summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/CGSCCPassManager.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/CGSCCPassManager.cpp501
1 files changed, 495 insertions, 6 deletions
diff --git a/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp b/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
index f6f30bb..054bdc4 100644
--- a/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
+++ b/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
@@ -8,17 +8,506 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/InstIterator.h"
using namespace llvm;
-// Explicit instantiations for the core proxy templates.
+// Explicit template instantiations and specialization defininitions for core
+// template typedefs.
namespace llvm {
-template class PassManager<LazyCallGraph::SCC>;
-template class AnalysisManager<LazyCallGraph::SCC>;
+
+// Explicit instantiations for the core proxy templates.
+template class AllAnalysesOn<LazyCallGraph::SCC>;
+template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
+template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
+ LazyCallGraph &, CGSCCUpdateResult &>;
template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
- LazyCallGraph::SCC>;
-template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
- LazyCallGraph::SCC>;
+ LazyCallGraph::SCC, LazyCallGraph &>;
template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
+
+/// Explicitly specialize the pass manager run method to handle call graph
+/// updates.
+template <>
+PreservedAnalyses
+PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
+ CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &G, CGSCCUpdateResult &UR) {
+ PreservedAnalyses PA = PreservedAnalyses::all();
+
+ if (DebugLogging)
+ dbgs() << "Starting CGSCC pass manager run.\n";
+
+ // The SCC may be refined while we are running passes over it, so set up
+ // a pointer that we can update.
+ LazyCallGraph::SCC *C = &InitialC;
+
+ for (auto &Pass : Passes) {
+ if (DebugLogging)
+ dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
+
+ PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
+
+ // Update the SCC if necessary.
+ C = UR.UpdatedC ? UR.UpdatedC : C;
+
+ // Check that we didn't miss any update scenario.
+ assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
+ assert(C->begin() != C->end() && "Cannot have an empty SCC!");
+
+ // Update the analysis manager as each pass runs and potentially
+ // invalidates analyses.
+ AM.invalidate(*C, PassPA);
+
+ // Finally, we intersect the final preserved analyses to compute the
+ // aggregate preserved set for this pass manager.
+ PA.intersect(std::move(PassPA));
+
+ // FIXME: Historically, the pass managers all called the LLVM context's
+ // yield function here. We don't have a generic way to acquire the
+ // context and it isn't yet clear what the right pattern is for yielding
+ // in the new pass manager so it is currently omitted.
+ // ...getContext().yield();
+ }
+
+ // Invaliadtion was handled after each pass in the above loop for the current
+ // SCC. Therefore, the remaining analysis results in the AnalysisManager are
+ // preserved. We mark this with a set so that we don't need to inspect each
+ // one individually.
+ PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
+
+ if (DebugLogging)
+ dbgs() << "Finished CGSCC pass manager run.\n";
+
+ return PA;
+}
+
+bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
+ Module &M, const PreservedAnalyses &PA,
+ ModuleAnalysisManager::Invalidator &Inv) {
+ // If literally everything is preserved, we're done.
+ if (PA.areAllPreserved())
+ return false; // This is still a valid proxy.
+
+ // If this proxy or the call graph is going to be invalidated, we also need
+ // to clear all the keys coming from that analysis.
+ //
+ // We also directly invalidate the FAM's module proxy if necessary, and if
+ // that proxy isn't preserved we can't preserve this proxy either. We rely on
+ // it to handle module -> function analysis invalidation in the face of
+ // structural changes and so if it's unavailable we conservatively clear the
+ // entire SCC layer as well rather than trying to do invalidation ourselves.
+ auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
+ if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
+ Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
+ Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
+ InnerAM->clear();
+
+ // And the proxy itself should be marked as invalid so that we can observe
+ // the new call graph. This isn't strictly necessary because we cheat
+ // above, but is still useful.
+ return true;
+ }
+
+ // Directly check if the relevant set is preserved so we can short circuit
+ // invalidating SCCs below.
+ bool AreSCCAnalysesPreserved =
+ PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
+
+ // Ok, we have a graph, so we can propagate the invalidation down into it.
+ for (auto &RC : G->postorder_ref_sccs())
+ for (auto &C : RC) {
+ Optional<PreservedAnalyses> InnerPA;
+
+ // Check to see whether the preserved set needs to be adjusted based on
+ // module-level analysis invalidation triggering deferred invalidation
+ // for this SCC.
+ if (auto *OuterProxy =
+ InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
+ for (const auto &OuterInvalidationPair :
+ OuterProxy->getOuterInvalidations()) {
+ AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
+ const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
+ if (Inv.invalidate(OuterAnalysisID, M, PA)) {
+ if (!InnerPA)
+ InnerPA = PA;
+ for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
+ InnerPA->abandon(InnerAnalysisID);
+ }
+ }
+
+ // Check if we needed a custom PA set. If so we'll need to run the inner
+ // invalidation.
