diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp | 484 |
1 files changed, 397 insertions, 87 deletions
diff --git a/contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp index 7d5bd94..e48ff23 100644 --- a/contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp +++ b/contrib/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp @@ -27,12 +27,23 @@ // codes: all we do here is to selectively expand the transitive closure by // discarding edges that are not recognized by the state machine. // -// There is one difference between our current implementation and the one -// described in the paper: out algorithm eagerly computes all alias pairs after -// the CFLGraph is built, while in the paper the authors did the computation in -// a demand-driven fashion. We did not implement the demand-driven algorithm due -// to the additional coding complexity and higher memory profile, but if we -// found it necessary we may switch to it eventually. +// There are two differences between our current implementation and the one +// described in the paper: +// - Our algorithm eagerly computes all alias pairs after the CFLGraph is built, +// while in the paper the authors did the computation in a demand-driven +// fashion. We did not implement the demand-driven algorithm due to the +// additional coding complexity and higher memory profile, but if we found it +// necessary we may switch to it eventually. +// - In the paper the authors use a state machine that does not distinguish +// value reads from value writes. For example, if Y is reachable from X at state +// S3, it may be the case that X is written into Y, or it may be the case that +// there's a third value Z that writes into both X and Y. To make that +// distinction (which is crucial in building function summary as well as +// retrieving mod-ref info), we choose to duplicate some of the states in the +// paper's proposed state machine. The duplication does not change the set the +// machine accepts. Given a pair of reachable values, it only provides more +// detailed information on which value is being written into and which is being +// read from. // //===----------------------------------------------------------------------===// @@ -71,16 +82,65 @@ static const Function *parentFunctionOfValue(const Value *Val) { namespace { enum class MatchState : uint8_t { - FlowFrom = 0, // S1 in the paper - FlowFromMemAlias, // S2 in the paper - FlowTo, // S3 in the paper - FlowToMemAlias // S4 in the paper + // The following state represents S1 in the paper. + FlowFromReadOnly = 0, + // The following two states together represent S2 in the paper. + // The 'NoReadWrite' suffix indicates that there exists an alias path that + // does not contain assignment and reverse assignment edges. + // The 'ReadOnly' suffix indicates that there exists an alias path that + // contains reverse assignment edges only. + FlowFromMemAliasNoReadWrite, + FlowFromMemAliasReadOnly, + // The following two states together represent S3 in the paper. + // The 'WriteOnly' suffix indicates that there exists an alias path that + // contains assignment edges only. + // The 'ReadWrite' suffix indicates that there exists an alias path that + // contains both assignment and reverse assignment edges. Note that if X and Y + // are reachable at 'ReadWrite' state, it does NOT mean X is both read from + // and written to Y. Instead, it means that a third value Z is written to both + // X and Y. + FlowToWriteOnly, + FlowToReadWrite, + // The following two states together represent S4 in the paper. + FlowToMemAliasWriteOnly, + FlowToMemAliasReadWrite, }; +typedef std::bitset<7> StateSet; +const unsigned ReadOnlyStateMask = + (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) | + (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly)); +const unsigned WriteOnlyStateMask = + (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) | + (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly)); + +// A pair that consists of a value and an offset +struct OffsetValue { + const Value *Val; + int64_t Offset; +}; + +bool operator==(OffsetValue LHS, OffsetValue RHS) { + return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset; +} +bool operator<(OffsetValue LHS, OffsetValue RHS) { + return std::less<const Value *>()(LHS.Val, RHS.Val) || + (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset); +} + +// A pair that consists of an InstantiatedValue and an offset +struct OffsetInstantiatedValue { + InstantiatedValue IVal; + int64_t Offset; +}; + +bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) { + return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset; +} + // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in // the paper) during the analysis. class ReachabilitySet { - typedef std::bitset<4> StateSet; typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap; typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap; ValueReachMap ReachMap; @@ -91,6 +151,7 @@ public: // Insert edge 'From->To' at state 'State' bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) { + assert(From != To); auto &States = ReachMap[To][From]; auto Idx = static_cast<size_t>(State); if (!States.test(Idx)) { @@ -150,8 +211,6 @@ public: typedef MapType::const_iterator const_iterator; bool add(InstantiatedValue V, AliasAttrs Attr) { - if (Attr.none()) - return false; auto &OldAttr = AttrMap[V]; auto NewAttr = OldAttr | Attr; if (OldAttr == NewAttr) @@ -178,6 +237,57 @@ struct WorkListItem { InstantiatedValue To; MatchState State; }; + +struct ValueSummary { + struct Record { + InterfaceValue IValue; + unsigned DerefLevel; + }; + SmallVector<Record, 4> FromRecords, ToRecords; +}; +} + +namespace llvm { +// Specialize DenseMapInfo for OffsetValue. +template <> struct DenseMapInfo<OffsetValue> { + static OffsetValue getEmptyKey() { + return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(), + DenseMapInfo<int64_t>::getEmptyKey()}; + } + static OffsetValue getTombstoneKey() { + return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(), + DenseMapInfo<int64_t>::getEmptyKey()}; + } + static unsigned getHashValue(const OffsetValue &OVal) { + return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue( + std::make_pair(OVal.Val, OVal.Offset)); + } + static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) { + return LHS == RHS; + } +}; + +// Specialize DenseMapInfo for OffsetInstantiatedValue. +template <> struct DenseMapInfo<OffsetInstantiatedValue> { + static OffsetInstantiatedValue getEmptyKey() { + return OffsetInstantiatedValue{ + DenseMapInfo<InstantiatedValue>::getEmptyKey(), + DenseMapInfo<int64_t>::getEmptyKey()}; + } + static OffsetInstantiatedValue getTombstoneKey() { + return OffsetInstantiatedValue{ + DenseMapInfo<InstantiatedValue>::getTombstoneKey(), + DenseMapInfo<int64_t>::getEmptyKey()}; + } + static unsigned getHashValue(const OffsetInstantiatedValue &OVal) { + return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue( + std::make_pair(OVal.IVal, OVal.Offset)); + } + static bool isEqual(const OffsetInstantiatedValue &LHS, + const OffsetInstantiatedValue &RHS) { + return LHS == RHS; + } +}; } class CFLAndersAAResult::FunctionInfo { @@ -185,7 +295,7 @@ class CFLAndersAAResult::FunctionInfo { /// Since the alias relation is symmetric, to save some space we assume values /// are properly ordered: if a and b alias each other, and a < b, then b is in /// AliasMap[a] but not vice versa. - DenseMap<const Value *, std::vector<const Value *>> AliasMap; + DenseMap<const Value *, std::vector<OffsetValue>> AliasMap; /// Map a value to its corresponding AliasAttrs DenseMap<const Value *, AliasAttrs> AttrMap; @@ -193,27 +303,56 @@ class CFLAndersAAResult::FunctionInfo { /// Summary of externally visible effects. AliasSummary Summary; - AliasAttrs getAttrs(const Value *) const; + Optional<AliasAttrs> getAttrs(const Value *) const; public: - FunctionInfo(const ReachabilitySet &, AliasAttrMap); + FunctionInfo(const Function &, const SmallVectorImpl<Value *> &, + const ReachabilitySet &, AliasAttrMap); - bool mayAlias(const Value *LHS, const Value *RHS) const; + bool mayAlias(const Value *, uint64_t, const Value *, uint64_t) const; const AliasSummary &getAliasSummary() const { return Summary; } }; -CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet, - AliasAttrMap AMap) { - // Populate AttrMap +static bool hasReadOnlyState(StateSet Set) { + return (Set & StateSet(ReadOnlyStateMask)).any(); +} + +static bool hasWriteOnlyState(StateSet Set) { + return (Set & StateSet(WriteOnlyStateMask)).any(); +} + +static Optional<InterfaceValue> +getInterfaceValue(InstantiatedValue IValue, + const SmallVectorImpl<Value *> &RetVals) { + auto Val = IValue.Val; + + Optional<unsigned> Index; + if (auto Arg = dyn_cast<Argument>(Val)) + Index = Arg->getArgNo() + 1; + else if (is_contained(RetVals, Val)) + Index = 0; + + if (Index) + return InterfaceValue{*Index, IValue.DerefLevel}; + return None; +} + +static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap, + const AliasAttrMap &AMap) { for (const auto &Mapping : AMap.mappings()) { auto IVal = Mapping.first; + // Insert IVal into the map + auto &Attr = AttrMap[IVal.Val]; // AttrMap only cares about top-level values if (IVal.DerefLevel == 0) - AttrMap[IVal.Val] = Mapping.second; + Attr |= Mapping.second; } +} - // Populate AliasMap +static void +populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap, + const ReachabilitySet &ReachSet) { for (const auto &OuterMapping : ReachSet.value_mappings()) { // AliasMap only cares about top-level values if (OuterMapping.first.DerefLevel > 0) @@ -224,48 +363,202 @@ CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet, for (const auto &InnerMapping : OuterMapping.second) { // Again, AliasMap only cares about top-level values if (InnerMapping.first.DerefLevel == 0) - AliasList.push_back(InnerMapping.first.Val); + AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset}); } // Sort AliasList for faster lookup - std::sort(AliasList.begin(), AliasList.end(), std::less<const Value *>()); + std::sort(AliasList.begin(), AliasList.end()); } +} - // TODO: Populate function summary here +static void populateExternalRelations( + SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn, + const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) { + // If a function only returns one of its argument X, then X will be both an + // argument and a return value at the same time. This is an edge case that + // needs special handling here. + for (const auto &Arg : Fn.args()) { + if (is_contained(RetVals, &Arg)) { + auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0}; + auto RetVal = InterfaceValue{0, 0}; + ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0}); + } + } + + // Below is the core summary construction logic. + // A naive solution of adding only the value aliases that are parameters or + // return values in ReachSet to the summary won't work: It is possible that a + // parameter P is written into an intermediate value I, and the function + // subsequently returns *I. In that case, *I is does not value alias anything + // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to + // (I, 1). + // To account for the aforementioned case, we need to check each non-parameter + // and non-return value for the possibility of acting as an intermediate. + // 'ValueMap' here records, for each value, which InterfaceValues read from or + // write into it. If both the read list and the write list of a given value + // are non-empty, we know that a particular value is an intermidate and we + // need to add summary edges from the writes to the reads. + DenseMap<Value *, ValueSummary> ValueMap; + for (const auto &OuterMapping : ReachSet.value_mappings()) { + if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) { + for (const auto &InnerMapping : OuterMapping.second) { + // If Src is a param/return value, we get a same-level assignment. + if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) { + // This may happen if both Dst and Src are return values + if (*Dst == *Src) + continue; + + if (hasReadOnlyState(InnerMapping.second)) + ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset}); + // No need to check for WriteOnly state, since ReachSet is symmetric + } else { + // If Src is not a param/return, add it to ValueMap + auto SrcIVal = InnerMapping.first; + if (hasReadOnlyState(InnerMapping.second)) + ValueMap[SrcIVal.Val].FromRecords.push_back( + ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); + if (hasWriteOnlyState(InnerMapping.second)) + ValueMap[SrcIVal.Val].ToRecords.push_back( + ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); + } + } + } + } + + for (const auto &Mapping : ValueMap) { + for (const auto &FromRecord : Mapping.second.FromRecords) { + for (const auto &ToRecord : Mapping.second.ToRecords) { + auto ToLevel = ToRecord.DerefLevel; + auto FromLevel = FromRecord.DerefLevel; + // Same-level assignments should have already been processed by now + if (ToLevel == FromLevel) + continue; + + auto SrcIndex = FromRecord.IValue.Index; + auto SrcLevel = FromRecord.IValue.DerefLevel; + auto DstIndex = ToRecord.IValue.Index; + auto DstLevel = ToRecord.IValue.DerefLevel; + if (ToLevel > FromLevel) + SrcLevel += ToLevel - FromLevel; + else + DstLevel += FromLevel - ToLevel; + + ExtRelations.push_back(ExternalRelation{ + InterfaceValue{SrcIndex, SrcLevel}, + InterfaceValue{DstIndex, DstLevel}, UnknownOffset}); + } + } + } + + // Remove duplicates in ExtRelations + std::sort(ExtRelations.begin(), ExtRelations.end()); + ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()), + ExtRelations.end()); +} + +static void populateExternalAttributes( + SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn, + const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) { + for (const auto &Mapping : AMap.mappings()) { + if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) { + auto Attr = getExternallyVisibleAttrs(Mapping.second); + if (Attr.any()) + ExtAttributes.push_back(ExternalAttribute{*IVal, Attr}); + } + } +} + +CFLAndersAAResult::FunctionInfo::FunctionInfo( + const