summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ConstantFolding.cpp330
1 files changed, 199 insertions, 131 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
index 7386727..0f5ec3f 100644
--- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
@@ -22,8 +22,8 @@
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/config.h"
@@ -42,6 +42,7 @@
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
@@ -686,25 +687,21 @@ Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
// bits.
if (Opc == Instruction::And) {
- unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
- APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
- APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
- computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
- computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
- if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
+ KnownBits Known0 = computeKnownBits(Op0, DL);
+ KnownBits Known1 = computeKnownBits(Op1, DL);
+ if ((Known1.One | Known0.Zero).isAllOnesValue()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
}
- if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
+ if ((Known0.One | Known1.Zero).isAllOnesValue()) {
// All the bits of Op1 that the 'and' could be masking are already zero.
return Op1;
}
- APInt KnownZero = KnownZero0 | KnownZero1;
- APInt KnownOne = KnownOne0 & KnownOne1;
- if ((KnownZero | KnownOne).isAllOnesValue()) {
- return ConstantInt::get(Op0->getType(), KnownOne);
- }
+ Known0.Zero |= Known1.Zero;
+ Known0.One &= Known1.One;
+ if (Known0.isConstant())
+ return ConstantInt::get(Op0->getType(), Known0.getConstant());
}
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
@@ -1018,9 +1015,11 @@ Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
case Instruction::ICmp:
case Instruction::FCmp: llvm_unreachable("Invalid for compares");
case Instruction::Call:
- if (auto *F = dyn_cast<Function>(Ops.back()))
- if (canConstantFoldCallTo(F))
- return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
+ if (auto *F = dyn_cast<Function>(Ops.back())) {
+ ImmutableCallSite CS(cast<CallInst>(InstOrCE));
+ if (canConstantFoldCallTo(CS, F))
+ return ConstantFoldCall(CS, F, Ops.slice(0, Ops.size() - 1), TLI);
+ }
return nullptr;
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
@@ -1058,8 +1057,8 @@ ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
if (It == FoldedOps.end()) {
if (auto *FoldedC =
ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
- NewC = FoldedC;
FoldedOps.insert({NewC, FoldedC});
+ NewC = FoldedC;
} else {
FoldedOps.insert({NewC, NewC});
}
@@ -1173,7 +1172,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
+ // fold: icmp null, (inttoptr x) -> icmp 0, x
// fold: icmp (ptrtoint x), 0 -> icmp x, null
+ // fold: icmp 0, (ptrtoint x) -> icmp null, x
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
@@ -1243,6 +1244,11 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
}
+ } else if (isa<ConstantExpr>(Ops1)) {
+ // If RHS is a constant expression, but the left side isn't, swap the
+ // operands and try again.
+ Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
+ return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
@@ -1352,7 +1358,9 @@ llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
// Constant Folding for Calls
//
-bool llvm::canConstantFoldCallTo(const Function *F) {
+bool llvm::canConstantFoldCallTo(ImmutableCallSite CS, const Function *F) {
+ if (CS.isNoBuiltin())
+ return false;
switch (F->getIntrinsicID()) {
case Intrinsic::fabs:
case Intrinsic::minnum:
@@ -1401,7 +1409,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) {
return true;
default:
return false;
- case 0: break;
+ case Intrinsic::not_intrinsic: break;
}
if (!F->hasName())
@@ -1438,6 +1446,36 @@ bool llvm::canConstantFoldCallTo(const Function *F) {
Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
+ case '_':
+
+ // Check for various function names that get used for the math functions
+ // when the header files are preprocessed with the macro
+ // __FINITE_MATH_ONLY__ enabled.
+ // The '12' here is the length of the shortest name that can match.
+ // We need to check the size before looking at Name[1] and Name[2]
+ // so we may as well check a limit that will eliminate mismatches.