+ if (InnerPA) {
+ InnerAM->invalidate(C, *InnerPA);
+ continue;
+ }
+
+ // Otherwise we only need to do invalidation if the original PA set didn't
+ // preserve all SCC analyses.
+ if (!AreSCCAnalysesPreserved)
+ InnerAM->invalidate(C, PA);
+ }
+
+ // Return false to indicate that this result is still a valid proxy.
+ return false;
+}
+
+template <>
+CGSCCAnalysisManagerModuleProxy::Result
+CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
+ // Force the Function analysis manager to also be available so that it can
+ // be accessed in an SCC analysis and proxied onward to function passes.
+ // FIXME: It is pretty awkward to just drop the result here and assert that
+ // we can find it again later.
+ (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
+
+ return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
+}
+
+AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
+
+FunctionAnalysisManagerCGSCCProxy::Result
+FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &CG) {
+ // Collect the FunctionAnalysisManager from the Module layer and use that to
+ // build the proxy result.
+ //
+ // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
+ // invalidate the function analyses.
+ auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
+ Module &M = *C.begin()->getFunction().getParent();
+ auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
+ assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
+ "proxy is run on the module prior to entering the CGSCC "
+ "walk.");
+
+ // Note that we special-case invalidation handling of this proxy in the CGSCC
+ // analysis manager's Module proxy. This avoids the need to do anything
+ // special here to recompute all of this if ever the FAM's module proxy goes
+ // away.
+ return Result(FAMProxy->getManager());
+}
+
+bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
+ LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
+ CGSCCAnalysisManager::Invalidator &Inv) {
+ for (LazyCallGraph::Node &N : C)
+ FAM->invalidate(N.getFunction(), PA);
+
+ // This proxy doesn't need to handle invalidation itself. Instead, the
+ // module-level CGSCC proxy handles it above by ensuring that if the
+ // module-level FAM proxy becomes invalid the entire SCC layer, which
+ // includes this proxy, is cleared.
+ return false;
+}
+
+} // End llvm namespace
+
+namespace {
+/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
+/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
+/// added SCCs.
+///
+/// The range of new SCCs must be in postorder already. The SCC they were split
+/// out of must be provided as \p C. The current node being mutated and
+/// triggering updates must be passed as \p N.
+///
+/// This function returns the SCC containing \p N. This will be either \p C if
+/// no new SCCs have been split out, or it will be the new SCC containing \p N.
+template <typename SCCRangeT>
+LazyCallGraph::SCC *
+incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
+ LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
+ CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
+ bool DebugLogging = false) {
+ typedef LazyCallGraph::SCC SCC;
+
+ if (NewSCCRange.begin() == NewSCCRange.end())
+ return C;
+
+ // Add the current SCC to the worklist as its shape has changed.
+ UR.CWorklist.insert(C);
+ if (DebugLogging)
+ dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n";
+
+ SCC *OldC = C;
+ (void)OldC;
+
+ // Update the current SCC. Note that if we have new SCCs, this must actually
+ // change the SCC.
+ assert(C != &*NewSCCRange.begin() &&
+ "Cannot insert new SCCs without changing current SCC!");
+ C = &*NewSCCRange.begin();
+ assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
+
+ for (SCC &NewC :
+ reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
+ assert(C != &NewC && "No need to re-visit the current SCC!");
+ assert(OldC != &NewC && "Already handled the original SCC!");
+ UR.CWorklist.insert(&NewC);
+ if (DebugLogging)
+ dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n";
+ }
+ return C;
+}
+}
+
+LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
+ LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
+ CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) {
+ typedef LazyCallGraph::Node Node;
+ typedef LazyCallGraph::Edge Edge;
+ typedef LazyCallGraph::SCC SCC;
+ typedef LazyCallGraph::RefSCC RefSCC;
+
+ RefSCC &InitialRC = InitialC.getOuterRefSCC();
+ SCC *C = &InitialC;
+ RefSCC *RC = &InitialRC;
+ Function &F = N.getFunction();
+
+ // Walk the function body and build up the set of retained, promoted, and
+ // demoted edges.
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Constant *, 16> Visited;
+ SmallPtrSet<Function *, 16> RetainedEdges;
+ SmallSetVector<Function *, 4> PromotedRefTargets;
+ SmallSetVector<Function *, 4> DemotedCallTargets;
+
+ // First walk the function and handle all called functions. We do this first
+ // because if there is a single call edge, whether there are ref edges is
+ // irrelevant.
