summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ConstantFolding.cpp1578
1 files changed, 1578 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
new file mode 100644
index 0000000..09d7608
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
@@ -0,0 +1,1578 @@
+//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines routines for folding instructions into constants.
+//
+// Also, to supplement the basic IR ConstantExpr simplifications,
+// this file defines some additional folding routines that can make use of
+// DataLayout information. These functions cannot go in IR due to library
+// dependency issues.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FEnv.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include <cerrno>
+#include <cmath>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Constant Folding internal helper functions
+//===----------------------------------------------------------------------===//
+
+/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
+/// DataLayout. This always returns a non-null constant, but it may be a
+/// ConstantExpr if unfoldable.
+static Constant *FoldBitCast(Constant *C, Type *DestTy,
+ const DataLayout &TD) {
+ // Catch the obvious splat cases.
+ if (C->isNullValue() && !DestTy->isX86_MMXTy())
+ return Constant::getNullValue(DestTy);
+ if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
+ return Constant::getAllOnesValue(DestTy);
+
+ // Handle a vector->integer cast.
+ if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
+ VectorType *VTy = dyn_cast<VectorType>(C->getType());
+ if (VTy == 0)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ unsigned NumSrcElts = VTy->getNumElements();
+ Type *SrcEltTy = VTy->getElementType();
+
+ // If the vector is a vector of floating point, convert it to vector of int
+ // to simplify things.
+ if (SrcEltTy->isFloatingPointTy()) {
+ unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
+ Type *SrcIVTy =
+ VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
+ // Ask IR to do the conversion now that #elts line up.
+ C = ConstantExpr::getBitCast(C, SrcIVTy);
+ }
+
+ ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ if (CDV == 0)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // Now that we know that the input value is a vector of integers, just shift
+ // and insert them into our result.
+ unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
+ APInt Result(IT->getBitWidth(), 0);
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ Result <<= BitShift;
+ if (TD.isLittleEndian())
+ Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
+ else
+ Result |= CDV->getElementAsInteger(i);
+ }
+
+ return ConstantInt::get(IT, Result);
+ }
+
+ // The code below only handles casts to vectors currently.
+ VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
+ if (DestVTy == 0)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
+ // vector so the code below can handle it uniformly.
+ if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
+ Constant *Ops = C; // don't take the address of C!
+ return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
+ }
+
+ // If this is a bitcast from constant vector -> vector, fold it.
+ if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // If the element types match, IR can fold it.
+ unsigned NumDstElt = DestVTy->getNumElements();
+ unsigned NumSrcElt = C->getType()->getVectorNumElements();
+ if (NumDstElt == NumSrcElt)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ Type *SrcEltTy = C->getType()->getVectorElementType();
+ Type *DstEltTy = DestVTy->getElementType();
+
+ // Otherwise, we're changing the number of elements in a vector, which
+ // requires endianness information to do the right thing. For example,
+ // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ // folds to (little endian):
+ // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
+ // and to (big endian):
+ // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
+
+ // First thing is first. We only want to think about integer here, so if
+ // we have something in FP form, recast it as integer.
+ if (DstEltTy->isFloatingPointTy()) {
+ // Fold to an vector of integers with same size as our FP type.
+ unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
+ Type *DestIVTy =
+ VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
+ // Recursively handle this integer conversion, if possible.
+ C = FoldBitCast(C, DestIVTy, TD);
+
+ // Finally, IR can handle this now that #elts line up.
+ return ConstantExpr::getBitCast(C, DestTy);
+ }
+
+ // Okay, we know the destination is integer, if the input is FP, convert
+ // it to integer first.
+ if (SrcEltTy->isFloatingPointTy()) {
+ unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
+ Type *SrcIVTy =
+ VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
+ // Ask IR to do the conversion now that #elts line up.
+ C = ConstantExpr::getBitCast(C, SrcIVTy);
+ // If IR wasn't able to fold it, bail out.
+ if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
+ !isa<ConstantDataVector>(C))
+ return C;
+ }
+
+ // Now we know that the input and output vectors are both integer vectors
+ // of the same size, and that their #elements is not the same. Do the
+ // conversion here, which depends on whether the input or output has
+ // more elements.
+ bool isLittleEndian = TD.isLittleEndian();
+
+ SmallVector<Constant*, 32> Result;
+ if (NumDstElt < NumSrcElt) {
+ // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
+ Constant *Zero = Constant::getNullValue(DstEltTy);
+ unsigned Ratio = NumSrcElt/NumDstElt;
+ unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i != NumDstElt; ++i) {
+ // Build each element of the result.
+ Constant *Elt = Zero;
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
+ if (!Src) // Reject constantexpr elements.
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // Zero extend the element to the right size.
+ Src = ConstantExpr::getZExt(Src, Elt->getType());
+
+ // Shift it to the right place, depending on endianness.
+ Src = ConstantExpr::getShl(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+
+ // Mix it in.
+ Elt = ConstantExpr::getOr(Elt, Src);
+ }
+ Result.push_back(Elt);
+ }
+ return ConstantVector::get(Result);
+ }
+
+ // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ unsigned Ratio = NumDstElt/NumSrcElt;
+ unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
+
+ // Loop over each source value, expanding into multiple results.
+ for (unsigned i = 0; i != NumSrcElt; ++i) {
+ Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
+ if (!Src) // Reject constantexpr elements.