+ if (Name.size() < 12 || Name[1] != '_')
+ return false;
+ switch (Name[2]) {
+ default:
+ return false;
+ case 'a':
+ return Name == "__acos_finite" || Name == "__acosf_finite" ||
+ Name == "__asin_finite" || Name == "__asinf_finite" ||
+ Name == "__atan2_finite" || Name == "__atan2f_finite";
+ case 'c':
+ return Name == "__cosh_finite" || Name == "__coshf_finite";
+ case 'e':
+ return Name == "__exp_finite" || Name == "__expf_finite" ||
+ Name == "__exp2_finite" || Name == "__exp2f_finite";
+ case 'l':
+ return Name == "__log_finite" || Name == "__logf_finite" ||
+ Name == "__log10_finite" || Name == "__log10f_finite";
+ case 'p':
+ return Name == "__pow_finite" || Name == "__powf_finite";
+ case 's':
+ return Name == "__sinh_finite" || Name == "__sinhf_finite";
+ }
}
}
@@ -1518,9 +1556,9 @@ Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
- APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
- /*isSigned=*/true, mode,
- &isExact);
+ APFloat::opStatus status =
+ Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
+ /*isSigned=*/true, mode, &isExact);
if (status != APFloat::opOK &&
(!roundTowardZero || status != APFloat::opInexact))
return nullptr;
@@ -1550,6 +1588,9 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
// cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
if (IntrinsicID == Intrinsic::cos)
return Constant::getNullValue(Ty);
+ if (IntrinsicID == Intrinsic::bswap ||
+ IntrinsicID == Intrinsic::bitreverse)
+ return Operands[0];
}
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
@@ -1630,94 +1671,108 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
return ConstantFoldFP(sin, V, Ty);
case Intrinsic::cos:
return ConstantFoldFP(cos, V, Ty);
+ case Intrinsic::sqrt:
+ return ConstantFoldFP(sqrt, V, Ty);
}
if (!TLI)
return nullptr;
- switch (Name[0]) {
+ char NameKeyChar = Name[0];
+ if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_')
+ NameKeyChar = Name[2];
+
+ switch (NameKeyChar) {
case 'a':
- if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
- (Name == "acosf" && TLI->has(LibFunc::acosf)))
+ if ((Name == "acos" && TLI->has(LibFunc_acos)) ||
+ (Name == "acosf" && TLI->has(LibFunc_acosf)) ||
+ (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) ||
+ (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite)))
return ConstantFoldFP(acos, V, Ty);
- else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
- (Name == "asinf" && TLI->has(LibFunc::asinf)))
+ else if ((Name == "asin" && TLI->has(LibFunc_asin)) ||
+ (Name == "asinf" && TLI->has(LibFunc_asinf)) ||
+ (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) ||
+ (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite)))
return ConstantFoldFP(asin, V, Ty);
- else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
- (Name == "atanf" && TLI->has(LibFunc::atanf)))
+ else if ((Name == "atan" && TLI->has(LibFunc_atan)) ||
+ (Name == "atanf" && TLI->has(LibFunc_atanf)))
return ConstantFoldFP(atan, V, Ty);
break;
case 'c':
- if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
- (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
+ if ((Name == "ceil" && TLI->has(LibFunc_ceil)) ||
+ (Name == "ceilf" && TLI->has(LibFunc_ceilf)))
return ConstantFoldFP(ceil, V, Ty);
- else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
- (Name == "cosf" && TLI->has(LibFunc::cosf)))
+ else if ((Name == "cos" && TLI->has(LibFunc_cos)) ||
+ (Name == "cosf" && TLI->has(LibFunc_cosf)))
return ConstantFoldFP(cos, V, Ty);
- else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
- (Name == "coshf" && TLI->has(LibFunc::coshf)))
+ else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) ||
+ (Name == "coshf" && TLI->has(LibFunc_coshf)) ||
+ (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) ||
+ (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite)))
return ConstantFoldFP(cosh, V, Ty);
break;
case 'e':
- if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
- (Name == "expf" && TLI->has(LibFunc::expf)))
+ if ((Name == "exp" && TLI->has(LibFunc_exp)) ||
+ (Name == "expf" && TLI->has(LibFunc_expf)) ||
+ (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) ||
+ (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite)))
return ConstantFoldFP(exp, V, Ty);
- if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
- (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
+ if ((Name == "exp2" && TLI->has(LibFunc_exp2)) ||
+ (Name == "exp2f" && TLI->has(LibFunc_exp2f)) ||
+ (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) ||
+ (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite)))
// Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
// C99 library.