Function &Fn, const SmallVectorImpl<Value *> &RetVals, + const ReachabilitySet &ReachSet, AliasAttrMap AMap) { + populateAttrMap(AttrMap, AMap); + populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap); + populateAliasMap(AliasMap, ReachSet); + populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet); } -AliasAttrs CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const { +Optional<AliasAttrs> +CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const { assert(V != nullptr); - AliasAttrs Attr; auto Itr = AttrMap.find(V); if (Itr != AttrMap.end()) - Attr = Itr->second; - return Attr; + return Itr->second; + return None; } bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS, - const Value *RHS) const { + uint64_t LHSSize, + const Value *RHS, + uint64_t RHSSize) const { assert(LHS && RHS); + // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created + // after the analysis gets executed, and we want to be conservative in those + // cases. + auto MaybeAttrsA = getAttrs(LHS); + auto MaybeAttrsB = getAttrs(RHS); + if (!MaybeAttrsA || !MaybeAttrsB) + return true; + + // Check AliasAttrs before AliasMap lookup since it's cheaper + auto AttrsA = *MaybeAttrsA; + auto AttrsB = *MaybeAttrsB; + if (hasUnknownOrCallerAttr(AttrsA)) + return AttrsB.any(); + if (hasUnknownOrCallerAttr(AttrsB)) + return AttrsA.any(); + if (isGlobalOrArgAttr(AttrsA)) + return isGlobalOrArgAttr(AttrsB); + if (isGlobalOrArgAttr(AttrsB)) + return isGlobalOrArgAttr(AttrsA); + + // At this point both LHS and RHS should point to locally allocated objects + auto Itr = AliasMap.find(LHS); if (Itr != AliasMap.end()) { - if (std::binary_search(Itr->second.begin(), Itr->second.end(), RHS, - std::less<const Value *>())) - return true; - } - // Even if LHS and RHS are not reachable, they may still alias due to their - // AliasAttrs - auto AttrsA = getAttrs(LHS); - auto AttrsB = getAttrs(RHS); + // Find out all (X, Offset) where X == RHS + auto Comparator = [](OffsetValue LHS, OffsetValue RHS) { + return std::less<const Value *>()(LHS.Val, RHS.Val); + }; +#ifdef EXPENSIVE_CHECKS + assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator)); +#endif + auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(), + OffsetValue{RHS, 0}, Comparator); + + if (RangePair.first != RangePair.second) { + // Be conservative about UnknownSize + if (LHSSize == MemoryLocation::UnknownSize || + RHSSize == MemoryLocation::UnknownSize) + return true; + + for (const auto &OVal : make_range(RangePair)) { + // Be conservative about UnknownOffset + if (OVal.Offset == UnknownOffset) + return true; + + // We know that LHS aliases (RHS + OVal.Offset) if the control flow + // reaches here. The may-alias query essentially becomes integer + // range-overlap queries over two ranges [OVal.Offset, OVal.Offset + + // LHSSize) and [0, RHSSize). + + // Try to be conservative on super large offsets + if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX)) + return true; + + auto LHSStart = OVal.Offset; + // FIXME: Do we need to guard against integer overflow? + auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize); + auto RHSStart = 0; + auto RHSEnd = static_cast<int64_t>(RHSSize); + if (LHSEnd > RHSStart && LHSStart < RHSEnd) + return true; + } + } + } - if (AttrsA.none() || AttrsB.none()) - return false; - if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB)) - return true; - if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB)) - return true; return false; } @@ -292,8 +585,10 @@ static void initializeWorkList(std::vector<WorkListItem> &WorkList, // If there's an assignment edge from X to Y, it means Y is reachable from // X at S2 and X is reachable from Y at S1 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) { - propagate(Edge.Other, Src, MatchState::FlowFrom, ReachSet, WorkList); - propagate(Src, Edge.Other, MatchState::FlowTo, ReachSet, WorkList); + propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet, + WorkList); + propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet, + WorkList); } } } @@ -328,16 +623,21 @@ static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, auto ToNodeBelow = getNodeBelow(Graph, ToNode); if (FromNodeBelow && ToNodeBelow && MemSet.insert(*FromNodeBelow, *ToNodeBelow)) { - propagate(*FromNodeBelow, *ToNodeBelow, MatchState::FlowFromMemAlias, - ReachSet, WorkList); + propagate(*FromNodeBelow, *ToNodeBelow, + MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList); for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) { auto Src = Mapping.first; - if (Mapping.second.test(static_cast<size_t>(MatchState::FlowFrom))) - propagate(Src, *ToNodeBelow, MatchState::FlowFromMemAlias, ReachSet, - WorkList); - if (Mapping.second.test(static_cast<size_t>(MatchState::FlowTo))) - propagate(Src, *ToNodeBelow, MatchState::FlowToMemAlias, ReachSet, - WorkList); + auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) { + if (Mapping.second.test(static_cast<size_t>(FromState))) + propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList); + }; + + MemAliasPropagate(MatchState::FlowFromReadOnly, + MatchState::FlowFromMemAliasReadOnly); + MemAliasPropagate(MatchState::FlowToWriteOnly, + MatchState::FlowToMemAliasWriteOnly); + MemAliasPropagate(MatchState::FlowToReadWrite, + MatchState::FlowToMemAliasReadWrite); } } @@ -349,45 +649,54 @@ static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, // - If *X and *Y are memory aliases, then X and Y are value aliases // - If Y is an alias of X, then reverse assignment edges (if there is any) // should precede any assignment edges on the path from X to Y. - switch (Item.State) { - case MatchState::FlowFrom: { - for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) - propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet, - WorkList); + auto NextAssignState = [&](MatchState State) { for (const auto &AssignEdge : NodeInfo->Edges) - propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, - WorkList); + propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList); + }; + auto NextRevAssignState = [&](MatchState State) { + for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) + propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList); + }; + auto NextMemState = [&](MatchState State) { if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { for (const auto &MemAlias : *AliasSet) - propagate(FromNode, MemAlias, MatchState::FlowFromMemAlias, ReachSet, - WorkList); + propagate(FromNode, MemAlias, State, ReachSet, WorkList); } + }; + + switch (Item.State) { + case MatchState::FlowFromReadOnly: { + NextRevAssignState(MatchState::FlowFromReadOnly); + NextAssignState(MatchState::FlowToReadWrite); + NextMemState(MatchState::FlowFromMemAliasReadOnly); break; } - case MatchState::FlowFromMemAlias: { - for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) - propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet, - WorkList); - for (const auto &AssignEdge : NodeInfo->Edges) - propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, - WorkList); + case MatchState::FlowFromMemAliasNoReadWrite: { + NextRevAssignState(MatchState::FlowFromReadOnly); + NextAssignState(MatchState::FlowToWriteOnly); break; } - case MatchState::FlowTo: { - for (const auto &AssignEdge : NodeInfo->Edges) - propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, - WorkList); - if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { - for (const auto &MemAlias : *AliasSet) - propagate(FromNode, MemAlias, MatchState::FlowToMemAlias, ReachSet, - WorkList); - } + case MatchState::FlowFromMemAliasReadOnly: { + NextRevAssignState(MatchState::FlowFromReadOnly); + NextAssignState(MatchState::FlowToReadWrite); break; } - case MatchState::FlowToMemAlias: { - for (const auto &AssignEdge : NodeInfo->Edges) - propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, - WorkList); + case MatchState::FlowToWriteOnly: { + NextAssignState(MatchState::FlowToWriteOnly); + NextMemState(MatchState::FlowToMemAliasWriteOnly); + break; + } + case MatchState::FlowToReadWrite: { + NextAssignState(MatchState::FlowToReadWrite); + NextMemState(MatchState::FlowToMemAliasReadWrite); + break; + } + case MatchState::FlowToMemAliasWriteOnly: { + NextAssignState(MatchState::FlowToWriteOnly); + break; + } + case MatchState::FlowToMemAliasReadWrite: { + NextAssignState(MatchState::FlowToReadWrite); break; } } @@ -465,7 +774,8 @@ CFLAndersAAResult::buildInfoFrom(const Function &Fn) { // to it auto IValueAttrMap = buildAttrMap(Graph, ReachSet); - return FunctionInfo(ReachSet, std::move(IValueAttrMap)); + return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet, + std::move(IValueAttrMap)); } void CFLAndersAAResult::scan(const Function &Fn) { @@ -530,7 +840,7 @@ AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA, auto &FunInfo = ensureCached(*Fn); // AliasMap lookup - if (FunInfo->mayAlias(ValA, ValB)) + if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size)) return MayAlias; return NoAlias; } @@ -555,9 +865,9 @@ AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA, return QueryResult; } -char CFLAndersAA::PassID; +AnalysisKey CFLAndersAA::Key; -CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) { +CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) { return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F)); } |