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ // Shift the piece of the value into the right place, depending on
+ // endianness.
+ Constant *Elt = ConstantExpr::getLShr(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+
+ // Truncate and remember this piece.
+ Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
+ }
+ }
+
+ return ConstantVector::get(Result);
+}
+
+
+/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
+/// from a global, return the global and the constant. Because of
+/// constantexprs, this function is recursive.
+static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
+ APInt &Offset, const DataLayout &TD) {
+ // Trivial case, constant is the global.
+ if ((GV = dyn_cast<GlobalValue>(C))) {
+ Offset.clearAllBits();
+ return true;
+ }
+
+ // Otherwise, if this isn't a constant expr, bail out.
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
+ if (!CE) return false;
+
+ // Look through ptr->int and ptr->ptr casts.
+ if (CE->getOpcode() == Instruction::PtrToInt ||
+ CE->getOpcode() == Instruction::BitCast)
+ return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
+
+ // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
+ // If the base isn't a global+constant, we aren't either.
+ if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
+ return false;
+
+ // Otherwise, add any offset that our operands provide.
+ return GEP->accumulateConstantOffset(TD, Offset);
+ }
+
+ return false;
+}
+
+/// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
+/// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
+/// pointer to copy results into and BytesLeft is the number of bytes left in
+/// the CurPtr buffer. TD is the target data.
+static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
+ unsigned char *CurPtr, unsigned BytesLeft,
+ const DataLayout &TD) {
+ assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
+ "Out of range access");
+
+ // If this element is zero or undefined, we can just return since *CurPtr is
+ // zero initialized.
+ if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
+ return true;
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getBitWidth() > 64 ||
+ (CI->getBitWidth() & 7) != 0)
+ return false;
+
+ uint64_t Val = CI->getZExtValue();
+ unsigned IntBytes = unsigned(CI->getBitWidth()/8);
+
+ for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
+ int n = ByteOffset;
+ if (!TD.isLittleEndian())
+ n = IntBytes - n - 1;
+ CurPtr[i] = (unsigned char)(Val >> (n * 8));
+ ++ByteOffset;
+ }
+ return true;
+ }
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ if (CFP->getType()->isDoubleTy()) {
+ C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
+ }
+ if (CFP->getType()->isFloatTy()){
+ C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
+ }
+ if (CFP->getType()->isHalfTy()){
+ C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
+ }
+ return false;
+ }
+
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
+ const StructLayout *SL = TD.getStructLayout(CS->getType());
+ unsigned Index = SL->getElementContainingOffset(ByteOffset);
+ uint64_t CurEltOffset = SL->getElementOffset(Index);
+ ByteOffset -= CurEltOffset;
+
+ while (1) {
+ // If the element access is to the element itself and not to tail padding,
+ // read the bytes from the element.
+ uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
+
+ if (ByteOffset < EltSize &&
+ !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
+ BytesLeft, TD))
+ return false;
+
+ ++Index;
+
+ // Check to see if we read from the last struct element, if so we're done.
+ if (Index == CS->getType()->getNumElements())
+ return true;
+
+ // If we read all of the bytes we needed from this element we're done.
+ uint64_t NextEltOffset = SL->getElementOffset(Index);
+
+ if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
+ return true;
+
+ // Move to the next element of the struct.
+ CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
+ BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
+ ByteOffset = 0;
+ CurEltOffset = NextEltOffset;
+ }
+ // not reached.
+ }
+
+ if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
+ isa<ConstantDataSequential>(C)) {
+ Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
+ uint64_t EltSize = TD.getTypeAllocSize(EltTy);
+ uint64_t Index = ByteOffset / EltSize;
+ uint64_t Offset = ByteOffset - Index * EltSize;
+ uint64_t NumElts;
+ if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
+ NumElts = AT->getNumElements();
+ else
+ NumElts = cast<VectorType>(C->getType())->getNumElements();
+
+ for (; Index != NumElts; ++Index) {
+ if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
+ BytesLeft, TD))
+ return false;
+
+ uint64_t BytesWritten = EltSize - Offset;
+ assert(BytesWritten <= EltSize && "Not indexing into this element?");
+ if (BytesWritten >= BytesLeft)
+ return true;
+
+ Offset = 0;
+ BytesLeft -= BytesWritten;
+ CurPtr += BytesWritten;
+ }
+ return true;
+ }
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr &&
+ CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
+ return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
+ BytesLeft, TD);
+ }
+
+ // Otherwise, unknown initializer type.
+ return false;
+}
+
+static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
+ const DataLayout &TD) {
+ Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
+ IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
+
+ // If this isn't an integer load we can't fold it directly.
+ if (!IntType) {
+ // If this is a float/double load, we can try folding it as an int32/64 load
+ // and then bitcast the result. This can be useful for union cases. Note
+ // that address spaces don't matter here since we're not going to result in
+ // an actual new load.
