalNoAlias(GV, UV))
+ return NoAlias;
+ }
+
+ // Otherwise if they are both derived from the same addr-taken global, we
+ // can't know the two accesses don't overlap.
+ }
+
+ // These pointers may be based on the memory owned by an indirect global. If
+ // so, we may be able to handle this. First check to see if the base pointer
+ // is a direct load from an indirect global.
+ GV1 = GV2 = nullptr;
+ if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+ if (IndirectGlobals.count(GV))
+ GV1 = GV;
+ if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+ if (IndirectGlobals.count(GV))
+ GV2 = GV;
+
+ // These pointers may also be from an allocation for the indirect global. If
+ // so, also handle them.
+ if (!GV1)
+ GV1 = AllocsForIndirectGlobals.lookup(UV1);
+ if (!GV2)
+ GV2 = AllocsForIndirectGlobals.lookup(UV2);
+
+ // Now that we know whether the two pointers are related to indirect globals,
+ // use this to disambiguate the pointers. If the pointers are based on
+ // different indirect globals they cannot alias.
+ if (GV1 && GV2 && GV1 != GV2)
+ return NoAlias;
+
+ // If one is based on an indirect global and the other isn't, it isn't
+ // strictly safe but we can fake this result if necessary for performance.
+ // This does not appear to be a common problem in practice.
+ if (EnableUnsafeGlobalsModRefAliasResults)
+ if ((GV1 || GV2) && GV1 != GV2)
+ return NoAlias;
+
+ return AAResultBase::alias(LocA, LocB);
+}
+
+ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
+ const GlobalValue *GV) {
+ if (CS.doesNotAccessMemory())
+ return MRI_NoModRef;
+ ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
+
+ // Iterate through all the arguments to the called function. If any argument
+ // is based on GV, return the conservative result.
+ for (auto &A : CS.args()) {
+ SmallVector<Value*, 4> Objects;
+ GetUnderlyingObjects(A, Objects, DL);
+
+ // All objects must be identified.
+ if (!std::all_of(Objects.begin(), Objects.end(), isIdentifiedObject))
+ return ConservativeResult;
+
+ if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end())
+ return ConservativeResult;
+ }
+
+ // We identified all objects in the argument list, and none of them were GV.
+ return MRI_NoModRef;
+}
+
+ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
+ const MemoryLocation &Loc) {
+ unsigned Known = MRI_ModRef;
+
+ // If we are asking for mod/ref info of a direct call with a pointer to a
+ // global we are tracking, return information if we have it.
+ if (const GlobalValue *GV =
+ dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
+ if (GV->hasLocalLinkage())
+ if (const Function *F = CS.getCalledFunction())
+ if (NonAddressTakenGlobals.count(GV))
+ if (const FunctionInfo *FI = getFunctionInfo(F))
+ Known = FI->getModRefInfoForGlobal(*GV) |
+ getModRefInfoForArgument(CS, GV);
+
+ if (Known == MRI_NoModRef)
+ return MRI_NoModRef; // No need to query other mod/ref analyses
+ return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
+}
+
+GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
+ const TargetLibraryInfo &TLI)
+ : AAResultBase(TLI), DL(DL) {}
+
+GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
+ : AAResultBase(std::move(Arg)), DL(Arg.DL),
+ NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
+ IndirectGlobals(std::move(Arg.IndirectGlobals)),
+ AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
+ FunctionInfos(std::move(Arg.FunctionInfos)),
+ Handles(std::move(Arg.Handles)) {
+ // Update the parent for each DeletionCallbackHandle.
+ for (auto &H : Handles) {
+ assert(H.GAR == &Arg);
+ H.GAR = this;
+ }
+}
+
+/*static*/ GlobalsAAResult
+GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
+ CallGraph &CG) {
+ GlobalsAAResult Result(M.getDataLayout(), TLI);
+
+ // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
+ Result.CollectSCCMembership(CG);
+
+ // Find non-addr taken globals.
+ Result.AnalyzeGlobals(M);
+
+ // Propagate on CG.
+ Result.AnalyzeCallGraph(CG, M);
+
+ return Result;
+}
+
+GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) {
+ return GlobalsAAResult::analyzeModule(M,
+ AM->getResult<TargetLibraryAnalysis>(M),
+ AM->getResult<CallGraphAnalysis>(M));
+}
+
+char GlobalsAA::PassID;
+
+char GlobalsAAWrapperPass::ID = 0;
+INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
+ "Globals Alias Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
+ "Globals Alias Analysis", false, true)
+
+ModulePass *llvm::createGlobalsAAWrapperPass() {
+ return new GlobalsAAWrapperPass();
+}
+
+GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
+ initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+bool GlobalsAAWrapperPass::runOnModule(Module &M) {
+ Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
+ M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
+ getAnalysis<CallGraphWrapperPass>().getCallGraph())));
+ return false;
+}
+
+bool GlobalsAAWrapperPass::doFinalization(Module &M) {
+ Result.reset();
+ return false;
+}
+
+void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<CallGraphWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+}
OpenPOWER on IntegriCloud