return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
break;
case 'f':
- if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
- (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
+ if ((Name == "fabs" && TLI->has(LibFunc_fabs)) ||
+ (Name == "fabsf" && TLI->has(LibFunc_fabsf)))
return ConstantFoldFP(fabs, V, Ty);
- else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
- (Name == "floorf" && TLI->has(LibFunc::floorf)))
+ else if ((Name == "floor" && TLI->has(LibFunc_floor)) ||
+ (Name == "floorf" && TLI->has(LibFunc_floorf)))
return ConstantFoldFP(floor, V, Ty);
break;
case 'l':
- if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
- (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
+ if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) ||
+ (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) ||
+ (Name == "__log_finite" && V > 0 &&
+ TLI->has(LibFunc_log_finite)) ||
+ (Name == "__logf_finite" && V > 0 &&
+ TLI->has(LibFunc_logf_finite)))
return ConstantFoldFP(log, V, Ty);
- else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
- (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
+ else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) ||
+ (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) ||
+ (Name == "__log10_finite" && V > 0 &&
+ TLI->has(LibFunc_log10_finite)) ||
+ (Name == "__log10f_finite" && V > 0 &&
+ TLI->has(LibFunc_log10f_finite)))
return ConstantFoldFP(log10, V, Ty);
- else if (IntrinsicID == Intrinsic::sqrt &&
- (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
- if (V >= -0.0)
- return ConstantFoldFP(sqrt, V, Ty);
- else {
- // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
- // all guarantee or favor returning NaN - the square root of a
- // negative number is not defined for the LLVM sqrt intrinsic.
- // This is because the intrinsic should only be emitted in place of
- // libm's sqrt function when using "no-nans-fp-math".
- return UndefValue::get(Ty);
- }
- }
break;
case 'r':
- if ((Name == "round" && TLI->has(LibFunc::round)) ||
- (Name == "roundf" && TLI->has(LibFunc::roundf)))
+ if ((Name == "round" && TLI->has(LibFunc_round)) ||
+ (Name == "roundf" && TLI->has(LibFunc_roundf)))
return ConstantFoldFP(round, V, Ty);
+ break;
case 's':
- if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
- (Name == "sinf" && TLI->has(LibFunc::sinf)))
+ if ((Name == "sin" && TLI->has(LibFunc_sin)) ||
+ (Name == "sinf" && TLI->has(LibFunc_sinf)))
return ConstantFoldFP(sin, V, Ty);
- else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
- (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
+ else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) ||
+ (Name == "sinhf" && TLI->has(LibFunc_sinhf)) ||
+ (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) ||
+ (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite)))
return ConstantFoldFP(sinh, V, Ty);
- else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
- (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
+ else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) ||
+ (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf)))
return ConstantFoldFP(sqrt, V, Ty);
break;
case 't':
- if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
- (Name == "tanf" && TLI->has(LibFunc::tanf)))
+ if ((Name == "tan" && TLI->has(LibFunc_tan)) ||
+ (Name == "tanf" && TLI->has(LibFunc_tanf)))
return ConstantFoldFP(tan, V, Ty);
- else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
- (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
+ else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) ||
+ (Name == "tanhf" && TLI->has(LibFunc_tanhf)))
return ConstantFoldFP(tanh, V, Ty);
break;
default:
@@ -1767,6 +1822,7 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty);
+ break;
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
@@ -1775,15 +1831,10 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty);
+ break;
}
}
- if (isa<UndefValue>(Operands[0])) {
- if (IntrinsicID == Intrinsic::bswap)
- return Operands[0];
- return nullptr;
- }
-
return nullptr;
}
@@ -1822,14 +1873,18 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
if (!TLI)
return nullptr;
- if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
- (Name == "powf" && TLI->has(LibFunc::powf)))
+ if ((Name == "pow" && TLI->has(LibFunc_pow)) ||
+ (Name == "powf" && TLI->has(LibFunc_powf)) ||
+ (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) ||
+ (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite)))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
- (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
+ if ((Name == "fmod" && TLI->has(LibFunc_fmod)) ||
+ (Name == "fmodf" && TLI->has(LibFunc_fmodf)))
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
- if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
- (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
+ if ((Name == "atan2" && TLI->has(LibFunc_atan2)) ||
+ (Name == "atan2f" && TLI->has(LibFunc_atan2f)) ||
+ (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) ||
+ (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite)))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
@@ -1980,6 +2035,14 @@ Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
// Gather a column of constants.
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
+ // These intrinsics use a scalar type for their second argument.