+ Type *MapTy;
+ if (LoadTy->isHalfTy())
+ MapTy = Type::getInt16PtrTy(C->getContext());
+ else if (LoadTy->isFloatTy())
+ MapTy = Type::getInt32PtrTy(C->getContext());
+ else if (LoadTy->isDoubleTy())
+ MapTy = Type::getInt64PtrTy(C->getContext());
+ else if (LoadTy->isVectorTy()) {
+ MapTy = IntegerType::get(C->getContext(),
+ TD.getTypeAllocSizeInBits(LoadTy));
+ MapTy = PointerType::getUnqual(MapTy);
+ } else
+ return 0;
+
+ C = FoldBitCast(C, MapTy, TD);
+ if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
+ return FoldBitCast(Res, LoadTy, TD);
+ return 0;
+ }
+
+ unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
+ if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
+
+ GlobalValue *GVal;
+ APInt Offset(TD.getPointerSizeInBits(), 0);
+ if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
+ return 0;
+
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+ !GV->getInitializer()->getType()->isSized())
+ return 0;
+
+ // If we're loading off the beginning of the global, some bytes may be valid,
+ // but we don't try to handle this.
+ if (Offset.isNegative()) return 0;
+
+ // If we're not accessing anything in this constant, the result is undefined.
+ if (Offset.getZExtValue() >=
+ TD.getTypeAllocSize(GV->getInitializer()->getType()))
+ return UndefValue::get(IntType);
+
+ unsigned char RawBytes[32] = {0};
+ if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
+ BytesLoaded, TD))
+ return 0;
+
+ APInt ResultVal = APInt(IntType->getBitWidth(), 0);
+ if (TD.isLittleEndian()) {
+ ResultVal = RawBytes[BytesLoaded - 1];
+ for (unsigned i = 1; i != BytesLoaded; ++i) {
+ ResultVal <<= 8;
+ ResultVal |= RawBytes[BytesLoaded-1-i];
+ }
+ } else {
+ ResultVal = RawBytes[0];
+ for (unsigned i = 1; i != BytesLoaded; ++i) {
+ ResultVal <<= 8;
+ ResultVal |= RawBytes[i];
+ }
+ }
+
+ return ConstantInt::get(IntType->getContext(), ResultVal);
+}
+
+/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
+/// produce if it is constant and determinable. If this is not determinable,
+/// return null.
+Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
+ const DataLayout *TD) {
+ // First, try the easy cases:
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ return GV->getInitializer();
+
+ // If the loaded value isn't a constant expr, we can't handle it.
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
+ if (!CE) return 0;
+
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ if (Constant *V =
+ ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
+ return V;
+ }
+
+ // Instead of loading constant c string, use corresponding integer value
+ // directly if string length is small enough.
+ StringRef Str;
+ if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
+ unsigned StrLen = Str.size();
+ Type *Ty = cast<PointerType>(CE->getType())->getElementType();
+ unsigned NumBits = Ty->getPrimitiveSizeInBits();
+ // Replace load with immediate integer if the result is an integer or fp
+ // value.
+ if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
+ (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
+ APInt StrVal(NumBits, 0);
+ APInt SingleChar(NumBits, 0);
+ if (TD->isLittleEndian()) {
+ for (signed i = StrLen-1; i >= 0; i--) {
+ SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+ } else {
+ for (unsigned i = 0; i < StrLen; i++) {
+ SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+ // Append NULL at the end.
+ SingleChar = 0;
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+
+ Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
+ if (Ty->isFloatingPointTy())
+ Res = ConstantExpr::getBitCast(Res, Ty);
+ return Res;
+ }
+ }
+
+ // If this load comes from anywhere in a constant global, and if the global
+ // is all undef or zero, we know what it loads.
+ if (GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
+ Type *ResTy = cast<PointerType>(C->getType())->getElementType();
+ if (GV->getInitializer()->isNullValue())
+ return Constant::getNullValue(ResTy);
+ if (isa<UndefValue>(GV->getInitializer()))
+ return UndefValue::get(ResTy);
+ }
+ }
+
+ // Try hard to fold loads from bitcasted strange and non-type-safe things.
+ if (TD)
+ return FoldReinterpretLoadFromConstPtr(CE, *TD);
+ return 0;
+}
+
+static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
+ if (LI->isVolatile()) return 0;
+
+ if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
+ return ConstantFoldLoadFromConstPtr(C, TD);
+
+ return 0;
+}
+
+/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
+/// Attempt to symbolically evaluate the result of a binary operator merging
+/// these together. If target data info is available, it is provided as DL,
+/// otherwise DL is null.
+static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
+ Constant *Op1, const DataLayout *DL){
+ // SROA
+
+ // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
+ // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
+ // bits.
+
+
+ if (Opc == Instruction::And && DL) {
+ unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType());
+ APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
+ APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
+ ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
+ ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
+ if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
+ // All the bits of Op0 that the 'and' could be masking are already zero.
+ return Op0;
+ }
+ if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
+ // All the bits of Op1 that the 'and' could be masking are already zero.
+ return Op1;
+ }
+
+ APInt KnownZero = KnownZero0 | KnownZero1;
+ APInt KnownOne = KnownOne0 & KnownOne1;
+ if ((KnownZero | KnownOne).isAllOnesValue()) {
+ return ConstantInt::get(Op0->getType(), KnownOne);
+ }
+ }
+
+ // If the constant expr is something like &A[123] - &A[4].f, fold this into a
+ // constant. This happens frequently when iterating over a global array.
+ if (Opc == Instruction::Sub && DL) {
+ GlobalValue *GV1, *GV2;
+ unsigned PtrSize = DL->getPointerSizeInBits();
+ unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
+ APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
+
+ if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
+ if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
+ GV1 == GV2) {
+ // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
+ // PtrToInt may change the bitwidth so we have convert to the right size
+ // first.