+ for (Instruction &I : instructions(F))
+ if (auto CS = CallSite(&I))
+ if (Function *Callee = CS.getCalledFunction())
+ if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
+ const Edge *E = N.lookup(*Callee);
+ // FIXME: We should really handle adding new calls. While it will
+ // make downstream usage more complex, there is no fundamental
+ // limitation and it will allow passes within the CGSCC to be a bit
+ // more flexible in what transforms they can do. Until then, we
+ // verify that new calls haven't been introduced.
+ assert(E && "No function transformations should introduce *new* "
+ "call edges! Any new calls should be modeled as "
+ "promoted existing ref edges!");
+ RetainedEdges.insert(Callee);
+ if (!E->isCall())
+ PromotedRefTargets.insert(Callee);
+ }
+
+ // Now walk all references.
+ for (Instruction &I : instructions(F))
+ for (Value *Op : I.operand_values())
+ if (Constant *C = dyn_cast<Constant>(Op))
+ if (Visited.insert(C).second)
+ Worklist.push_back(C);
+
+ LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
+ const Edge *E = N.lookup(Referee);
+ // FIXME: Similarly to new calls, we also currently preclude
+ // introducing new references. See above for details.
+ assert(E && "No function transformations should introduce *new* ref "
+ "edges! Any new ref edges would require IPO which "
+ "function passes aren't allowed to do!");
+ RetainedEdges.insert(&Referee);
+ if (E->isCall())
+ DemotedCallTargets.insert(&Referee);
+ });
+
+ // First remove all of the edges that are no longer present in this function.
+ // We have to build a list of dead targets first and then remove them as the
+ // data structures will all be invalidated by removing them.
+ SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
+ for (Edge &E : N)
+ if (!RetainedEdges.count(&E.getFunction()))
+ DeadTargets.push_back({E.getNode(), E.getKind()});
+ for (auto DeadTarget : DeadTargets) {
+ Node &TargetN = *DeadTarget.getPointer();
+ bool IsCall = DeadTarget.getInt() == Edge::Call;
+ SCC &TargetC = *G.lookupSCC(TargetN);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ if (&TargetRC != RC) {
+ RC->removeOutgoingEdge(N, TargetN);
+ if (DebugLogging)
+ dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN
+ << "'\n";
+ continue;
+ }
+ if (DebugLogging)
+ dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
+ << " edge from '" << N << "' to '" << TargetN << "'\n";
+
+ if (IsCall) {
+ if (C != &TargetC) {
+ // For separate SCCs this is trivial.
+ RC->switchTrivialInternalEdgeToRef(N, TargetN);
+ } else {
+ // Otherwise we may end up re-structuring the call graph. First,
+ // invalidate any SCC analyses. We have to do this before we split
+ // functions into new SCCs and lose track of where their analyses are
+ // cached.
+ // FIXME: We should accept a more precise preserved set here. For
+ // example, it might be possible to preserve some function analyses
+ // even as the SCC structure is changed.
+ AM.invalidate(*C, PreservedAnalyses::none());
+ // Now update the call graph.
+ C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
+ N, C, AM, UR, DebugLogging);
+ }
+ }
+
+ auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
+ if (!NewRefSCCs.empty()) {
+ // Note that we don't bother to invalidate analyses as ref-edge
+ // connectivity is not really observable in any way and is intended
+ // exclusively to be used for ordering of transforms rather than for
+ // analysis conclusions.
+
+ // The RC worklist is in reverse postorder, so we first enqueue the
+ // current RefSCC as it will remain the parent of all split RefSCCs, then
+ // we enqueue the new ones in RPO except for the one which contains the
+ // source node as that is the "bottom" we will continue processing in the
+ // bottom-up walk.
+ UR.RCWorklist.insert(RC);
+ if (DebugLogging)
+ dbgs() << "Enqueuing the existing RefSCC in the update worklist: "
+ << *RC << "\n";
+ // Update the RC to the "bottom".
+ assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
+ RC = &C->getOuterRefSCC();
+ assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
+ assert(NewRefSCCs.front() == RC &&
+ "New current RefSCC not first in the returned list!");
+ for (RefSCC *NewRC : reverse(
+ make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) {
+ assert(NewRC != RC && "Should not encounter the current RefSCC further "
+ "in the postorder list of new RefSCCs.");
+ UR.RCWorklist.insert(NewRC);
+ if (DebugLogging)
+ dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC
+ << "\n";
+ }
+ }
+ }
+
+ // Next demote all the call edges that are now ref edges. This helps make
+ // the SCCs small which should minimize the work below as we don't want to
+ // form cycles that this would break.