+ if (J == 1 &&
+ (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz ||
+ IntrinsicID == Intrinsic::powi)) {
+ Lane[J] = Operands[J];
+ continue;
+ }
+
Constant *Agg = Operands[J]->getAggregateElement(I);
if (!Agg)
return nullptr;
@@ -2000,8 +2063,11 @@ Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
} // end anonymous namespace
Constant *
-llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
+llvm::ConstantFoldCall(ImmutableCallSite CS, Function *F,
+ ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
+ if (CS.isNoBuiltin())
+ return nullptr;
if (!F->hasName())
return nullptr;
StringRef Name = F->getName();
@@ -2018,11 +2084,13 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
// FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
// (and to some extent ConstantFoldScalarCall).
+ if (CS.isNoBuiltin())
+ return false;
Function *F = CS.getCalledFunction();
if (!F)
return false;
- LibFunc::Func Func;
+ LibFunc Func;
if (!TLI || !TLI->getLibFunc(*F, Func))
return false;
@@ -2030,20 +2098,20 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
if (ConstantFP *OpC = dyn_cast<ConstantFP>(CS.getArgOperand(0))) {
const APFloat &Op = OpC->getValueAPF();
switch (Func) {
- case LibFunc::logl:
- case LibFunc::log:
- case LibFunc::logf:
- case LibFunc::log2l:
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log10l:
- case LibFunc::log10:
- case LibFunc::log10f:
+ case LibFunc_logl:
+ case LibFunc_log:
+ case LibFunc_logf:
+ case LibFunc_log2l:
+ case LibFunc_log2:
+ case LibFunc_log2f:
+ case LibFunc_log10l:
+ case LibFunc_log10:
+ case LibFunc_log10f:
return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
- case LibFunc::expl:
- case LibFunc::exp:
- case LibFunc::expf:
+ case LibFunc_expl:
+ case LibFunc_exp:
+ case LibFunc_expf:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
@@ -2053,9 +2121,9 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
break;
- case LibFunc::exp2l:
- case LibFunc::exp2:
- case LibFunc::exp2f:
+ case LibFunc_exp2l:
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
@@ -2065,17 +2133,17 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
break;
- case LibFunc::sinl:
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::cosl:
- case LibFunc::cos:
- case LibFunc::cosf:
+ case LibFunc_sinl:
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ case LibFunc_cosl:
+ case LibFunc_cos:
+ case LibFunc_cosf:
return !Op.isInfinity();
- case LibFunc::tanl:
- case LibFunc::tan:
- case LibFunc::tanf: {
+ case LibFunc_tanl:
+ case LibFunc_tan:
+ case LibFunc_tanf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = OpC->getType();
@@ -2086,23 +2154,23 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
break;
}
- case LibFunc::asinl:
- case LibFunc::asin:
- case LibFunc::asinf:
- case LibFunc::acosl:
- case LibFunc::acos:
- case LibFunc::acosf:
+ case LibFunc_asinl:
+ case LibFunc_asin:
+ case LibFunc_asinf:
+ case LibFunc_acosl:
+ case LibFunc_acos:
+ case LibFunc_acosf:
return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
APFloat::cmpLessThan &&
Op.compare(APFloat(Op.getSemantics(), "1")) !=
APFloat::cmpGreaterThan;
- case LibFunc::sinh:
- case LibFunc::cosh:
- case LibFunc::sinhf:
- case LibFunc::coshf:
- case LibFunc::sinhl:
- case LibFunc::coshl:
+ case LibFunc_sinh:
+ case LibFunc_cosh:
+ case LibFunc_sinhf:
+ case LibFunc_coshf:
+ case LibFunc_sinhl:
+ case LibFunc_coshl:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
@@ -2112,9 +2180,9 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
break;
- case LibFunc::sqrtl:
- case LibFunc::sqrt:
- case LibFunc::sqrtf:
+ case LibFunc_sqrtl:
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
return Op.isNaN() || Op.isZero() || !Op.isNegative();
// FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
@@ -2133,9 +2201,9 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
const APFloat &Op1 = Op1C->getValueAPF();
switch (Func) {
- case LibFunc::powl:
- case LibFunc::pow:
- case LibFunc::powf: {
+ case LibFunc_powl:
+ case LibFunc_pow:
+ case LibFunc_powf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = Op0C->getType();
@@ -2149,9 +2217,9 @@ bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
break;
}
- case LibFunc::fmodl:
- case LibFunc::fmod:
- case LibFunc::fmodf:
+ case LibFunc_fmodl:
+ case LibFunc_fmod:
+ case LibFunc_fmodf:
return Op0.isNaN() || Op1.isNaN() ||
(!Op0.isInfinity() && !Op1.isZero());
OpenPOWER on IntegriCloud