+ return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
+ Offs2.zextOrTrunc(OpSize));
+ }
+ }
+
+ return 0;
+}
+
+/// CastGEPIndices - If array indices are not pointer-sized integers,
+/// explicitly cast them so that they aren't implicitly casted by the
+/// getelementptr.
+static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
+ Type *ResultTy, const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ if (!TD) return 0;
+ Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
+
+ bool Any = false;
+ SmallVector<Constant*, 32> NewIdxs;
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
+ if ((i == 1 ||
+ !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
+ Ops.slice(1, i-1)))) &&
+ Ops[i]->getType() != IntPtrTy) {
+ Any = true;
+ NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
+ true,
+ IntPtrTy,
+ true),
+ Ops[i], IntPtrTy));
+ } else
+ NewIdxs.push_back(Ops[i]);
+ }
+ if (!Any) return 0;
+
+ Constant *C =
+ ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
+ C = Folded;
+ return C;
+}
+
+/// Strip the pointer casts, but preserve the address space information.
+static Constant* StripPtrCastKeepAS(Constant* Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
+ PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
+ Ptr = cast<Constant>(Ptr->stripPointerCasts());
+ PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
+
+ // Preserve the address space number of the pointer.
+ if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
+ NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
+ OldPtrTy->getAddressSpace());
+ Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
+ }
+ return Ptr;
+}
+
+/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
+/// constant expression, do so.
+static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
+ Type *ResultTy, const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ Constant *Ptr = Ops[0];
+ if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
+ !Ptr->getType()->isPointerTy())
+ return 0;
+
+ Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
+
+ // If this is a constant expr gep that is effectively computing an
+ // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+ if (!isa<ConstantInt>(Ops[i])) {
+
+ // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
+ // "inttoptr (sub (ptrtoint Ptr), V)"
+ if (Ops.size() == 2 &&
+ cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
+ assert((CE == 0 || CE->getType() == IntPtrTy) &&
+ "CastGEPIndices didn't canonicalize index types!");
+ if (CE && CE->getOpcode() == Instruction::Sub &&
+ CE->getOperand(0)->isNullValue()) {
+ Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
+ Res = ConstantExpr::getSub(Res, CE->getOperand(1));
+ Res = ConstantExpr::getIntToPtr(Res, ResultTy);
+ if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
+ Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
+ return Res;
+ }
+ }
+ return 0;
+ }
+
+ unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
+ APInt Offset =
+ APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
+ makeArrayRef((Value *const*)
+ Ops.data() + 1,
+ Ops.size() - 1)));
+ Ptr = StripPtrCastKeepAS(Ptr);
+
+ // If this is a GEP of a GEP, fold it all into a single GEP.
+ while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
+
+ // Do not try the incorporate the sub-GEP if some index is not a number.
+ bool AllConstantInt = true;
+ for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
+ if (!isa<ConstantInt>(NestedOps[i])) {
+ AllConstantInt = false;
+ break;
+ }
+ if (!AllConstantInt)
+ break;
+
+ Ptr = cast<Constant>(GEP->getOperand(0));
+ Offset += APInt(BitWidth,
+ TD->getIndexedOffset(Ptr->getType(), NestedOps));
+ Ptr = StripPtrCastKeepAS(Ptr);
+ }
+
+ // If the base value for this address is a literal integer value, fold the
+ // getelementptr to the resulting integer value casted to the pointer type.
+ APInt BasePtr(BitWidth, 0);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->getOpcode() == Instruction::IntToPtr)
+ if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
+ BasePtr = Base->getValue().zextOrTrunc(BitWidth);
+ if (Ptr->isNullValue() || BasePtr != 0) {
+ Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
+ return ConstantExpr::getIntToPtr(C, ResultTy);
+ }
+
+ // Otherwise form a regular getelementptr. Recompute the indices so that
+ // we eliminate over-indexing of the notional static type array bounds.
+ // This makes it easy to determine if the getelementptr is "inbounds".
+ // Also, this helps GlobalOpt do SROA on GlobalVariables.
+ Type *Ty = Ptr->getType();
+ assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
+ SmallVector<Constant*, 32> NewIdxs;
+ do {
+ if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
+ if (ATy->isPointerTy()) {
+ // The only pointer indexing we'll do is on the first index of the GEP.
+ if (!NewIdxs.empty())
+ break;
+
+ // Only handle pointers to sized types, not pointers to functions.
+ if (!ATy->getElementType()->isSized())
+ return 0;
+ }
+
+ // Determine which element of the array the offset points into.
+ APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
+ IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+ if (ElemSize == 0)
+ // The element size is 0. This may be [0 x Ty]*, so just use a zero
+ // index for this level and proceed to the next level to see if it can
+ // accommodate the offset.
+ NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
+ else {
+ // The element size is non-zero divide the offset by the element
+ // size (rounding down), to compute the index at this level.
+ APInt NewIdx = Offset.udiv(ElemSize);
+ Offset -= NewIdx * ElemSize;
+ NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
+ }
+ Ty = ATy->getElementType();
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ // If we end up with an offset that isn't valid for this struct type, we
+ // can't re-form this GEP in a regular form, so bail out. The pointer
+ // operand likely went through casts that are necessary to make the GEP
+ // sensible.