+ for (Function *RefTarget : DemotedCallTargets) {
+ Node &TargetN = *G.lookup(*RefTarget);
+ SCC &TargetC = *G.lookupSCC(TargetN);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ // The easy case is when the target RefSCC is not this RefSCC. This is
+ // only supported when the target RefSCC is a child of this RefSCC.
+ if (&TargetRC != RC) {
+ assert(RC->isAncestorOf(TargetRC) &&
+ "Cannot potentially form RefSCC cycles here!");
+ RC->switchOutgoingEdgeToRef(N, TargetN);
+ if (DebugLogging)
+ dbgs() << "Switch outgoing call edge to a ref edge from '" << N
+ << "' to '" << TargetN << "'\n";
+ continue;
+ }
+
+ // We are switching an internal call edge to a ref edge. This may split up
+ // some SCCs.
+ if (C != &TargetC) {
+ // For separate SCCs this is trivial.
+ RC->switchTrivialInternalEdgeToRef(N, TargetN);
+ continue;
+ }
+
+ // Otherwise we may end up re-structuring the call graph. First, invalidate
+ // any SCC analyses. We have to do this before we split functions into new
+ // SCCs and lose track of where their analyses are cached.
+ // FIXME: We should accept a more precise preserved set here. For example,
+ // it might be possible to preserve some function analyses even as the SCC
+ // structure is changed.
+ AM.invalidate(*C, PreservedAnalyses::none());
+ // Now update the call graph.
+ C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
+ N, C, AM, UR, DebugLogging);
+ }
+
+ // Now promote ref edges into call edges.
+ for (Function *CallTarget : PromotedRefTargets) {
+ Node &TargetN = *G.lookup(*CallTarget);
+ SCC &TargetC = *G.lookupSCC(TargetN);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ // The easy case is when the target RefSCC is not this RefSCC. This is
+ // only supported when the target RefSCC is a child of this RefSCC.
+ if (&TargetRC != RC) {
+ assert(RC->isAncestorOf(TargetRC) &&
+ "Cannot potentially form RefSCC cycles here!");
+ RC->switchOutgoingEdgeToCall(N, TargetN);
+ if (DebugLogging)
+ dbgs() << "Switch outgoing ref edge to a call edge from '" << N
+ << "' to '" << TargetN << "'\n";
+ continue;
+ }
+ if (DebugLogging)
+ dbgs() << "Switch an internal ref edge to a call edge from '" << N
+ << "' to '" << TargetN << "'\n";
+
+ // Otherwise we are switching an internal ref edge to a call edge. This
+ // may merge away some SCCs, and we add those to the UpdateResult. We also
+ // need to make sure to update the worklist in the event SCCs have moved
+ // before the current one in the post-order sequence.
+ auto InitialSCCIndex = RC->find(*C) - RC->begin();
+ auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN);
+ if (!InvalidatedSCCs.empty()) {
+ C = &TargetC;
+ assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
+
+ // Any analyses cached for this SCC are no longer precise as the shape
+ // has changed by introducing this cycle.
+ AM.invalidate(*C, PreservedAnalyses::none());
+
+ for (SCC *InvalidatedC : InvalidatedSCCs) {
+ assert(InvalidatedC != C && "Cannot invalidate the current SCC!");
+ UR.InvalidatedSCCs.insert(InvalidatedC);
+
+ // Also clear any cached analyses for the SCCs that are dead. This
+ // isn't really necessary for correctness but can release memory.
+ AM.clear(*InvalidatedC);
+ }
+ }
+ auto NewSCCIndex = RC->find(*C) - RC->begin();
+ if (InitialSCCIndex < NewSCCIndex) {
+ // Put our current SCC back onto the worklist as we'll visit other SCCs
+ // that are now definitively ordered prior to the current one in the
+ // post-order sequence, and may end up observing more precise context to
+ // optimize the current SCC.
+ UR.CWorklist.insert(C);
+ if (DebugLogging)
+ dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n";
+ // Enqueue in reverse order as we pop off the back of the worklist.
+ for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
+ RC->begin() + NewSCCIndex))) {
+ UR.CWorklist.insert(&MovedC);
+ if (DebugLogging)
+ dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC
+ << "\n";
+ }
+ }
+ }
+
+ assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
+ assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
+ assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
+
+ // Record the current RefSCC and SCC for higher layers of the CGSCC pass
+ // manager now that all the updates have been applied.
+ if (RC != &InitialRC)
+ UR.UpdatedRC = RC;
+ if (C != &InitialC)
+ UR.UpdatedC = C;
+
+ return *C;
}
OpenPOWER on IntegriCloud