+ const StructLayout &SL = *TD->getStructLayout(STy);
+ if (Offset.uge(SL.getSizeInBytes()))
+ break;
+
+ // Determine which field of the struct the offset points into. The
+ // getZExtValue is fine as we've already ensured that the offset is
+ // within the range representable by the StructLayout API.
+ unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
+ NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ ElIdx));
+ Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
+ Ty = STy->getTypeAtIndex(ElIdx);
+ } else {
+ // We've reached some non-indexable type.
+ break;
+ }
+ } while (Ty != cast<PointerType>(ResultTy)->getElementType());
+
+ // If we haven't used up the entire offset by descending the static
+ // type, then the offset is pointing into the middle of an indivisible
+ // member, so we can't simplify it.
+ if (Offset != 0)
+ return 0;
+
+ // Create a GEP.
+ Constant *C =
+ ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
+ assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
+ "Computed GetElementPtr has unexpected type!");
+
+ // If we ended up indexing a member with a type that doesn't match
+ // the type of what the original indices indexed, add a cast.
+ if (Ty != cast<PointerType>(ResultTy)->getElementType())
+ C = FoldBitCast(C, ResultTy, *TD);
+
+ return C;
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Constant Folding public APIs
+//===----------------------------------------------------------------------===//
+
+/// ConstantFoldInstruction - Try to constant fold the specified instruction.
+/// If successful, the constant result is returned, if not, null is returned.
+/// Note that this fails if not all of the operands are constant. Otherwise,
+/// this function can only fail when attempting to fold instructions like loads
+/// and stores, which have no constant expression form.
+Constant *llvm::ConstantFoldInstruction(Instruction *I,
+ const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ // Handle PHI nodes quickly here...
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ Constant *CommonValue = 0;
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming = PN->getIncomingValue(i);
+ // If the incoming value is undef then skip it. Note that while we could
+ // skip the value if it is equal to the phi node itself we choose not to
+ // because that would break the rule that constant folding only applies if
+ // all operands are constants.
+ if (isa<UndefValue>(Incoming))
+ continue;
+ // If the incoming value is not a constant, then give up.
+ Constant *C = dyn_cast<Constant>(Incoming);
+ if (!C)
+ return 0;
+ // Fold the PHI's operands.
+ if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(NewC, TD, TLI);
+ // If the incoming value is a different constant to
+ // the one we saw previously, then give up.
+ if (CommonValue && C != CommonValue)
+ return 0;
+ CommonValue = C;
+ }
+
+
+ // If we reach here, all incoming values are the same constant or undef.
+ return CommonValue ? CommonValue : UndefValue::get(PN->getType());
+ }
+
+ // Scan the operand list, checking to see if they are all constants, if so,
+ // hand off to ConstantFoldInstOperands.
+ SmallVector<Constant*, 8> Ops;
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
+ Constant *Op = dyn_cast<Constant>(*i);
+ if (!Op)
+ return 0; // All operands not constant!
+
+ // Fold the Instruction's operands.
+ if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
+ Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
+
+ Ops.push_back(Op);
+ }
+
+ if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
+ TD, TLI);
+
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ return ConstantFoldLoadInst(LI, TD);
+
+ if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
+ return ConstantExpr::getInsertValue(
+ cast<Constant>(IVI->getAggregateOperand()),
+ cast<Constant>(IVI->getInsertedValueOperand()),
+ IVI->getIndices());
+
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
+ return ConstantExpr::getExtractValue(
+ cast<Constant>(EVI->getAggregateOperand()),
+ EVI->getIndices());
+
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
+}
+
+/// ConstantFoldConstantExpression - Attempt to fold the constant expression
+/// using the specified DataLayout. If successful, the constant result is
+/// result is returned, if not, null is returned.
+Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
+ const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ SmallVector<Constant*, 8> Ops;
+ for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
+ i != e; ++i) {
+ Constant *NewC = cast<Constant>(*i);
+ // Recursively fold the ConstantExpr's operands.
+ if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
+ NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
+ Ops.push_back(NewC);
+ }
+
+ if (CE->isCompare())
+ return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
+ TD, TLI);
+ return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
+}
+
+/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
+/// specified opcode and operands. If successful, the constant result is
+/// returned, if not, null is returned. Note that this function can fail when
+/// attempting to fold instructions like loads and stores, which have no
+/// constant expression form.
+///
+/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
+/// information, due to only being passed an opcode and operands. Constant
+/// folding using this function strips this information.
+///
+Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
+ ArrayRef<Constant *> Ops,
+ const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ // Handle easy binops first.
+ if (Instruction::isBinaryOp(Opcode)) {
+ if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
+ if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
+ return C;
+
+ return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
+ }
+
+ switch (Opcode) {
+ default: return 0;
+ case Instruction::ICmp:
+ case Instruction::FCmp: llvm_unreachable("Invalid for compares");
+ case Instruction::Call:
+ if (Function *F = dyn_cast<Function>(Ops.back()))
+ if (canConstantFoldCallTo(F))
+ return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
+ return 0;
+ case Instruction::PtrToInt:
+ // If the input is a inttoptr, eliminate the pair. This requires knowing
+ // the width of a pointer, so it can't be done in ConstantExpr::getCast.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
+ if (TD && CE->getOpcode() == Instruction::IntToPtr) {
+ Constant *Input = CE->getOperand(0);
+ unsigned InWidth = Input->getType()->getScalarSizeInBits();
+ if (TD->getPointerSizeInBits() < InWidth) {
+ Constant *Mask =
+ ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
+ TD->getPointerSizeInBits()));
+ Input = ConstantExpr::getAnd(Input, Mask);
+ }
+ // Do a zext or trunc to get to the dest size.
+ return ConstantExpr::getIntegerCast(Input, DestTy, false);
+ }
+ }
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::IntToPtr:
+ // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
+ // the int size is >= the ptr size. This requires knowing the width of a
+ // pointer, so it can't be done in ConstantExpr::getCast.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
+ if (TD &&
+ TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
+ CE->getOpcode() == Instruction::PtrToInt)
+ return FoldBitCast(CE->getOperand(0), DestTy, *TD);
+
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::BitCast:
+ if (TD)
+ return FoldBitCast(Ops[0], DestTy, *TD);
+ return ConstantExpr::getBitCast(Ops[0], DestTy);
+ case Instruction::Select:
+ return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ExtractElement:
+ return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
+ case Instruction::InsertElement:
+ return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ShuffleVector:
+ return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
+ case Instruction::GetElementPtr:
+ if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
+ return C;
+ if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
+ return C;
+
+ return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
+ }
+}
+
+/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
+/// instruction (icmp/fcmp) with the specified operands. If it fails, it
+/// returns a constant expression of the specified operands.
+///
+Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
+ Constant *Ops0, Constant *Ops1,
+ const DataLayout *TD,
+ const TargetLibraryInfo *TLI) {
+ // fold: icmp (inttoptr x), null -> icmp x, 0
+ // fold: icmp (ptrtoint x), 0 -> icmp x, null
+ // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
+ // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
+ //
+ // ConstantExpr::getCompare cannot do this, because it doesn't have TD
+ // around to know if bit truncation is happening.
+ if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
+ if (TD && Ops1->isNullValue()) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if (CE0->getOpcode() == Instruction::PtrToInt &&
+ CE0->getType() == IntPtrTy) {
+ Constant *C = CE0->getOperand(0);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ }
+ }
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
+ if (TD && CE0->getOpcode() == CE1->getOpcode()) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
+
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
+ IntPtrTy, false);
+ return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if ((CE0->getOpcode() == Instruction::PtrToInt &&
+ CE0->getType() == IntPtrTy &&
+ CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
+ return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
+ CE1->getOperand(0), TD, TLI);
+ }
+ }
+
+ // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
+ // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
+ if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
+ CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
+ Constant *LHS =
+ ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
+ TD, TLI);
+ Constant *RHS =
+ ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
+ TD, TLI);
+ unsigned OpC =
+ Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+ Constant *Ops[] = { LHS, RHS };
+ return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
+ }
+ }
+
+ return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
+}
+
+
+/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
+/// getelementptr constantexpr, return the constant value being addressed by the
+/// constant expression, or null if something is funny and we can't decide.
+Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
+ ConstantExpr *CE) {
+ if (!CE->getOperand(1)->isNullValue())
+ return 0; // Do not allow stepping over the value!
+
+ // Loop over all of the operands, tracking down which value we are
+ // addressing.
+ for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
+ C = C->getAggregateElement(CE->getOperand(i));
+ if (C == 0) return 0;
+ }
+ return C;
+}
+
+/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
+/// indices (with an *implied* zero pointer index that is not in the list),
+/// return the constant value being addressed by a virtual load, or null if
+/// something is funny and we can't decide.
+Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
+ ArrayRef<Constant*> Indices) {
+ // Loop over all of the operands, tracking down which value we are
+ // addressing.
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
+ C = C->getAggregateElement(Indices[i]);
+ if (C == 0) return 0;
+ }
+ return C;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Constant Folding for Calls
+//
+
+/// canConstantFoldCallTo - Return true if its even possible to fold a call to
+/// the specified function.
+bool
+llvm::canConstantFoldCallTo(const Function *F) {
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::fabs:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::floor:
+ case Intrinsic::sqrt:
+ case Intrinsic::pow:
+ case Intrinsic::powi:
+ case Intrinsic::bswap:
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::convert_from_fp16:
+ case Intrinsic::convert_to_fp16:
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ return true;
+ default:
+ return false;
+ case 0: break;
+ }
+
+ if (!F->hasName()) return false;
+ StringRef Name = F->getName();
+
+ // In these cases, the check of the length is required. We don't want to
+ // return true for a name like "cos\0blah" which strcmp would return equal to
+ // "cos", but has length 8.
+ switch (Name[0]) {
+ default: return false;
+ case 'a':
+ return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
+ case 'c':
+ return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
+ case 'e':
+ return Name == "exp" || Name == "exp2";
+ case 'f':
+ return Name == "fabs" || Name == "fmod" || Name == "floor";
+ case 'l':
+ return Name == "log" || Name == "log10";
+ case 'p':
+ return Name == "pow";
+ case 's':
+ return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
+ Name == "sinf" || Name == "sqrtf";
+ case 't':
+ return Name == "tan" || Name == "tanh";
+ }
+}
+
+static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
+ Type *Ty) {
+ sys::llvm_fenv_clearexcept();
+ V = NativeFP(V);
+ if (sys::llvm_fenv_testexcept()) {
+ sys::llvm_fenv_clearexcept();
+ return 0;
+ }
+
+ if (Ty->isHalfTy()) {
+ APFloat APF(V);
+ bool unused;
+ APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
+ return ConstantFP::get(Ty->getContext(), APF);
+ }
+ if (Ty->isFloatTy())
+ return ConstantFP::get(Ty->getContext(), APFloat((float)V));
+ if (Ty->isDoubleTy())
+ return ConstantFP::get(Ty->getContext(), APFloat(V));
+ llvm_unreachable("Can only constant fold half/float/double");
+}
+
+static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
+ double V, double W, Type *Ty) {
+ sys::llvm_fenv_clearexcept();
+ V = NativeFP(V, W);
+ if (sys::llvm_fenv_testexcept()) {
+ sys::llvm_fenv_clearexcept();
+ return 0;
+ }
+
+ if (Ty->isHalfTy()) {
+ APFloat APF(V);
+ bool unused;
+ APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
+ return ConstantFP::get(Ty->getContext(), APF);
+ }
+ if (Ty->isFloatTy())
+ return ConstantFP::get(Ty->getContext(), APFloat((float)V));
+ if (Ty->isDoubleTy())
+ return ConstantFP::get(Ty->getContext(), APFloat(V));
+ llvm_unreachable("Can only constant fold half/float/double");
+}
+
+/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
+/// conversion of a constant floating point. If roundTowardZero is false, the
+/// default IEEE rounding is used (toward nearest, ties to even). This matches
+/// the behavior of the non-truncating SSE instructions in the default rounding
+/// mode. The desired integer type Ty is used to select how many bits are
+/// available for the result. Returns null if the conversion cannot be
+/// performed, otherwise returns the Constant value resulting from the
+/// conversion.
+static Constant *ConstantFoldConvertToInt(const APFloat &Val,
+ bool roundTowardZero, Type *Ty) {
+ // All of these conversion intrinsics form an integer of at most 64bits.
+ unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
+ assert(ResultWidth <= 64 &&
+ "Can only constant fold conversions to 64 and 32 bit ints");
+
+ uint64_t UIntVal;
+ bool isExact = false;
+ APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
+ : APFloat::rmNearestTiesToEven;
+ APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
+ /*isSigned=*/true, mode,
+ &isExact);
+ if (status != APFloat::opOK && status != APFloat::opInexact)
+ return 0;
+ return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
+}
+
+/// ConstantFoldCall - Attempt to constant fold a call to the specified function
+/// with the specified arguments, returning null if unsuccessful.
+Constant *
+llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI) {
+ if (!F->hasName()) return 0;
+ StringRef Name = F->getName();
+
+ Type *Ty = F->getReturnType();
+ if (Operands.size() == 1) {
+ if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
+ if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
+ APFloat Val(Op->getValueAPF());
+
+ bool lost = false;
+ Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
+
+ return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
+ }
+ if (!TLI)
+ return 0;
+
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
+ return 0;
+
+ /// We only fold functions with finite arguments. Folding NaN and inf is
+ /// likely to be aborted with an exception anyway, and some host libms
+ /// have known errors raising exceptions.
+ if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
+ return 0;
+
+ /// Currently APFloat versions of these functions do not exist, so we use
+ /// the host native double versions. Float versions are not called
+ /// directly but for all these it is true (float)(f((double)arg)) ==
+ /// f(arg). Long double not supported yet.
+ double V;
+ if (Ty->isFloatTy())
+ V = Op->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ V = Op->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ V = APF.convertToDouble();
+ }
+
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs:
+ return ConstantFoldFP(fabs, V, Ty);
+#if HAVE_LOG2
+ case Intrinsic::log2:
+ return ConstantFoldFP(log2, V, Ty);
+#endif
+#if HAVE_LOG
+ case Intrinsic::log:
+ return ConstantFoldFP(log, V, Ty);
+#endif
+#if HAVE_LOG10
+ case Intrinsic::log10:
+ return ConstantFoldFP(log10, V, Ty);
+#endif
+#if HAVE_EXP
+ case Intrinsic::exp:
+ return ConstantFoldFP(exp, V, Ty);
+#endif
+#if HAVE_EXP2
+ case Intrinsic::exp2:
+ return ConstantFoldFP(exp2, V, Ty);
+#endif
+ case Intrinsic::floor:
+ return ConstantFoldFP(floor, V, Ty);
+ }
+
+ switch (Name[0]) {
+ case 'a':
+ if (Name == "acos" && TLI->has(LibFunc::acos))
+ return ConstantFoldFP(acos, V, Ty);
+ else if (Name == "asin" && TLI->has(LibFunc::asin))
+ return ConstantFoldFP(asin, V, Ty);
+ else if (Name == "atan" && TLI->has(LibFunc::atan))
+ return ConstantFoldFP(atan, V, Ty);
+ break;
+ case 'c':
+ if (Name == "ceil" && TLI->has(LibFunc::ceil))
+ return ConstantFoldFP(ceil, V, Ty);
+ else if (Name == "cos" && TLI->has(LibFunc::cos))
+ return ConstantFoldFP(cos, V, Ty);
+ else if (Name == "cosh" && TLI->has(LibFunc::cosh))
+ return ConstantFoldFP(cosh, V, Ty);
+ else if (Name == "cosf" && TLI->has(LibFunc::cosf))
+ return ConstantFoldFP(cos, V, Ty);
+ break;
+ case 'e':
+ if (Name == "exp" && TLI->has(LibFunc::exp))
+ return ConstantFoldFP(exp, V, Ty);
+
+ if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
+ // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
+ // C99 library.
+ return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
+ }
+ break;
+ case 'f':
+ if (Name == "fabs" && TLI->has(LibFunc::fabs))
+ return ConstantFoldFP(fabs, V, Ty);
+ else if (Name == "floor" && TLI->has(LibFunc::floor))
+ return ConstantFoldFP(floor, V, Ty);
+ break;
+ case 'l':
+ if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
+ return ConstantFoldFP(log, V, Ty);
+ else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
+ return ConstantFoldFP(log10, V, Ty);
+ else if (F->getIntrinsicID() == Intrinsic::sqrt &&
+ (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
+ if (V >= -0.0)
+ return ConstantFoldFP(sqrt, V, Ty);
+ else // Undefined
+ return Constant::getNullValue(Ty);
+ }
+ break;
+ case 's':
+ if (Name == "sin" && TLI->has(LibFunc::sin))
+ return ConstantFoldFP(sin, V, Ty);
+ else if (Name == "sinh" && TLI->has(LibFunc::sinh))
+ return ConstantFoldFP(sinh, V, Ty);
+ else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
+ return ConstantFoldFP(sqrt, V, Ty);
+ else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
+ return ConstantFoldFP(sqrt, V, Ty);
+ else if (Name == "sinf" && TLI->has(LibFunc::sinf))
+ return ConstantFoldFP(sin, V, Ty);
+ break;
+ case 't':
+ if (Name == "tan" && TLI->has(LibFunc::tan))
+ return ConstantFoldFP(tan, V, Ty);
+ else if (Name == "tanh" && TLI->has(LibFunc::tanh))
+ return ConstantFoldFP(tanh, V, Ty);
+ break;
+ default:
+ break;
+ }
+ return 0;
+ }
+
+ if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::bswap:
+ return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
+ case Intrinsic::ctpop:
+ return ConstantInt::get(Ty, Op->getValue().countPopulation());
+ case Intrinsic::convert_from_fp16: {
+ APFloat Val(APFloat::IEEEhalf, Op->getValue());
+
+ bool lost = false;
+ APFloat::opStatus status =
+ Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
+
+ // Conversion is always precise.
+ (void)status;
+ assert(status == APFloat::opOK && !lost &&
+ "Precision lost during fp16 constfolding");
+
+ return ConstantFP::get(F->getContext(), Val);
+ }
+ default:
+ return 0;
+ }
+ }
+
+ // Support ConstantVector in case we have an Undef in the top.
+ if (isa<ConstantVector>(Operands[0]) ||
+ isa<ConstantDataVector>(Operands[0])) {
+ Constant *Op = cast<Constant>(Operands[0]);
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/false, Ty);
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/true, Ty);
+ }
+ }
+
+ if (isa<UndefValue>(Operands[0])) {
+ if (F->getIntrinsicID() == Intrinsic::bswap)
+ return Operands[0];
+ return 0;
+ }
+
+ return 0;
+ }
+
+ if (Operands.size() == 2) {
+ if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
+ return 0;
+ double Op1V;
+ if (Ty->isFloatTy())
+ Op1V = Op1->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ Op1V = Op1->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op1->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ Op1V = APF.convertToDouble();
+ }
+
+ if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
+ if (Op2->getType() != Op1->getType())
+ return 0;
+
+ double Op2V;
+ if (Ty->isFloatTy())
+ Op2V = Op2->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ Op2V = Op2->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op2->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ Op2V = APF.convertToDouble();
+ }
+
+ if (F->getIntrinsicID() == Intrinsic::pow) {
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
+ }
+ if (!TLI)
+ return 0;
+ if (Name == "pow" && TLI->has(LibFunc::pow))
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
+ if (Name == "fmod" && TLI->has(LibFunc::fmod))
+ return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
+ if (Name == "atan2" && TLI->has(LibFunc::atan2))
+ return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
+ } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
+ return ConstantFP::get(F->getContext(),
+ APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
+ return ConstantFP::get(F->getContext(),
+ APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
+ return ConstantFP::get(F->getContext(),
+ APFloat((double)std::pow((double)Op1V,
+ (int)Op2C->getZExtValue())));
+ }
+ return 0;
+ }
+
+ if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
+ if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ APInt Res;
+ bool Overflow;
+ switch (F->getIntrinsicID()) {
+ default: llvm_unreachable("Invalid case");
+ case Intrinsic::sadd_with_overflow:
+ Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::uadd_with_overflow:
+ Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::ssub_with_overflow:
+ Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::usub_with_overflow:
+ Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::smul_with_overflow:
+ Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::umul_with_overflow:
+ Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
+ break;
+ }
+ Constant *Ops[] = {
+ ConstantInt::get(F->getContext(), Res),
+ ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
+ };
+ return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
+ }
+ case Intrinsic::cttz:
+ if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
+ return UndefValue::get(Ty);
+ return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
+ case Intrinsic::ctlz:
+ if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
+ return UndefValue::get(Ty);
+ return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
+ }
+ }
+
+ return 0;
+ }
+ return 0;
+ }
+ return 0;
+}
OpenPOWER on IntegriCloud